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HERMITIAN NATURAL TENSORS

A. FERRANDEZ AND V. MIQUEL

Abstract,

We define natural tensors for almost hermitian manifolds, study the space of c-jets of almost
hermitian structures (g, F) on a disk in R?", obtain the classification theorem for regular hermitian
natural tensors and determine all homogeneous regular hermitian natural connections on almost
hermitian manifolds.

§0. Intreduction

In [7] Epstein introduces the concept of natural tensor fields on Riemannian
manifolds. This concept is in the line of the invariants introduced by Gilkey in [8]
and elucidated in [2]. In later papers ([91, [6]) the analogous concept of
hermitianinvariant is defined for hermitian manifolds and an approach to a good
definition for almost hermitian manifolds is given in [11]. These hermitian
invariants are also used in [13]. In this paper we give the notion of hermitian
natural tensor for almost hermitian manifolds. We do it following the scheme of
[7]. After giving some definitions in §2, we study, in §3, the oo-jet of an almost
hermitian structure (g, F): we get the compatibility conditions between the co-jets
of g and F necessary for (g, F) to be an almost-hermitian structure, then we show
that a hermitian natural tensor depends only on the co-jet of (g, F) and give the set
of these co-jets in a more convenient form. In §4 we obtain the classification
theorem for regular hermitian natural tensors by using the real representation of
U(n) and the Iwahori’s version ([ 12]) of the Weyl’s theorem for U(n). Here we can
notice that when we restrict our attention to hermitian manifolds, the space of
hermitian invariants in [6] is the complexified of the space of regular hermitian
natural functions (tensors of type (0,0)) in our definition. This fact follows from
4.4, the Theorem of §3 in [6] and the well-known expression relating the torsion
and the curvature of the canonical hermitian connection with the Riemannian
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234 A. FERRANDEZ AND V. MIQUEL

curvature and the covariant derivatives of the Kaehler form (cfr. [13]). Finally, in
§5 we define the natural hermitian connections and determine all the homogene-
ous regular hermitian natural connections and those such that Dg =0 and
DJ =0.

It is also possible to study the C* case, but both the result (a C* hermitian
natural tensor of type (p, ) which is homogeneous of weigth w and nonzero is
a regular hermitian natural tensor) and the method of proof follow closely those
used by Epstein, [7], in the Riemannian case.

The homogeneous regular almost complex (without depending on a metric)
natural tensors have been studied in [1]. The resuits there are very different from
ours; for example, there is no homogeneous regular almost complex natural
connection.

In a later paper ([4]), we have considered hermitian natural differential
operators. ’

We wish to thank A. Montesinos and specially to F. J. Carreras for several
heipful talks.

§1. Notation.

In order to simplify the formulas below we shall adopt the following conven-
tions of notation:

L.1. Capital latin letters I, J, K, I, will mean finite sequences of numbers, i.c.
I={(,..,i)with1 £i <2n1 < s < r for some integers r and n, and |I| will
denote the number of elements of the sequence (f} = r in the above example).

Given x = (x',...,x*") e R?", the expresion x’ will mean

xh = xft. . x>
For example, the Taylor expansion of a function f:R™ SR

r 2n

fy=f00+ 3 3 3 fioxxr

rzl1 k=1 i =t
will be written as
fO=fO+ Y fixh
[fz1

1.2. J will be employed also to denote an almost-complex structure on
a manifold, though this should not be misleading.

1.3. Let (M, g,J) be an almost-hermitian manifold of real dimension 2n. If
A} is a number depending on indices i, J» I, with respect to a J-orthonormal basis
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{el,..-.,e,,,e,,+1 = Jey,...,ez,4, = Jes,} of T M, then
Af will denote Ai*"if 1 <i<nand —A7Yifn+ 1 <i< 2
In a similar way should be understood the * in the indices of 4%, 4;;;.
1.4. foeS,,u<rl=_(,,...i,),and A¥ is a namber as in 1.3, we define

Tran = AL wherer 2 b>a=l,andb ~a—1=u<r

fata)---lab)?

1.5, Greek letters o, §,. .. will denote multi-indices

o= {0y,...,0%,) B={(f,....02) ajnﬁjez+51 <jE2n,

a|m| aa1+...+a"

ax (x) L (axPnye

l¢| = oty + ... + a,,, and

1.6. We shall use the Einstein convention of sumation for repeated indices,
even 1f one of them is affected by *.

L7, I {Q,}.ca is a family of 2-contravariant tensors and 4 = (xy,...,a,) is
a finite sequence of elements of A, we shall denote

I _ iz 251825
Ql = Qi Qize-ine

1.8. 1f g is a 2-covariant tensor, I = (iy,...,i,, 0€8,,J = (j;,..,jh 0 S r <
s =m,s —r =g, we shall denote

Giotr,903 = Gignyir +* Fiviaria”

L9. If ' are 1-forms and e; vectors in T,M, I = (iy,...,i,), J = (j;,....],), we
shall denote '

w1=a)i1®...®a)ir, eJ=ej1®...®€js.

§2. The definition of a hermitian natural tensor.

DEFINITION 2.1, A hermitian natural tensor is a map t which associates to each
almost-hermitian manifold (M, g, J) a section ty, , ;, of the tensor algebra over
M which is natural in the following sense: “if ¥: (M, g,J) — (M’, ¢, J) is a holo-
morphic (J' . = i, - J)isometry of M onto an open set of M, then v 1., , ;, =
L, g,y (M)

t 18 said of type (p.q) if £y, ,(m) is a p-times contravariant and g-times
covariant tensor, at each point m of M.

t is said to be homogeneous of weight w if

titezgn) = C g, g (€CER, > 0).

To introduce the regularity condition H. Donnelly, [6], uses a system of
holomorphic coordinates on a hermitian manifold; thus, in a general almost
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hermitian manifold, we need the following:

DerFintTioN 2.2, Let (M, g, J) be an almost hermitian manifold of real dimen-
sion 2n and x a point of M. A coordinate system (x?, ..., x*") centred at x will be
called a J-coordinate system if (8/0x"*/)(x) = J(8/6x')(x). A J-coordinate system
which is normal with respect to the Levi-Civita connection and the vectors 6/8x/
are orthonormal at the origin x will be called a J-normal coordinte system.

DErFINITION 2.3. Let ¢ be a hermitian natural tensor of type (p, ¢). We shall
say that t 1s regular if for each almost hermitian manifold (M, g, J), any point
x in M and every J-coordinate system centered at x, the components
txld = (iy,...,i,), K = (j;,-...j,) of t are universal polynomials in the variables

olal glal
ki
i g ’F"S’aa—gij’_éFF’S’

where o, § are multi-indices and F is defined, as usually, by F(X,Y) = g(J X, Y).
Remark. The expression ‘universal polynomial’ means that this polynomial
expression allows to compute ¢t} in all J-coordinate systems.

As in the riemannian case ([2], {7], [8]) a hermitian natural tensor is clearly
locally defined and the following is equivalent to Definition 2.1.

DEFINITION 2.4, A hermitian natural tensor is a map which associates to each
disk D(r} in R*" with centre at 0 and radius r and each almost hermitian structure
(9,J) on D(r) a C* tensor field t ., , ,, on D{r) such that if y:(D(r),g,J) >

(D(s), ¢, J') is a holomorphic isometry onto an open set of D(s), then ¢, Diryg ) =

tipisy g’ a7y (00))-

§3. The set of co-jets of g and F.
In the following we use Definition 2.4.
THEOREM 3.1. {549 4. J)-(O) depends only on the co-jets of g and F (or J) at 0.

ProoF. Let (g,, F,) and (g,, I';) be two almost hermitian structures on a disk
D such that g, and g, have the same co-jet at 0 and F, and F, have the same
co-jet at 0. Let V; = {x in D:x, > 2nix, for 2<i<2n} and V, = {x in
D: —x; = 2n|xy, for 2 < i< 2n}. Then V, "V, = {0}. Take an orthonormal
basis {e;...,€,,€,11,---»€2,0 Of ToD (with respect to g,(0) = g,(0)) such that
e,+; = J,(0)e; (recall that J,(0) = J,(0)). Take an extension of {e,} to a g;-or-
thonormal frame {Ej}}, such that E} . ; = J,E% i = 1,2 (here we don’t use Einstein
convention). Then we have C* functions @}/ defined on an open disk D(s) = D by
E! = a4 9/0x’. The standard procedure to get a local orthonormal frame of the

form E,,...,E,, JE,,...,JE, gives us the a as C®-functions in the variables

i
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g jk,g’"' and F,;. Then, because of the coincidence of oo-jets at 0, the functions
a,’ and g’ have the same co-jet at 0. By Withney’s extension theorem (applied as
in [ 7]), there are C® functions aj on a disk D(r) = D such that det (@) + 0 on D(r)
and a{lpy v, = @lpenyv, i = 1,2. Then we define E, = af d/0x’ on D(r), JE, =
E  pJE ;= —Efor1<ismg(E,E)=2¢;forl <ij<2nand F(X,Y) =
g(J X, Y), for tangent vectors ficlds X, Y on D{r). This defines an almost-hermitian
structure (g, F) on D(r) which coincides with (g;, F}) on D(r)n V.. Thas, if ¢ is
a hermitian natural tensor, we have

t,90,500) = LD3.00. Fa(O) = Ly 0, P by o7 (0) = Ly 0. 17(0). O.E.D.

We can compute t 5, ,. »(0) in any J-coordinate system and, in partiular, in
a J-normal coordinate system centered at 0. By using these coordinates we have,
for g,(x) and F,(x) the Taylor series:

(3.1 gif{x) = 6 + Y. gijlxr,
R

(3.2) Fij(x) = 8p;+ ), Fyx'.
Hlz1

In [7]} it is proved that the coefficients g,; in (3.1) satisfy the following
conditions:

(3.G.1) They are symmetric in the first two indices,

(3.G.2) They are symmetric in the last r indices.

(3.G3) > Gier+n = 0. In particular, g;; = 0.

6eSr+ 1

In order to obtain the conditions satisfied by F;;; we first consider the Taylor

series of the entries g* of the matrix (g%) inverse of (g;;):

(3.3) gl )= o + D gix!

Ml > 1

From the conditions g¥g;, = 8}, it follows that g¥ are functions of g, ; given by
the recurrent formulae

r—2
(3.GA1) rlgf + g+ 3. Y Gitor.s G r1n = 0forallr =2,
GES,5=2

In particular, for » = 2 and 3,

(3-G.4.2) glj + giji]iz - 0.

(3.G.4.3) g¥,.. + Gi,iye, = 0.

iyizis

If (g, F) defines an almost hermitian structure on D(r), the tensor J defined
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by ¢(JX,Y) = F(X,Y) verifies J* = —id, which is equivalent to g(JX,JY) =
g(X, Y), since F is skewsymmetric. From g(J X, Y) = F(X, ) wehave Jig,; = Fy,
then J* = F;¢ and J? = —id is so equivalent to F;g"'F,,g™ = — &}, which
using the series (3.2) and (3.3) gives

K

; I 1,7 I
=5+ Y Agx'+ ) Byux'x'+ Y, Ciungx x'x
[Hlz1 szt HILLIK Z 1

I J._ K_L
+ > Dy X ¥ x%xb =0,

[ 0L KL L =2 1
where
Ay = Fuyt = Fopy — g7 — G, |
By = F*kfgj + F:kng + 975 s — Faagy + FuauFoy + gr g5,
Cijrrx = Fug Frs gi + F;kIgJ Fix + gy Fuy gf + Fuu g5 g%,

DUIJ’KI = FMQJ Frox 977,
and g¥ =0 if {I| = 1.

From this polynomial equation, the skewsymmetry of F and the equality of
cross derivatives, we obtain the conditions that the cocfficients F;;; have to satisfy:

(3.F.1) They are skewsymmetric in the first two indices;

(3.F.2) They are symmetric in the last r indices;

(3.F.3) They verify the equalities:

r—1
(3F.3r) r! Aij[ + Z {Z B:chr(l s)Jcr(s+E r) +

oel§, Ls=1
r—3 r—1
Y Y Citstgias+tokea+1n T
s=1r=s+1

r—-5 r—3 r—2
Z Z Z Dl_}fa’(l s)Ja(s+ 1, )Ka(t+ 1,u)La(ut 1,r) 0

s=1lt=s+2u=1t+1

In particular, for r = 1,2 we have

(3.F.3.1) Fuy — Fipy = O.

ij*i,

,(3 F.3.2) —29% gt Fui, Fi, + Foa, Fugi, + 2Fu00, — 2Fi, = 0.

iqia

As it is pointed out in [ 7], each coefficient g;;;, |I| = r,defines a (0,7 + 2)-tensor
g, at O by the formula

gr(en Fil L bR i,) = géjii...irv Where e, = a/axk(O)

Similarly, since different J-normal coordinate systems are related by an el-
ement of U(n), each Fy;;, |I} = r, defines a (0,r + 2)-tensor f, at 0 by

(34) _f;-(eiaejseila - :et) 1}11 Qe
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and for these tensors we have

Fi*jil... f(‘]ev p l. ER ei,.)‘
Let V denote the tangent space at 0. Let M be the set of sequences (g,, /) in
r+2 2
]—[ (@ V*E x ® V*) satisfying the conditions (3.G.1) to (3.G.3} and (3.F.1) to

rz1

(3.F.3). From (3.1) and (3. 2) M can be considered as the set of co-jets at O of the
almost-hermitian structures (g, F) on D(s). For any (g, F), j(g, F) will denote the
corresponding element of M. Then we have the following,

DEFINITION 3.2. For every hermitian natural tensor of type (p,q) we define
amap 7 from M to @V ®Q7V* as 7 (j(g, F)) = tg.py(O).

DEFINITION 3.3, Given A in U(n), we define the action of 4 on the structures
(g9, F) on D(s} as follows: let (x',..., x*") be a J-normal coordinate system centred
at0. Let (y',..., *") be the J-normal coordinate system at 0 such that §/3y/(0) =
A~ H(6/6xH(0)). Then we define A,g, on a neighborhood of 0, by

) v )0 = (s 0.

Indeed, 4,g is essentially the same tensor g as viewed in the new J-normal
coordinate system. Similar definition is given for ALF, and
Aug, F) = (A,9, A, F), which is also an almost hermitian structure.

Notice that this definition is necessary in order that the action of A be defined
on the tangent space of each point of a neighbourhood of 0, and not only on V,

ReMARK. The above definitions yield
JA (g, FYO) = A, j(g, F),
where the action of 4 on a tensor Bin @V ®®*V* is defined as usually by
(AP0, X, X)) = (A%, .., A% A7 X,,.., A" X).
The following proposition shows the invariance of 7

PROPOSITION 3.4. If t is a hermitian natural tensor of type (p,q) then 7 is
invariant by Ul(n), i.e., for any 4 in U(n), A, 7 (j(g, F)) = 7 (A4,(g, F).

ProoF. Since ¢ is natural,
Ayt py = L4, r and then,

AT (9. F)) = Aytg.ry = ta,om = 7 (A9, F)) = T (4,(g, F).

The next theorem is an extension to the almost hermitian situation of a well
known result in riemannian geometry. A practical interest of it is in the study of
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the linear dependence of a system of generators of a certain space of homogene-
ous regular natural hermitian tensors, as we doin 5.2 and 5.3 Without it, it would
be necessary to compute the tensors on concrete examples (see, for example,

[1179).

THEOREM 3.5. If (g, fy)y»1 is in M then there is an almost hermitian structure
(g, F) on a neighborhood of 0 whose Taylor series expansion gives us the elements

(G fr)rg 1-

PROOF. Let (g,, f,),»1 €M and take V = R2" = C". Then we have the coeffi-
cients g;;, Fipe R. Let g3 = ¢ and F; = —F}; be C*-functions with derivatives

at the origin given by
5I1Ig;_ aIIIFl(.
j;;i =1 Gij, ot L=l Fy,

T
hermitian structure at the origin, i.e.:

and satisfying g{(0) = &;;, F;;(0) = oy Then, the pair (g, ') defines an almost

Flfk g’kl Fl’m g!mj(o) = mé{a
and, in a neighborhood of 0,

14 rki rmj i
Fag® Fing™ = —4

where 4 = (4!) is a matrix of positive determinant which represents a g'-sym-
metric endomorphism 4. In fact, A = — J'? where J' is the tensor defined by
g(J'X,Yy= F(X,Y) and, since F!. is skewsymmetric, g'(J 2X,Y)=
_gI'X,JY) = ¢(X,J?Y), ie, J? is a g-symmetric endomorphism. Then,
there is a matrix p = uf of positive determinant which represents a ¢'-symmetric

endomorphism y, such that u* = 4. Moreover, since — M0} = —id (id = identity
matrix), we have p(0) = id. Now, we define
(3.5) Fy; = Fix Hf; gi; = g;klu'?'

Then, we have F;;(0) = F};(0),4;;,(0) = g;;(0). Let

s+ Y px!
[z1

be the Taylor series of the uf. The equations (3.F.1) to (3.F.3) are equivalent (o
i |

. oM . ] .
(= A0) = — ——f (uF " p,)(O) for every [ = (i, i)
ox ox

and these are equivalent to

wh

wh
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(o4 % i )(sb+ % )

[flz=1 Flz1
(5}" + 2 u?ka) (5;'; + 2 u;"anL) = 4,
UEY JES!
whence we get the following conditions:
4H§i1 = 032'4ﬂ{i1i2 + f,=0;.. -;r!4H{i1._.ir + B =0...
where f,is a polynomial in the 5, 1 < |I} < r — 1. That implies p}, = O for ei/ery
I,ie., (8" 1l/6x1)(0) = 0. Then, from (3.3), we have

oV E,. ol g,

tj i a”lgi
ox’ 0= ox! ~(0)and ox! )

ox!

©0) = (0),

and F,g"F,,g™ = — 8! in a neighborhood of 0. Thus (g, F) defines an almost
hermitian structure on a disk centred at 0, whose Taylor series has the coefficients
g and Fy;;. However the coordinates may not be normal, but it is shown in [7]
that if we change to normal coordinates for g, then the co-jet of the change of
coordinates is the identity at 0, so that in a J-normal coordinate system the co-jet
of (g, F} is the sequence (g, f,),2 ;-

The next theorem provides a new description of the set M.

THEOREM 3.6. Let V be the tangent space at 0 endowed with an almost hermitian
structure (g, Jyand let W = { fe V* A V¥ f(JX,JY) = —f(X, Y)}. Then there is

a U(n)-invariant bijection from M to the vector subspace [ (Y, x (W ® O V*)of

r=z1

the vector space [[ (®""2V* x ®""2V*), where O means symmetric tensor

rz1
product and Y, is an irreducible GL (V)-submodule with Young diagram having

¥ squares in the first row and 2 squares in the second row, except that if r = 1,
Y, = {0}.
Proor. It is shown in [7] that the set of sequences {g:)r=2 (g, belongs to
®" " V*)isin 0(2n)-invariant bijection with the vector space [] Y,. On the other
r=2

hand, the map from V* A V*® O" V* to W ® @ V*, denoted by ~, defined by

3.6 27/(X,Y.Z,,...Z2)=f(X. Y, Z,,....,Z,)— f{(JX, Y, Z,.....Z,)
is U(n)-invariant. The equation (3.F.3.r) is equivalent to -

.fr(eiaej:ejla---aejr) + fr(Jeia'Jej»ejls---,ej,,) = Fijf -+ FE*J*I =
_ i -
= Ajpp — Fopr + 97 — g7’ + Fapp =
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1

e r—3 r—1
= - _‘ Z Bij*[cr(l,s)J’a{s+ 1,r) + Z z Cij*Ia(l,s)Jo-(.s-l-1,1’}Kcr(t+l,r)
r geS8, s=1 =1 1=5+1

r—5 r—3 r—2

+ Z Z Z Dij*[c(l,s)lo’(s+ 1. 8)Ko(t+ 1, u)Lo(u+ 1,r)} + g?* - g?J
s=1t=s5+2 u=t+1
Then the sequences (g,, f,), = satisfy (3.F.3) if and only if
37" fX,Y.Z,...Z)+ [(UX,JY.Z,,.. . Z)=0(X,Y,Z,,....Z,)

for every r, where «, is a tensor given by

Ot,,(ei, ej? eji’ caey ejr) =
1 r—1 r—3 r—1
= - _1 Z Bij*[a(l,s)Ja(s+ 1,r) + Z 2 Cij*Ia'(l,s)Jcr(s-%1,t)Kcr(I+l.r)
r oS, Ls=1 s=1t=s+1

r—5 r—3 r—2

" 2 )
+ Z Z Z Diﬁ‘lcr(l.s}.]a(s+ L.}Ka@+ 1,u)Lotu+ 1,r)} +gf — g1’

s=1t=35+2u=t+1

Observe that from (3.G.4.r) and the definitions of B, C, D it follows that
the Bjjro1.970s+1,5 I the above expressions of «, are functions of £, g,_,
G frop With 1 Zs=r —1; the Cipy gras+1.0keu+1., are functions of
Jo Jiess Grets oot Gt o0 9o With 1 S5 S7—3, s+ 1 21 <r + 1; the
Dyttt .70+ 1.0Kote+ LpLow+1,n ar€ functions of f, g5 Ju-tGr—u With
1<s£r—55+2=t<r—3,i+1=2u<r—2andg¥ — ¢’/ depends only
on g,,2 < s = r. Then o, depends only on ¢,,...,4,, fis---s fro1-

I we restrict the map ™ to M we have, from (3.6) and (3.7), the 2 ~f, = 2f, — «,.
Then on M there exists an inverse map of ™ given by 2f, = 2~f, + a, and this
completes the proof.

As a consequence of this theorem,
[[hxW® o V)
rz1

can also be considered as the space of oo-jets of the almost hermitian structures
(g, F) on D(s). Moreover, iffis a natural tensor, the map 4 of the definition 3.2 can
be viewed as a map from the above space to @7V @ ®7V* given by

(3.8) T gr " fde21) = T (G0 Srhez 1)
We also have the following reformulation of the proposition 3.4.

ProrosiTiON 3.7. If t is a hermitian natural tensor of type (p,q), then 7,
considered as in (3.8), is U(n)-invariant.

R e e e R

S e
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,

Proor. Let A be in U(n). Since ~ is U(n)-invariant, we have
A8 ) = A" G0 1) = T A )
By the Proposition 3.4
AT G ) = T Ay(9r: 1)

Then, using (3.8), we have
ta]dA*(Ngra Nfr) = gi(N 71A*(~gra Nf;-)) = g"(w —1~A*(graf;’-)) = 3_14*(9” f;) =
= A*g‘—(graﬂ) = A*g—(Ngrs Nf;-)

§4. The classification theorem for regular hermitian natural tensors.

LEmMA 4.1 (Weyl's Theorem for a real representation of U(n), [12]; see also
[14]). Let V = R** = C" endowed with the canonical hermitian structure (g, F).
Then the R-module Homy,,,(®" V*, R} of U(n)-invariant R-linear maps from
®" V* to R vanishes for r odd, and whenr is even, r = 2s, it is spanned by elementary
contractions of the type

that
hoss Prto!' ®@...® o) = Q, (0, 0"?)...Q, (0" 7Y, 0"),
;t;f where o is a permutation of {1,.. ,r}, 1 Soty,..,0, 2,02, =g and Q, = F, g
e and F- being the metric and the Kaehler form induced on V* by g and F ,
vith . .. . .
| respectively, through the canonical isomorphism between V and V* given by the
nly metric g.
-, LeEMMA 4.2. The R-module Homy (@ V*, @7V @®1V*) of Uln)-invariant
this | R-linear homomorphisms is zevo if r +p -+ q is odd and, if r+p qg=12s, it is
5 spanned by the elements of the form
l/IA( d I,) _ QI a ® d J
T C-uIl,, X - Awfcr{l,r)gfa‘(r+p+ Lr+p+aq)J axjo(r+l,r+p) Xy
where I = (iy,..., 0, ), 1 = (iy,....025h A = (0y,..., ), J = (jy,...,j,), 0 is a permu-
tati Lo.ou25h P Sog,.n0, <20
ares ation of { s}l <oy o |
can | ProOF. Leta be in E = Hom (®" 7 V* ® ®‘ V, R) and denote by aits image in
; B = Hom(®" V* @7V ® @7 V*) under the canonical isomorphism. Itiseasy to
see that o is U(n)-<invariant if and only if & is. On the other hand, the canonical
isomorphism between E and C = Hom (®" 1 V*, R) induced by the metric
preserves the U(n)-invariant elements. Then we can obtain a system of generators
e of By, = Hom,,, (R"V*, ®"V @ ®* V*) by taking such a system in C,, and

their images by the above isomorphisms. The generators of Cy, are given in
lemma 4.1. They can be written as:

o4 =0 0

A 6x10'(1,2.s) ?
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with 25 = p + g -+ r. Their images in_B under the isomorphisms given above are

%,
A I J
Ve = QuGiopiprt.a00 P EiNEy) ® dx’,

and their action on the r-covariant tensor w = @, dx’ gives just the required
elements. : Q.E.D.

THEOREM 4.3, Let t be a regular hermitian natural tensor of type (p, q). Then t is
a sum of tensors whose components have the form

N
Fr . Frg ...g .. 9 H /AR S I [ [ (PR A I APy
S s e F=1 \'—v"'" F=2 e [ -
2b 2b rt+2 r+2 r+2 rt2 q
ettt ! N, et
B By

N N
where 0 < 2b gZ(Z h‘:),?.S: K+p+gr=3Y (r+2)(h* +h'); N, h®and
r—1 r=2

hY are natural numbers, and the following contractions are taken:
a) The first index of each F- with the first index of each of the first 2b g ’s;

b) Take b of the f,’s, then the second index of each F is contracted wzth one of the
Jirst two indices of these f.’s;
¢) The first indices of the last q g ’s, the rest of indices of fs, the second index of
each of the first 2b g ’s and all the indices of the g.s are contracted with x + g
indicesof the 2; ..., 82, . Thereremain p upper and q lower non-contracted indices.

Proor. ¢ is regular if and only if 7:M — ®?V ® ®4V* is a polynomial in
a finite subsequene (f1,92, f5, ... 9w, fy) Of {9ys £,),»1- This holds if and only if
-f/'": [TEX(WROVH) »@VRRIV* s the composition of the projec-

rz1

N
tion my onto a finite product [] (Y, x (W ® ©"V*)) followed by a poly-
r=1
nomial map P; i.e., 4 = P-ny. Then, by (3.7), we have A (P-nx("g,, f) =
A*g‘d(N‘gr’ f) = ‘(,)/—A*(Ngra “R)y="P- TCNA*(NQ,., = PA*TCN(NQN “f),and Pis
U(n)-invariant. We can write P as a sum of U(n)-invariant homogeneous poly-
nomial of degrees h$, by, h3, . . ., hy, b in the variables £}, 95, fs, - . ., fx» n. TESPEC-
ively, where f,isin W® O"V* = g,and g, is in Y,. By a polarization process (see,
for example, [2] or [5]) each homogeneous polynomial (wich we continue
denoting by P) can be considered as induced by a U(n)-invariant multilinear map
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and this is induced by a U{n)-invariant linear map

(h} (h3) {hy) ()
Ay @ e R0, Rc R, D QYR e RV Ry @ ... Ray — PV RRIVE,
Since Y, is a GL (2m, R)-direct summand of ®" "2 V* and g, is a U(n)-direct
summand of ®"*2 V*, the last map can be viewed as induced by a U(n)-invariant
finear map P: ®, V* - ®F V ®®7 V* Then, if we also denote 4 the summand
of 7 = P-my which corresponds to the homogeneous polynomial P, from
Lemma 4.2 we have

g‘((graﬁ)rgl) = f((Nng N.f;')rgl) = P((Ngrs Nﬁ')léréN) =

) *3 %) ()

=P R0 ® 10 0@ ® TG Rt ® TGy R ® TGy ® T D ® Tfy)

— 0l ~ ~ ~ ~
_'QA fua(l,s)--- G2la(3h5+1.305+4) "+ - fNIcr(x—n—l,x) ot +p+1,u+ptagd

%)

. J
axla(ﬂ:+ 1.x+p ® dx »
where 2s =k +p + g, A = (0ty,... %)
Now the theorem follows from this expression, the formulae giving the bijec-
tion ™ of theorem 3.6

(Ngr)ijkll = (gr)ilkjl — 9 ayr — G )juair — (9, juar (S€€ {7,
("1 i = (1/2)((/,): 3 (._f:-)i*f"[) (see (3.6)),

and the formulae (at the point 0)
(fr)i*j*f (S Jk Jl (f ki Fukgqu”l-

COROLLARY 4.4. Let t be a regular hermitian natural tensor. Then t is of one of
the following forms:

a) The metric g_ with values in ®*T*M or its image g, by the canonical
isomorphism given by the metric, with values in ®@*TM.

b) The Riemann curvature tensor R and its covariant derivatives V*R.

¢} The Kaehler form F and its derivatives V*F.
d) The tensor product of tensors of type a), b) or ¢).

€) The tensors obtained by contractions of upper and lower indices in the above
tensors.

f) All linear combinations of tensors of the above types.

Proor. It follows from Theorem 4.3 and the Taylor series expansions of
a tensor in normal coordinates given in [10].

REMARK. It is interesting to remark that the tensors given by Corollary 4.4
include all those obtained from types a), b), c), d) or e) by permuting arguments,
because those can also be obtained by contractions with g_and g-.
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COROLLARY 4.5. Let 1 be a non identically zero homogeneous regular hermitian
natural tensor of weight w and type (p, q). If we define the degree d of t as the number
of derivatives of g and F appearing in the expression of t when we use a J-normal
coordinate system, thenw = —d — p + q. Consequently, w is even and q—p=w

PROOF. The same arguments as in §5.3 of [7] show the following: let ¢ be
a constant and g = ¢*g (then F = g(J o, 8) = ¢?F). If (x',..., x*") is a J-normal
coordinate system for {(g, F) and (y,...,y*") a J-normal coordinate system for
(g, F), then, if I| =,

g =¢ "Gup FijI = C_rFijI;dyi = cdx’ a/ayi =c! 8/835;
Fij=Fy gy=9y F/=F; gl=g"
A monomial of those given in Theorem 4.3 has degree
d=h]+2h5 + ...+ Nh + 2% + ...+ NhY,
and weight
w= —hi—2h5 —...— Nhfx—2h} — ... — Nhl —p+q
which proves that w = —d — p + g. On the other hand, Theorem 4.3 says that

N
K+pt+giscveniflt+0,andx+p+q+w=x+2g—d=29+2h + Y

r=2
2(h¢ + hY)is even, then w is even.

Corollary 4.5 implies that the concepts of weight ([2] or [7]) and degree in the
partial derivatives ([8,9] or [ 11]) are quivalent.
§5. Hermitian natural connections.
- Analogously to tensors, we can give the following definition:

DEFINITION 5.1. A hermitian natural connection is a map which associates to
each almost hermitian manifold (M, g, J) a linear connection D% on TM such
thatif f1(M,g,J) - (M', ¢', ') is a holomorphic isometry of M onto an open set of
M’, then

DMeny — DM If. Y for every X, YeZ(M).

We shall say that a hermitian natural connection D is regular if, for every point
x in M and every J-coordinate system centred at x, the Christoffel symbols

0 0
kK _ g kfn¢ 9
Ik =dx (Daxi 6xj)
of D are universal polynomials in the variables

glal i8I
ifs klsF s A g Yip T g 3
919" Fro o i 5 5 F

SRS
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an The concept of weight of a homogeneous hermitian natural connection can
er also be defined as for hermitian natural tensors. Evidently, the Levi-Civita
1al connection V is regular hermitian natural and homogeneous of weight zero. All
w. : connection D as before has the form V + B, where B is a (1, 2)-tensor. Then,
be f a hermitian natural connection which is homogeneous must be of weight zero.
1al THEOREM 5.2. Let D be a homogeneous (of weight zero) regular hermitian
or natural connection. For hermitian manifolds of real dimension 2n = 6, the difference
| tensor B of the connections D and V is in the vector space Bwith basis {B1,. .., B4},
where
By =VJ, By(X,Y) = By(Y, X), 9(B3(X,Y), Z) = ¢(B,(Z, X}, Y),
B, = —J-VJ, Bs(X,Y) = BJY.X),  g(BoX.Y).7) = g(BuZ,X). V),
B(X,Y)= ~JV(J)Y, Ba(X,Y)= By(Y,X), g(Bo(X,Y).Z) = g(B+(Z, X), Y),
Bio(X,Y) = V()Y By, (X, Y) = Bo(Y, X), g(B2(X, Y}, Z) = g B1o(Z, X), Y),
Bi;=g®aJ, B, =1® 6F, B,s=30F®]I
Bis=g®JdJ, B, =1®4F J, B,g=0F J®I,
B,y =F ®éJ, B,, = J ® 6F, B,, = 6F ® J,
1at B,, = F®JdJ, B,y =JQ®OF-J, B,y =6F-J®J,

where lis the identity automorphism, SF is the coderivative of F and 6J is defined by
g(8J, X) = OF(X). ,
For dimension 4, we have the relations B, — B, + By — B; — By + Bg =0
he and —B, + Bs — Bg — Byo + By, — By, =0,then{By,..., Bs, Bg, Bo, By, By,
: Bis,...,By4} is a basis of B. For dimension 2, B = {0}.

=

il
[

PrOOF. Obviously, B is a homogeneous hermitian natural tensor of weight
zero and type (1,2). Them, from Corollary 4.5, Bhas degreed = —1 + 2= 1. In
a J-normal coordinate system g,;(0) = 0; thus the components of B are poly-
nomials of degree one in fy;; = Fip = Vool F }8/6x!, 8/8x))(0). Then, from The-

to orem 4.3, the members of a system of generators of B are obtained from
ch Q-Q-Q°F g g orfrom F-Q-Q-Q°F g g g by contracting all the indices ex-
of ' cept one upper and two lower ones. The only possibilities are (up to a constant)
those listed above. Then {B,,i = 1,...,24} is a system of generators of the vector
E‘ space B. Next we study their linear dependence.
- First we consider the dimension 2n = 6. A linear combination of By,...,B,,
in

gives (by applying it to the vectors 8/6x", 8/0x, 8/0x° at 0) a linear combination
Of F321’ F1327 F1239 F23*13 F13*25 F12*39 F23*1*5 F13*2*5 F12*3*5 F23I*3 F132* and
F,3+,. From theorem 3.5 and the conditions (3.F.1), (3.F.2} and (3.F.3.1), given

arbitrary values for these F;, there is an almost hermitian structure (g, FYon D(r)
such that

(5.0) OF,;/0x*(0) = V,0,:(I)(0/0x", 8/0x)(0) = Fy;

for ij,k in the set {1,2,3,1%2%3*} (notice that 1* =n+1, 2* =n+2,

H
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3* =n + 3). Then a linear combination of these F, ;x 18 zero if and only if all the
coefficients are zero; thus, the coefficients of By, ..., By, vanish. In order to get
the coeflicients B, ..., B,, to be zero take a linear combination of these tensors
and evaluate it on the vectors d/x’, §/x/ and ¢/x* at the point 0 and take i = j,
i=j%i=k i=k*j=k andj= k* successively. (Note that, as above, given
arbitrary values %, to X, Fy;;, it follows from theorem 3.5, (3.F.1), (3.F.2) and
(3.F.3.1) that there is an almost hermitian structure (g, F) on D(r) such that the F, e
satisfy (5.0) and 2, Fy;; = #,).

In dimension 4 the only F,; which can take arbitrary values are F,, 0 Filags
Fia2, Fiagn Fioers Fiaes, Fiae, Fijo. So, given a linear combination X A, B,
and applying it to all possible arguments among 6/dx?, 9/éx2, a/ax = a/axl*
8/0x* = 9/0x*, and equalizing to zero we get

(5.1) L A=Ay = —dy=Adg= —Ay, = g,
(5.2)

Ag = A =i = Ay = —As = —Ayy.
In dimension 2 all B; vanish, since VJ = 0.

COROLLARY 5.3. Let D = V + B be a homogeneous hermitian natural connnec-
tion. Then:

a) If Dismetric(i.e. Dg = 0) and the dimensionis 2n = 6, B lies in the space with
basis

# = {B,,B; — B3, B4, Bs — Bs,B;, By — By, Byo, Byy — By,
By3 — Bi4;Bis + By7,Bio — Byg, By1, Bay + Bas, Byl

if the dimension is 4, B lies in the space with basis % — {B,,}.
b) If DJ =0, Bis of the form

B = (1/2)Bs + A,(B; + Bg) + As(Bs — By;) + A6{Bs — By3) + A3(B3 + By) +
'113(513 + Bys) + A14(Big — By3) + A5Bis + A16(Big — Bg) +
' A17(By; + B,o) + A1gB1g + Ari By + A4 By,  A;€R.

¢) If DJ = Q0 = Dy, B is of the form

B =(1/2)B, + {{(Bs — Bs ~ By, + By,) + {5(B, + By — By — B,) +
{3(Bys + Byy — Byy + Byy) + (a{Bis — Big + By; + Byo) +
Csle + 563243 Z.TiE R. ’

PROOF: ¢) follows from a) and b). First we prove a). Dg = 0 if and only if
g(B(X,Y),Y)=0, for any X,Y in (M) Writing B = 2,;/;B; and using the
Theorem 5.2, g(B(X, Y), Y) = 0 if and only if

(5.3} (A + A3) Vy(F)xy + (A5 + Ag) VilF)xsy + (Ag + A0) Vg (F)yyy +
(A1 + 412 Viy(Fxy 4+ (A3 + 4109(X, Y)SF(Y) + A,s9(Y, Y)oF(X) +
(—Ais + L) g(X, Y)SF(JY) + A139(X, Y)SF(JX) +
(410 + A20) F(X, Y)OF(Y) + (— 1y, + 253) F(X, Y)SF(JY) = 0.

b
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Taking X = d/x' and ¥ = §/0x* and evaluating (5.3) at the origin of
a J-normal coordinate system, the same arguments as those in proof of Theorem

5.2 show that the formula (5.3) implies (for dimension 2n = 4) A, = — 23,45 =
—hg,Ag = —Agand 4;; = —Aiy,. The same arguments as those in proof of 5.2 to
get the coeflicients of B, ..., Bystobezerogive A;3 = — A4, 415 = 0,46 = 447,
Aig = 0,419 = — 230,45, = Ay3. This proves a).

In order to prove b) we first note that DJ = 0 if and only if
(5.4) 0 = Vx(N)Y + B(X,JY) — JB(X,Y) = afX, Y), for any X, Y in Z(M).

Taking B = X, J, B; and computing g(«(d/dx', 6/0x?), 8/0x>) at the origin in
a J-normal coordinate system, we obtain, following the same method as in a), in
dimension 2n = 6, that

(5.5) j’l _— 0,]. —_ 2/14 - 0,/17 == )\,10 - ()J ):-2 == )\.8,/‘15 == /‘:11,/“.3 == /:,9,
Ao = A2 diz = Aazshie = —Aiosdia = —Ayadys = Aaos

which proves b). Since B, and B,, do not appear in the formula of b), that also
holds for dimension 4.

The characteristic, second and Levi-Civita connections, and also the Weyl
connection (so called in [15]), are examples of homogeneous regular hermitian
natural connections. For Kaechler manifolds, the unique homogeneous regular
hermitian natural connection is the Levi-Civita connection.
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