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0. INTRODUCTION

Let M be a Riemannian manifold and M,, the tangent space at each point m e M.
The sectional curvature r(P) of a plane P = M,, is defined, [13], as the Gauss curva-
ture at m of the surface Exp,,(P). So, r can be considered as a function on the Grass-
mann manifold of all planes of M, G(2, M,,), and the Riemannian curvature tensor R
can be defined in terms of the Pliicker coordinates of G(2, Mm) by polarization of r,
[10]. The purpose of this paper is to determine R by analizing the critical point
behaviour of the sectional curvature function rr for a special class of curvature
operators.

It S: R" > R"is a symmetric operator, one can define os:S8"" 1> R, by as(w) ==
= {Sw, w), which is projected at 5 : RP*~! — [R. It is well known that w is a critical
point of o5 if, and only if, w is an eigenvector of S; and its critical value og(w) is exactly
the correspondent eigenvalue. Algebraicly, if V is a real metric vector space, by
@ curvature opezator on V'we mean a symmetric operator R on A%(V) and the function
attached according to the above way is the sectional curvature function rg. Now,
the points and critical values of r, play the rdle of the eigenvectors and eigenvalues
of S. The fundamental question is: “How and at what rate do the critical points and
values of r, determine R?”.

On the whole, if R is a curvature operator verifying the first Bianchi identity, it is
said that R has a normal form if the critical points and values of rg determine R.
In [11], it is shown that any Einstein curvature operator in dimension four has
a normal form and this fact depends strongly of the existence of a determined number
of critical points of the sectional curvature function. For Kaehler curvature operators,
that is, curvature operators verifying the first curvature condition, it is possible to
consider those for which the curvature function is a Morse function; this allows to
establish lower bounds on the number of distinct critical points, [6], [71

Since the abstract treatment of the curvature operators has take geometric sense
when Vis, at each point, the tangent space of a Riemannian manifold, the question
naturally arises when ¥ is identified with the tangent space at each point of a Nearly
Kaehler manifold, [5], [7]- Since the Riemann curvature tensor of such manifolds
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verifies the second curvature condition, one can define the space of all curvature
operators on V verifying the above condition of curvature. Using similar technics
to [ 7], one determines normal forms in dimensions four and six. All geometric objects
will be considered of class C®.

1. PRELIMINARIES

If (¥, J,<,>) is an hermitian complex vector space of real dimension 2n, by
a curvature operator on V one refers to a symmetric operator R on A*V). If, also,
R verifies the first Bianchi identity, it is said that R is a Riemann curvature o perator
and 1t is denoted by Z{2n) the metric vector space of all curvature operators on V.
Itis defined an element of %(2n), also represented by J, by Jx A p)=Jdx A Jy,
forall x, ye V.

Igentifying the Grassmann manifold G(2, V) of the planes of ¥ with the space of
the unitary decomposable bivectors of AXV), for each R of Z{2n), one defines the
curvature function associated to R, rz : G(2, V) - R, by re(P} = (R(P), P}. Since V
is isomorphic to C”, by abuse of notation, when it is convenient, it will be written
A*C") by A%(V) and G(2, C") or G(2, 2n) by G(2, V). Furthermore, by G(2, 2nY we
denote the holomorphic planes of G(2, 2n). We shall frequenily identify AX(V) and

-0(2u). As u(n) = {M € o(2n)/JM = M}. if I e u(n) is such that JI = J and {vs v
is an unitary basis of C", I = 3 v; A v;,, Where v, = Jv,. If Pe G(2, 2n), choosing

i=1

an orthonormal base {vm} of €7, P is holomorphic if, and only if (P,I> = +1.

Definition 1.1. R ¢ R(2n) is called a Nearly Kaehler curvature operator or NK-
curvature operator if it satisfies the second curvature condition; that is,

nyzw = RJnyzw + Rnysz -+ Rnysz

for x, y,z,we V. It will denote by .44 (n) the set of such curvature operators,
which with the restriction of the inner product is a metric vectorial subspace of R(2n).

Like [4], it will be useful to consider the tensor A% = R — RJ, such that if A¥ = 0,
the space A% (n) is reduced to the space of Kaehler curvature operators.

2. TYPES OF CRITICAL PLANES

Next, one can think about G(2, V) as a complex hypersurface of CP*~!. This fact
allows, using the Lagrange multipliers, to give an algebraic characterization of the
critical points of the curvature function rg for a curvature operator R e #(2n).
In this way we have the following

Proposition 2.1. If Re 4’ (n), any critical plane of 1y, , ; is a critical
- plane of rg.
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- Proof. Choosing an unitary basis {v,}, a = 1,1% .., n,n* such that P =
= Uy A Dy is a critical plane of rp ., . ;, One gets

d| . .
0= —]| rr({cos tvy + sin m,) A (cos tvy. + sin fo,.))
dl‘l, 0
for a=2,2% ..., n n*% It follows that R ;. =0, a =2, 2% ,n* and

Rijs% = 0. By Propositlon 2.21in [7], P = v, A vy.1s a critical piane of e

In [2] it is shown that if S is a Kaehler curvature operator, its curvature function 7
achieves the maximum value on the holomorphic planes. It seems reasonable to
establish the following

Conjecture. If the holomorphic sectional curvature of a Nearly-Kaehler manifeld
- 1s non-negative, then at each point the sectional curvature achieves the maximum
value on the holomorphic planes.

First, one gives an example where this conjecture is verified. We denote by M
the naturally reductive homogeneous space U(3)/(U(1) x U(1) x U(1)). It is known,
[1]. with the complex structure given by

0 G2 G313 0 gy, —iaygg
X = _512 0 aés hasd Jx = iﬁjz 0 ia23 5
_513 _523 0 1513 1'6_2-23 0

M is a Nearly Kaehler manifold non-Kaehler, [5]. From [8],

x)xv - 4<["C, y]m? [X y] > + <[x y]}b [JC V]k>
An easy calculation shows that [x, Jx}, = 0 and

2i(A12 - A13) 0 0
[x, Jx] = 0 2i(~Ayy — Ays) 0
0 21(A12 - AZS)
where 4,; = a;;a,;¢ B, Hence the function
H(x) = M =2 — 6(‘4121413 + Ay453 + A13A23)
e A JTx|? (Aiz + A3 + Ap3)

is bounded by 0 < H(x) < 2.
Choosing the orthonormal base of M,

010 001 ¢ 00
v =121 -100}) v,=1//2| 000] v;=1/J2 (0 01
000 —100 0 —10

01 0 00 —i 000
Uls = 1/\/2 1 00 Ug* = 1j\/2 0 0 U3s = l/\/Q, 0 O 1
000 —i 0 01 0
2.

it is easily proved that Ry;;; = £(j + i) and R =
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It can be checked directly that, for any given vectors x, y & M, re(x A y) < 2.

Next, one analyzes the non-holomorphic critical planes, because they provide the
greatest information abaut R. We shall denote by G(2, C") — G(2, €Y the manifold
of such planes. For any non-holomorphic plane Q one can choose an unitary base
{v.} of Vsuchthat @ = avy A vys + bvy A 1, (b + 0)and U = Q + Jofle + Jole
€ u(n).

Propesition 2.2, Given the set
Z ={Ueum)|U| =1, rank, U = 4, det, U > 0},
it is defined a map F : G(2,C") — G(2,C"Y — X by F(Q) = (Q + JQ)/|Q + Jg).

Then, (i) F is a submersion; (i) if Oy, Qe FTYU) and Re ¥ #(n), re(Q;) =
= 3’1&(@2)-

Note that, from (i), rg,6e,cn, - gs,0n7 PTOJECLS 10 0 1 Z — . As 7, and F are
both real differentiable, so is 0.

Using similar techniques to those in | 7], the main result follows from Lemma (4.4).

Corollary 2.3. Let Re A A (n) and PeG(2,C%. If P is a non-holomorphic
critical plane of ry, so is any Q € F~* F(P). Moreover, P is a critical plane of Fr
if, and only if, F(P) is a critical plane of og.

In low dimensions a critical point of a Nearly-Kaehler curvature function has
a behaviour very close to an eigenvector of R as it is shown at the following

Theorem 2.4. ([3]). Let R € A" (n) be Riemann, let P be an holomorphic critical
plane of rg with critical value A and let Q be a non-holomorphic critical plane
with eritical value B. Then,

(1) If n =2, R(P) = AP + A’ + P;
R(Q)=B(Q + JQ —~ K0, 1> 1) + 2R« (Q).

(2) If n = 3, there are holomorphic planes P', P such that P, P, P" are mutually

orthogonal and R(P) = AP + AP’ + A"P"; and

R(Q) = B{Q + JQ — Q. D) Ip) + 2§ %5 (Q) + B(I — I,),

where * is the Hodge operator, *o = % 1200, 70) GNd
2 AJg
i@ A JO

Remark 2.5. One writes ;Lg_ to mean the above mentioned tensor A2 = R — RJ
when we take Q = av; A 0,4 + bv; A v,, which will be very useful through this

paper.

IQ=I+*
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3. CRITICAL POINTS OF A NK-CURVATURE FUNCTION

Ed

1t is known that the normal forms of a curvature operator depend strongly on the
number of critical points of the associated curvature function. Thus, we will establish
lower bounds on the number of distinct critical points of the sectional curvature.

Definition 3.1. For Re A" '(n), the function rg is said non-degenerate if all
holomorphic critical points of rz and all critical points of ¢ are non-degenerate.

Theorem 3.2. Let A = {Re 4 A (n)fry is non-degenerate}. Then there exists an
open dense subset S of N A (n) such that S < A.

The proofis similar to that of the Kaehler case [7]. See [3] for a detailed account.

In [3], it is shown that such critical planes exist satisfying Theorem 3.2. Using this
theorem one can give lower bounds on the number of critical points of ry. By similar
calculations to [7] it is obtained the following

Theorem 3.3. If R € A A (n} is non-degenerate, then

(1) if n =2, rg has at least four distinct critical planes, at least two of which are
holomorphic. _

(2) if n =3, rg has at least nine distinct critical planes, at least three of which
are holomorphic.

Now, we shall try to give additional conditions to R e 4" %" (2) such that the mini-
mum number of critical points can be fixed more exactly and, also, to locate such
points. So, for cach non-holomorphic plane Q, according to Theorem 2.4, one can
consider the curvature operator R = R — g *, where = is the Hodge operator. It

is easy to show that R? is a Kaehler curvature operator and b(R?) + 0. Considering
the set

4 = {QeG(2,2n) — G(2,2n)1(Q, RE(I)y = 0}
one gets the following
Theorem 3.4. Let R € 4" H(2), such that b(R) = 0 and (R(I),I> + 0, for each

non-holomorphic plane Q. Then Q is a non-holomorphic critical plane of re if,
and only if,-Q € 4 and Q is a critical point of Try,-

Proof. By Theorem 2.4,"(RYI), I> = 0if Q is critical; so, such critical planes are
in A Let Q = av; A vye + bvy A v,. If Q is a critical point of ry, then RYQ) =
= AQ + B+ Q + T, for appropriate coefficients 4 and B, and T'tangent to G(2, 2n)
at Q. But T can be written as

T=Co; A vye + Duy A vy + Eavy A vy — bo, A Vys)
+ Flavy A vye + bo, A 24) .

Since R(Q) e u(2) and (RY(Q),T> = 0, E = Fand B = — 4. If IT is the projection
on

To(G(2.4)) = {Pc A(CHP A 0 =0 = (P, 0},
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TI{R%(I)) spans the normal space to 4 at Q. As @ is a critical point of rrp H{RYI)) =
= AT and with the above expression for T, T = 0.

Theorem 3.5. If Re A/ #'(2) such that b{R) = 0 and {RYD, Iy #+ 0, for all
non-holomorphic plane Q, then rz has at least two non-holomorphic critical
planes.

Proof. Since each ¢ e X has two eigenvalues ta, 1b with ab < 0, one can choose
a unitary base of C” such that
7 = avy A v+ bey A v,
and
Z = {oeu(ﬁl)_/,al =1, l(a, Dl < 1}.
For each non-holomorphic plane @ it is now defined the subspaces

I* = {oeu(2){o,I) = 0}
and
RY1)* = {o e u(2)/<a, RYI)) = 0} .

One can also define a map 1 : R%(I)* — I by f(6) = 0 — }{q, I>. Thus if Qed, Ois
a critical point of ry, with critical value B, if, and only if S(Q + JQ)is an eigenvector
of R 1. A direct computation yields likewise to show that there exist at least
two eigenvectors v, v, of R€of ™! such that f‘l(vl)/[f"l(vi)] €X, i=1,2; this
completes the proof.

Corollary 3.6. Theorem 3.5 holds even though {RYN, Iy = 0.
Definition 3.7.
NAHQ2)* = {Re AH@)B(R) = 0; CROI), v, A 0.3 > 0} .

The next proposition extends to A4 '(2)% the above results improving the
knowledge of the set where the lower bounds on the number of critical points are
achieved.

Proposition 3.8. If Re 4 %'(2)7, rg has at least three distinct non-holomorphic
critical planes. If ry is non-degenerate, F(Q;) are mutually orthogonal.

For the proof suffice it to show that RY{I)* < Z.

In higher dimensions the situation is more complicated, however we can use the
results above obtained in dimension two. For any non-holomorphic plane Q, it is
considered the space G(2, 0 A J Q) and, similar to the case n = 2, it is defined

NA(3)* ={Re ¥ H3)BR) = 0;
o(R% o n1g)) > 0, forall QeG(2,6)— G2, 6)'} .
Also, for each non-holomerphic plane Q and R e 44" (3)* Iet
49 ={Pe G2, Q A JQ)KP, RYI,)) = 0}
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and

that is, _
A={PeG(2,6)/P £ JP, (P,R'(I)) = 0} .

Proposition 3.9. A is a compact, locally trivial fibration over CP?, such that the
projection I : A - CP* is given by
n(Q) = — « eAJo
oA 79|

Proof. If one conmsiders the map f: G(2,6) — G(2, 6) — R given by f{Q) =
= {0, R%(I,)), then A4 = f~*(0). The rest of the proof is straightforward, [3].

Proposition 3.10. If R e JV%(.%)JZ any critical point of ry,, is a critical plane of ry
and any non-holomorphic critical plane of ry is on A.

Suffice it to say that T,(G(2, C*)) = T(G(2, @ A JQ)) + Tpd.

The following main fact shows that the above obtained lower bounds are achieved
on A" (3)". From [7], through the Z,-cohomology of the space 4 = F(4)jc = —a,
one gets

Proposition 3.11. If Re A" A4°(3)" and rg, rg|, are non-degenerate, vy has at least
three distinct holomorphic critical planes and nine distinct non-holomorphic critical
planes.

4. NORMAL FORMS OF THE NK-CURVATURE OPERATORS

If Re # A (n) using the above mentioned tensor AR = R — RJ, we can define,
[9], a new tensor given by

I :I:yzw = %Aﬁyzw + %Agzyw - %Afwyz .
Let R, S & A" (n), with b(R) = b(S) == 0, such that R j,.;. = Syycesx Then
R

R _ S
xyzw nyzw - Sxyzw - Fx_vzw .

This fact shows that two Nearly-Kaehler curvature operators having the same
holomorphic sectional curvature do not coincide everywhere, against the well-
known property for Kaehler curvature operators. That justifies the following

Definition 4.1. Let & <« A4 (n) a subspace. Let R e & with b(R) = 0 and Iet
{(P,, 4,)} be a set of critical points P; of the sectional curvature rp with critical
values A; It is said that {(P;, 4;)} is a normal form of R relative to & if
for each Se &, with b(S) = 0, such that rg_rs, =~ has critical points {(P;, 4,)}
with rs_ps,re(P;) = A; = r4(P;), then R = S — I + T}

This definition is not manageable to checking normal forms for a given curvature
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R,

operator R and for this reason one will establish an algebraic condition such that
when this condition is verified one gets the existence of a normal form of R.

Definition 4.2. For any plane Pe G(2,25), P = a, A byog = aw, A vy, it is
defined a map
QP): ¥ H(n) — C*
by
QAP) R = (a,a:5(R = T¥),155 — ibyat,o R ~ I')5.5)

where 1 = 1, 1%, ..., n, n*.
In general, if P,, ..., P e G(2, 2n)

QPy, ..., P)R = (PR, ..., QP)R)e C¥*.

Let R, R' e A" '(n), such that rp and rg._ =, rx have the same critical points P,.
1 =ik and the same critical values A4, Then, by (7), QP)R = Q(P) R/,
1<ixk; that is, R — R’ e Ker Q(P,, .. Pk)

Conversely, given R e A7 A4'(n), let K € 4" (n), such that K e Ker &P, ..., Pk).
It is considered R" = R + K. A direct computation shows that rg and rg._ ==
have the same critical points Py,...., P, with the same critical values 4, ..., 4,.

So, to show that {(P,, 4,), ..., (P, 4;)} is a normal form of R it will be suffice
to prove that :
Ker Py, ..., Plkery = {S€ ¥ A (n)[S = 5} .

Thus, to determine normal forms of curvature operators in 4 % (n) suffice it to
look over the kernel of Q(P)).

Theorem 4.3. Any Re &' A’ (2), b(R) = 0, has a normal form relative to N H(2).

Proof. We shall give a sketch of the proof, which can be found in [7], since it is
not substantially different from Kaehler case.

From the above paragraph one can suppose that r; has two distinct holomorphic
critical planes P; and P, and two distinct nonholomorphic Q1 and Q,. One takes
Py = v; A vjeand K e Ker Q(Py, Py, 0y, Q,), with b(K) = 0. PuttmgK’ K — I%,
it will be sufficient to prove that K’ ='0. As P, is critical of Trs Kigr1, =0, & =

=1, 1¥ 2, 2%, .

Also, one can choose v, such that K ,;,. = 0. Next, one considers the possible
elections of P,, Qy, @, which form the matrix of Q(P,, P,, 0,, Q,). Looking over
the kernel of this matrix one can easily compute the others components of K.

One could hope for direct generalization of the preceding theorem, however the
functions and spaces involved, as we can deduce from §3, are very complicated.
Since the normal forms of a curvature operator depend strongly on the number of
critical points of the curvature function, we shall restrict to A %" (3)+, where one can
use the result of §3. |

Lemma 4.4. ([3]). There exists an Re A/ H'(3)" such that rg has three distinct
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holomorphic critical planes and nine distinct non-holomorphic. AZSO rR i3 ‘non-
degenerate and R has two distinct types of normal form.

Proof. From Theorem 4.3 in [4], there exists an 4 € such that § = “o{4)e
e N A(3)T and for cach non-holomorphic plane @, 4(S%) = I' n G(2, 6). Indeed,
if @ = av; A vy + bv; A v, One considers Q A JQ as a real subspace of dimension
four of C°. Then, there is an A € 7 such that o{4) = S = aRys + A5 g, Where Rpg
is the curvature tensor of CP” with the Fubini-Study metric; it is sofficient to observe
that

Siinr = 2{Av, vy + g',

Sii*jj* = 1{<Av:: bl> + <Av_p J'>} - 52]-

S5a

Si; = Sij*_ij* = 4{<AU v;) + <A1p v >} =+ l_é

and

s s a
g = ;L}.Z = S1212 - S121*2* = 5

Then, S? = aR,; and
4(5) = {0 & 62, 6) ~ G2 670, S%(1g)y = 0} =
= {0 e G(2,6) — G(2, 6) <0, aRps{Io)y = )} =
— ' G(2,6).

Hence, for this S, v A we 4 if, and only if, (v A w,I)> = 0; equivalently, v A w
i1s an antiholomorphic plane; that 15 {v, Jwy = 0. So, one can choose thP eigen-
vectors of 4 such that [<v, Jw)| < 3

If v A wis a critical point of ry wzth_y critical value C, then v and w can be choosen
eigenvectors of 4. Thus '

Cw =S Awov= i%{(é‘v, w) w + Aw — 3{v, Jw) AJv — 3(Av, Jw) Jo} +

33a w -+ §£{{ {v, Jw} Jv;
160 160
S0,
33a 6la
Aw = 10Cw — (A, v>w + 3{w, Jw)> AJv + 3(Av, Jw) Jv — «i—é—o—w o E<L L Jwodo,
Av = 1000 — {Aw, wd>v — 3¢, Jw> AJw — 3{ Ao, Jw> Jw — % + %( JW) Jw.
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Solving for 4v:
(1 — 9w, Jw)?) dv = {(ffv, vy + 15¢o, Jw) (v, Jw) +

332 6la
+ I
160 160 .

+ {=30C{w, Jwy + 3w, Jw) (Ao, v> + (v, Jw) — J{Av, Jwy} Jw .

Thus, Ave {v, Ju, w, Jw}.

Similary, Aw e {v, Jv, w, Jw}.

If {v,} is a base of V consisting of eigenvectors of A4, also are eigenvectors of 4,
and by diagonalization of 4,,, .., if v A wis a critical plane of rg, we can choose v, w
such that {4v, w> = 0. Then v A we A_z(vi, ies V) vj*) and v A w is a critical point
or rg restricted to G(2, 6} N A*{v;, vys, v}, V). '

H v A wis holomorphic, that is, w = Jv, then v is also an eigenvector of A, there-
fore the unique holomorphic critical planes are those of the form v; A ;..

Ifw % Ju, from Proposition 2.2 and Corollary 2.3

@, Twy? - 1—2—3—@, Jw>} 4

v AWE{D, A By U A Dp, D A Dp, U A Upe)
or |
Flo A w) = a,(v; A v + by A ),

where a;;, by; are determined up to sign by the equation

U(S” Fig% + S!E*J} } + b,_‘,(s” }j* + SJ)*JJ*) — O

Similar arguments to those of [ 7] yfeld to conclude this critical planes achieve the
bounds claimed.

Next 1t will be proved that R has two distinct types of normal form: one cor-
respondent to the critical planes »; A v, v; A 1, 0; A vy another one using only
the nine distinct non-holomorphic critical planes.

First, let Re 4/ #(3) such that KeKer Q; A v, v; A v, Up A Uj), With

b(K) = 0. Then, putting K' = K — I', K}y, = Kjjip = Kjjsyy = 0, for all a. For

the other terms, by the Kaehler identities and the first Bianchi identity

r — I . ! _
Kii*jj* — ijig 77 Kif*ij* — 0

’ , 4 .

i jk = "‘Kijik* + £ ikijs — 0

I ? 3
KIJ*}R* —_ Ki}lk + K k* - 0 -

Then XK' = 0.

Secondly, by the above argument K, = Kju, = 0 and Kju;s = Kjnj =
= Kiisj» = 0. The other terms are of the form K.« Let Q;; be the non-bolomorphic

critical planes such that F(Q,;} = a;;0; A v + b;jv; A vjs. But

aij(Ku sppe Kn i ) + le(KH*JJ* + K *J'J )
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is reduced to g, K,,,,”,. + b;;K e+ = 0. Therefore, K« = 0 unless

L jieii
a2 by, O _
det a13 0 b13 - O.
0 ay; by,

But one can make a generic choice of the eigenvalues such that this determinant
becomes non-zero. This completes the proof.

Now, assume that R e A #°(3)* but does not have a normal form. By Theorem
3.2 one can suppose that rz, rg|g, s a0d g, (s, 4re non-degenerate.
Note that
{R e A" A (3)[ry degenerate}
containg

fRe ¥/ H(3)] rg has only a degenerate critical point with Null (rg..) = 1}

as an open dense subset.

Let aRps be a multiple of the operator Ry, where a is large enough so that rp, . >
> rg, which is possible as rg,. > 0. By perturbing R if need be, suppose that the
path B —» 4 H(3), given by ¢+ R, = (1 — f)aRps + tR meets the set A =
= {R & A/ A(3)/rg degenerated} in a finite number of points #;, j = 1, ..., I, for which
rr, has only one degenerate critical point with Null (rg..) = 1. In fact, the condition
to be ry, degenerate is determinated by a set of polinomial relations. If r; has two
distinct critical points of nullity 1, then R satisfies two distinct polinomial relations.
By Theorem 3.2 R can be perturbed to satisfy only one of them. Similary, if r; has
one degenerate critical point with nullity more than 1, R satisfies several polinomial
relations. R can be again perturbed does not satisfy one of them.

The proof is similar to that of the Kaehler case [7]. See [3] for a detailed account.

Theorem 4.5, .
{R e A (3)"[R has a normal form relative to N A (3)}

contains an open dense subset of A H(3)*.
As one pointed out, this result can be extended to A" (n)+, n > 3, by suitable
choice of the spaces and functions involved in the proof.

5. EXAMPLES

Theorem 5.1. If Re B® D < A A (n}), [3], for some unitary base {v,} of C"
and for all i,j < n, rg has critical points the planes v; A v, 0; A U}, U; A Djs.
Ifn = 2, 3, these critical points and their correspondent critical values are a normal
form of R relative to /" A (n).

Proof. Given Te 7, by [4], R = o(T)e B @ D. Applying the theorem of charac-
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terization of the critical points of rg to the plane P, = v, A v,. One gets:

A= Ryjsyys3 Ryjrgn = Ryzeagr = 05 Ryjepar = Ryqupnys = 0.
But
11t

N 49 25
A=Rieqqs= v, 0,0 — — =— {Tv, 0,0 + — {Tv,, 15> .
110112 = {Ivg, 05 prS 24< 1 Uy 24< 25 V2

1 4 .
R11*12 = 5 <TU1*, Uz> = 0 .

Likewise for the other components of R. Thus, P, is a critical point of rz. The same
argument can be applied to the other planes. From Theorem 4.3 and Lemma 4.4 it is
straightforward to see that these points constitute a normal form of R.

Theorem 5.2. Let Re A (2), with b(R) = 0, such that R has a normal Jorm of
the type
{(vy A vy, Agga), (02 A U2s, Apae)}

Then, Ay« = A,,. if, and only if, Re B® D.

Proof. As the plane v; A vy, is critical for rp, it is obtained the similar relations
of the preceding theorem. Furthermore,

RN
<a(R) U1y Uy = (Au* + Ryqez2: — f) id

if, and only if, Re B @® D.

Let M" be a complex submanifold of a generalized complex space form P". The
curvature tensor of PV it is given by, [12],

R;y=,u+3a

XAy -+ E—;—i&(.]x AJy + Zx, Jyd> J)

forall x, y € (P"), where p and o are the holoniorphic sectional curvature and the
type of PV, respectively.

Let s be the second fundamental form of the imbedding of M" in P¥ and (Wfx, y) =
= {s(x, y), &4, for a given unitary base {&} of My. If R is the curvature of M,
the Gauss-Codazzi equations are written, [8],

B
where I1 is the projection on the tangent space of M and hy(x A y) = (h®x) A (W'y).

Proposition 5.3. Let s be the second fundamental form of a complex submanifold
M of a NK-manifold P". Then,

s(x, Jy) = s(Jx, y) = Js(x, y), forall x,yeZ(M).
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Corollary 5.4,

(i) WPJ = —Jn®,
(i) b = Jh,
(iif) If x is a eigenvector of h* with eigenvalue J. (necessarily real, since hf is

symmetric}, also Jx is an eigenvector of h¥ with eigenvalue — A; that is, if Bfx = Ax,
(Jx) = —1Jx.

Proposition 5.5. If R = JIR' + h} + k3™ is the curvature of a complex hyper-
surface M" of a generalized comp!ex space form P"*1, for an unitary base {v,}
of M" formed by eigenvectors of h*, the planes Vg A U, U A U 0 A Upsare f:rztacal
of ry with critical values

+ 3o, b 3,

Ho + A4 i — Aih;

~N2
au“_':')‘;!'i:' 4 Vi E e 4 Sy

respectively.

Proof. Developing the expression of R one gets

Ripipr = 11 ~ 2f ;
i 3o
Riji; = i Aidj,
i+ 3 R
Rl'j*ij* = - j"f}"j

where 1, 4; are the eigenvalues correspondent to the elements of the base, respect
to k. A dlrect calculation shows that the given planes are critical for ry.

Corollary 5.6. Let R be the curvature tensor at a point m of a complex hyper-
surface M of a NK-manifold P""! of constant holomorphic sectional curvature.
Then, if n = 3 R has a normal form relative to /' (n) correspondent to the critical
points described in Proposition 5.5. '
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