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INTRODUCTION

K Enqvist et al [1] place limits on neutrino masses from galactic dynamo mechanism.
Since neutrino masses are important in extending the standard model of particle physics,
it seems worth to investigate the relation between Lorentz Violation (LV) and galactic
dynamos in torsion fields [2, 3]. Knowledge of the dynamics between torsion and cosmic
magnetic fields may reveal if dynamo mechanism is a powerful mechanism to feed the
galactic magnetic fields of nano-Gauss observed in nature. In this letter, by using a scalar
electrodynamics in the context of quantum electrodynamics (QED) [4], it is possible to
show that magnetic field decays when torsion is fast amplified. Torsion needed to seed
galactic dynamo is of the order of 10−18cm−1 and can be found in nature and is even
weaker than value estimated in the Early Universe. In previous work [5] we noticed that
semi-minimal coupling has been used on a Lagrangian of the type 1

4Ri jklF i jFkl , [i, j,
k, l=0, 1, 2, 3]. This has provided further constraints on torsion up to 10−31GeV . Here
though semi-minimal coupling is preserved, we shall use another gravitational sector in
the Lagrangian given by the coupling RF i jFi j [6]. Term Ri jklF i jFkl displays the same
symmetries of LV term. Here Riemann-Cartan curvature tensor, includes torsion terms
which plays the role of the Higgs sector constants ki jkl . In this paper, we show that the
use of this photon sector coupled semi-minimally with torsion mode, in scales of 10
kpc, would require a not very strong torsion field that might exist in nature, so we must
conclude that this necessarily implies that galactic magnetic fields can be seeded by
such torsion models also in the Mazziteli et al scalar electrodynamics. Some physicists
[7] argue that torsion is very weak to have time to seed magnetic fields, but actually
from Mazziteli et al scalar QED we show that the torsion field may grow exponentially in
regions of weak primordial magnetic field is not strong enough to seed galactic dynamos.



FLAT SEMI-MINIMAL TORSION-PHOTON COUPLING OF RF2

LAGRANGIAN

Though torsion effects are highly suppressed in comparison with curvature ones of
Einstein gravity sector, we do not consider here Minkowski space since as can be easily
shown from the field equations torsion vanishes in Minkowski space. Mazziteli et al
Lagrangian [6] is
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where Di = ∂i−
√
−1eAi is the covariant derivative for the scalar fields. Mazzitelli et al

[6] have computed an effective Lagrangian for the e.m field by integrating the quantum
scalar field. Via dimensional regularisation they obtain the effective Lagrangian [6]
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The first Schwinger-De Witt (SDW) coefficients, computed by Mazzitelli et al, are
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Due to the use of semi-minimal coupling, torsion appears only in a2 as first term,
since there torsion does not appears in the covariant derivative and consequently not
in the electromagnetic field. Actually, following this reasoning, torsion appears only
in the curvatures for the first time in a1. Following Mazzitelli et al, we shall consider
the following effective Lagrangian in Riemann-Cartan spacetime, through the minimal
coupling as

Le f f =−1
4

F2(1+
b

m2 R), (6)

where b is the coupling constant, m the electron mass and R the Ricci curvature. This is
similar to Widrow and Turner Lagrangian [10]. From (6) we obtain the field equations
for the Friedmann spatially flat metric ds2 = a2(−dη2 +dx2) as

∂
i(Fi j(1+

bR
m2 )) = 0, i, j = 0,1,2,3. (7)

From these equations we obtain, with appropriated approximations,

(Äi + k2Ai)(1+
bR
m2 )+

bṘ
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Ȧi = 0, i = 0,1,2,3, (8)



where A is the electromagnetic potential and k the wave number. We may approximate
for high coherence scales, where k2 << 1, and the fact that in Riemannian case in
inflationary epoch R >>> m2, so the last equation would be reduced to

[Äi +
Ṙ
R

Ȧi] = 0, (9)

where R is the Ricci scalar. This shows that, although there is no inflation, here we
consider that torsion has a similar behaviour, so actually K̇ >>> m2.

GALACTIC DYNAMO SEEDS IN RF2 SEMI-MINIMAL
COUPLING

In this section equation (9) is solved in the case of curved spacetime performing the
semi-minimal coupling, where the Ricci scalar is approximated taken as 2K̇, where K is
the time component K0 of contortion. To simplify matters only homogeneous component
of contortion is used. Here we adopt linearisation of the Ricci-Cartan scalar [8] where

R = gi jRi j = R∗+2∇iKi−K2, (10)

where K j = Kr j
r, represents the trace of contortion and R∗ is the Riemannian Ricci scalar

that here shall be taken as constant like in de Sitter or Einstein space. Let us now perform
the variation of the Lagrangian density

√
gL with respect to the scale cosmological

factor a, and contortion K, to complete the system of Einstein-Cartan-Maxwell equations
of course with propagating torsion. This can be done easily by computing the Euler
Lagrange equations
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Let us start from the last equation to determine K in terms of the scale factor a. This
yields K =−3ȧ

a . Before applying this result to the expression for the Ricci-Cartan scalar,
let us express this scalar in terms of a and K. This yields the following expression
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gK (13)
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ȧ
a
)2]+2K̇i−K2 +(∂t lna3)K, (14)

which yields
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ä
a
− ȧ2
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The expression for K̈ is
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and expression for Ricci-Cartan scalar Lagrangian
√

gR is a3R = −3[3äa2 + 7ä2a].
Substitution of this expression into the Euler-Lagrange equation above one has

¨̇aa−4äȧ = 0. (17)

By making use of the ansatz a∼ tn, where n is a real number, one obtains the following
algebraic equation n(n−2)−4n2 = 0, which yields immediately n =−2

3 , and a∼ t−
2
3 ,

which represents a contracting phase of the cosmological model with torsion. Therefore
from the above expression for K one obtains K ∼ −2t−1. Dynamo effect can be easily
seen by computing the ratio Ṙ

R as
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. (18)

Since the torsion is a very weak field, this can be approximated to

Ṙ
R
≈ K̈

K̇
. (19)

Substitution the ansatz Ai ∼ tn into the Maxwell like equation above and solving it,
taking into account the expression B =

√
−1kA where B is the magnetic field and k is

the wave number one obtains the estimate for B+ ∼ t or B− ∼ t−2 depending on the n
sign. Therefore one may conclude that the torsion decays while the magnetic field grows
in the contracting phase of the universe [9] exactly like in the general relativistic version
investigated by Salim et al [10]. One also notes however that the decaying solution is
faster than the growing solution so if one superposes both solution the overall magnetic
field actually decays, imposing a damping final solution.
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