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1. Introduction

Helical configurations are structures commonly found in Nature. They appear in mi-

croscopic systems (biomolecules, bacterial fibers, nanosprings, protein chains in particular

DNA,...) as well as in macroscopic phenomena (strings, ropes, climbing plants,...) (see for

example [1, 9, 11, 12, 13, 14, 21, 27] and references therein). In particular, they are

very important and ubiquitous in biology as a consequence of the following known, in

the biological community since the work of Pauling, theorem: Identical objects, regularly

assembled, form a helix (see [10] and references therein).

As far as we know, helical structures are usually identified with the simplest idea of

circular helices. However, nothing could be further from the truth. Nobody can believe

that squirrels chasing one another up and around tree trunks follow a circular helix path.

First, because the cross section of a tree trunk is not circular, but also because its axis

is not exactly a straight line. On the other hand, many types of bacteria, such as certain

strains of Escherichia coli or Salmonella typhimorium swim by rotating flagellar filaments.

These are polymers which are flexible enough to switch among different helical forms quite

different from circular helices. Then we will deal with generalized helices to get answers

to those questions.
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2. Lancret curves in 3-dimensional space forms ([2]

and [5])

The seminal paper was that of M. Barros [2].

Let M(0) be R3 or L3. A Lancret curve (or general helix) in M(0) is a Frenet curve

whose tangent indicatrix is contained in some plane Π ⊂ M(0). It will be called degenerate

or nondegenerate according to the causal character of such a plane. As in the Euclidean

setting, the Lancret curves in L3 are those for which the ratio of curvature to torsion is

constant.

In [2, 5] the notion of Lancret curve was extended to real space forms and spacetimes

M(C), with C 6= 0, respectively, where the notion of Killing vector field along a curve

played an important role. We will consider the class of Lancret curves including not only

those curves with torsion vanishing identically, but also the ordinary helices (or simply

helices), whose curvature and torsion are both nonzero constants. We will refer to these

two cases as trivial Lancret curves. As a resume from [2] and [5] we have:

Lancret curves in R3. The only ones are

geodesics of a right cylinders.

Lancret curves in L3. The only ones are

geodesics in either right cylinders (nonde-

generate case) or flat B-scrolls (degenerate

case) [see Graves [20] for details on scrolls].
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Lancret curves in the hyperbolic

space H3(C), C < 0. A curve is Lancret if

and only if either its torsion vanishes iden-

tically and it is lying in some hyperbolic

plane H2(C) or it is an ordinary helix.

Lancret curves in the de Sitter space

dS3(C), C > 0. A curve is Lancret if and

only if either its torsion vanishes identical-

ly or it is an ordinary helix.

Lancret curves in the 3-sphere S3(C),

C > 0. A curve is Lancret if and only if

either its torsion vanishes identically and

it is lying in some 2-sphere S2(C) or there

exists a constant b such that curvature κ

and the torsion τ are related by τ = qκ±√
C, where q will be viewed as a sort of

slope.

Lancret curves in the anti de Sitter

space AdS3(C), C < 0. A curve γ is Lan-

cret if and only if either its torsion vanishes

identically or the curvature κ and the tor-

sion τ are related by τ = qκ±
√
−C, where

q will be viewed as a sort of slope.

(i) Nondegenerate case: γ is Lancret if

and only if it is a geodesic of either a Hopf

tube or a hyperbolic Hopf tube.

(ii) Degenerate case: γ is Lancret if and

only if it is a geodesic of a flat scroll over

a null curve.
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3. Variational problem & Euler-Lagrange equations

in 3-dimensional Lorentzian space forms([7])

Let M(C) be a 3-dimensional Lorentzian space with constant curvature C. In a suitable

space Λ of Frenet curves in M(C) (for example, the space of closed curves or curves

satisfying certain second order boundary data, such as clamped curves), we have a three-

parameter family {Fmnp : Λ → R |m,n, p ∈ R} of lagrangians defined by

Fmnp(γ) =

∫
γ

(m + nκ + pτ)ds, (1)

where s, κ and τ stand for the arclength parameter, curvature and torsion of γ, respec-

tively, and the parameters m, n and p are not allowed to be zero simultaneously.

We have found out the moduli space of trajectories regarding the model [M(C),Fmnp],

as well as the corresponding algorithms to obtain the trajectories of a given model.

The closed trajectories, when there exist, are also obtained from an interesting quan-

tization principle.

We have used standard arguments, involving integrations by parts, to get the variation

of Fmnp along γ in the direction of W

δFmnp(γ)[W ] =

∫
γ

〈Ω(γ), W 〉 ds + [B(γ, W )]L0 , (2)
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where Ω(γ) and B(γ, W ) stand for the Euler-Lagrange and boundary operators, respec-

tively, which are given by

Ω(γ) = (−ε1ε2mκ + ε1ε2p κτ − ε2ε3nτ 2 + ε1n C)N + (−ε1p κs + ε3nτs)B,

B(γ, W ) = ε2
p

κ

〈
∇2

T W, B
〉

+ n 〈∇T W, N〉

+ ε1m 〈W, T 〉+

(
−ε3nτ + ε1ε2

p C

κ
+ ε1p κ

)
〈W, B〉 .

Second order boundary conditions Given q1, q2 ∈ M and {x1, y1}, {x2, y2} or-

thonormal vectors in Tq1M and Tq2M , respectively, define the space of curves

Λ = {γ : [t1, t2] → M | γ(ti) = qi, T (ti) = xi, N(ti) = yi, 1 ≤ i ≤ 2}.

Then the critical points of the variational problem Fmnp : Λ → R are characterized by the

following Euler-Lagrange equations

ε3mκ− ε3p κτ + ε1nτ 2 + ε1n C = 0, (3)

−ε1p κs + ε3nτs = 0. (4)
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4. The moduli spaces of trajectories ([7])

The field equations (3) and (4) can be nicely integrated. First, notice that they can

be written as

ε1pκ− ε3nτ = a, (5)

−ε1mκ + aτ = ε3nC, (6)

where a denotes an undetermined integration constant. Then we have

If ε1pa + ε2mn 6= 0, then the solutions are helices (trivial Lancret curves) with

curvature and torsion given by

κ =
a2 + n2C

ε1pa + ε2mn
, τ =

ma + ε3npC

pa− ε3nm
.

Otherwise, the existence of solutions is equivalent to n2C + a2 = ma + ε3pnC = 0.

A first consequence is that C ≤ 0. Therefore, the trajectories in the relativistic

particle model [dS3,Fmnp] are helices in the de Sitter space with curvature and

torsion given as above. This seems reasonable since the de Sitter space is free of

non-trivial Lancret curves.

Now, in the above setting, we may assume that n 6= 0, otherwise we have the free

fall particle model. Thus, the field equations reduces to equation (5). If m = p = 0,
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then τ 2 = −C, so that γ is a plane curve (when C = 0) or the horizontal lift, via

the Hopf map π− or λ, of a curve in either H2(4C) or AdS2(4C) (when C < 0).

Otherwise, the trajectories are curves whose curvatures satisfy

τ = −ε2qκ±
m

p
, with q =

p

n
and − C =

m2

p2
. (7)

Then they are Lancret curves in either L3 or in AdS3. The slope in both cases is

p/n.

The moduli space of trajectories is summarized in the following tables which corre-

spond with Lorentz-Minkowski, de Sitter and anti de Sitter spaces, respectively. All solu-

tions are Lancret curves. Similarly to the classical Euclidean case, helices are considered

as special cases of Lancret curves (trivial Lancret curves). For simplicity of interpretation,

we have represented different cases according to the values of the parameters defining the

action.
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m n p Solutions in L3, C = 0

6= 0 = 0 = 0 Geodesics (κ = 0)

= 0 = 0 6= 0 Circles (κ constant and τ = 0)

= 0 6= 0 = 0 Plane curves (τ = 0)

6= 0 6= 0 = 0 Helices with arbitrary τ and κ = ε2
nτ2

m

6= 0 = 0 6= 0 Helices with arbitrary κ and τ = m
p

= 0 6= 0 6= 0 Circles and Lancret curves with τ = −ε2
p
n
κ

6= 0 6= 0 6= 0 Helices with κ = ε1a2

ap−ε3nm
and τ = ma

ap−ε3nm
, a ∈ R− { ε3nm

p
}
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m n p Solutions in dS3, C = c2

6= 0 = 0 = 0 Geodesics (κ = 0)

= 0 = 0 6= 0 Circles (κ constant and τ = 0)

= 0 6= 0 = 0 Do not exist

6= 0 6= 0 = 0 Helices with arbitrary τ and κ = ε2
n(c2+τ2)

m

6= 0 = 0 6= 0 Helices with arbitrary κ and τ = m
p

= 0 6= 0 6= 0 Helices with κ = ε1
n2c2+a2

ap
and τ = ε3

n c2

a
, a ∈ R− {0}

6= 0 6= 0 6= 0 Helices with κ = n2c2+a2

ε1p a+ε2mn
and τ = ma+ε3np c2

p a−ε3mn
, a ∈ R−{ε3

mn
p
}
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m n p Solutions in AdS3, C = −c2

6= 0 = 0 = 0 Geodesics (κ = 0)

= 0 = 0 6= 0 Circles (κ constant and τ = 0)

= 0 6= 0 = 0 Horizontal lifts, via a Hopf map π− or λ, of curves in either

H2(−4c2) or AdS2(−4c2)

6= 0 6= 0 = 0 Helices with arbitrary τ and κ = ε2
n(τ2−c2)

m

6= 0 = 0 6= 0 Helices with arbitrary κ and τ = m
p

= 0 6= 0 6= 0 Helices with κ = ε1
a2−n2c2

ap
and τ = −ε3

n c2

a
, a ∈ R− {0}

6= 0 6= 0 6= 0 Helices with κ = a2−n2c2

ε1p a+ε2mn
and τ = ma−ε3np c2

p a−ε3mn
, a ∈ R−{ε3

mn
p
}

6= 0 6= 0 6= 0 Lancret curves with τ = −ε2
p
n
κ± m

p
and c = ±m

p
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5. Going deeply into non flat backgrounds: creating

algorithms ([7])

The uninteresting case corresponds to relativistic particles evolving in the de Sitter

background. This is due in part to the absence of non trivial Lancret curves in dS3.

Therefore, most of the models [dS3(C),Fmnp] admit a one-parameter family of trajectories

which are trivial Lancret curves. The exception to this rule is the model [dS3(C),F0n0],

which is associated with the action measuring the total curvature of trajectories (known

as the Plyushchay model for a massless relativistic particle, [25, 26]) and does not provide

any consistent dynamics (see [4] for more details).

Particles evolving in anti de Sitter backgrounds

The most interesting models in the anti de Sitter space AdS3 are [AdS3(C),F0n0] and

[AdS3(C),Fmnp] with mnp 6= 0. The former corresponds again with the action giving

the total curvature, that we have called the Plyushchay model describing a massless

relativistic particle. In [4] it is shown that the three-dimensional anti de Sitter space is the

only spacetime (no matter the dimension) with constant curvature providing a consistent

dynamics for this action. More precisely, the trajectories of this model are nothing but

the horizontal lifts, via either the usual Hopf map π− or the Lorentzian Hopf map λ, of

arbitrary curves in either the hyperbolic plane or the anti de Sitter plane, respectively
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(see Appendix B). It should be noticed that those horizontal curves are Lancret ones,

where the curvature is an arbitrary function and the torsion is determined by the radius

of the anti de Sitter space (for instance, τ = ±1 if C = −1).

However, the latter provides a model very rich in solutions. We are going to describe

explicitly the trajectories for a better understanding of their nice dynamics. First, the

model admits a one-parameter class T of trajectories which are ordinary helices (see

Table 3). They can be geometrically obtained as geodesics of either a Hopf tube over a

curve with constant curvature in the corresponding hyperbolic plane or a hyperbolic Hopf

tube over a curve with constant curvature in the anti de Sitter plane (see [3] and Appendix

B for more details). The dynamics are completed with classes of non trivial Lancret paths

whose existence is related to the values of the parameters defining the action. First of

all, notice that the ratio m
p

and the curvature C of AdS3(C) should satisfy m
p

= ±
√
−C.

Therefore, without loss of generality, we may assume that C = −1 and m = ±p, so we

will put m = p in the discussion. On the other hand, the non trivial Lancret curves in the

anti de Sitter space are characterized by the following constraint between curvature and

torsion

τ = qκ± 1, for a certain constant b ∈ R.

Furthermore, as in the flat case, degenerate Lancret curves correspond with q = ±1 and

spacelike acceleration, ε2 = 1, [5]. Consequently, we have to distinguish two cases.
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5.1. The dynamics in [AdS3,Fmnp] with n2 6= p2

Besides the above mentioned class T of ordinary helices, this model has a second

class, Tn2 6=p2 , of trajectories which, according to Table 3, are nondegenerate Lancret curves

(because n2 6= p2) satisfying

τ = −ε2
p

n
κ± 1.

This class of solutions is made up of curves that are geodesics in Hopf tubes over

curves either in the hyperbolic plane or in the anti de Sitter plane. In both cases the slope

is determined by n and p. The steps will be sketched as follows.

Trajectories being geodesics of Hopf tubes

The algorithm to get the solutions of this subfamily runs as follows.

1. Take a unit speed curve γ(s) in the hyperbolic plane H2(−4) and consider its Hopf

tube π−1
− (γ) in AdS3 (see Appendix B).

2. This is a Lorentzian flat surface that can be parametrized with coordinate curves

being, respectively, the fibers and the horizontal lifts of γ, in the following way

Φ(s, t) = cos (t) γ̄(s) + sin (t) iγ̄(s).
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3. Choose now the arclength parametrized geodesic of π−1
− (γ) defined by

γnp(u) = Φ(au, bu), a2 − b2 = ε1,
b2

a2
=

p2

n2
.

4. Let ρ be the curvature function of γ into H2(−4). Then a direct computation gives

the curvature κ and the torsion τ of γnp in AdS3

κ = a2ρ + 2ab,

τ 2 = κ2 − ε1κρ + 1.

¿From these equations, we obtain that τ = −ε2
p
n
κ ± 1. Therefore, γnp is a path in

[AdS3,Fmnp] with n2 6= p2.

5. Finally, notice that all of solutions γnp of this kind are either spacelike or timelike,

according to n2 > p2 or n2 < p2, respectively.

Trajectories being geodesics of hyperbolic Hopf tubes

In this case, the algorithm is as follows.

1. Choose a unit speed curve σ(s) in the anti de Sitter plane AdS2(−4) with curvature

function ρ and causal character δ1. Now, we consider its hyperbolic Hopf tube λ−1(σ)

in AdS3 (see Appendix B).
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2. This is a flat surface which is either Riemannian or Lorentzian, according to σ is

spacelike or timelike, respectively. It can be parametrized with coordinate curves

being, respectively, the fibers and the horizontal lifts of σ, in the following way

Ψ(s, t) = cosh (t) σ̄(s) + sinh (t) iσ̄(s).

3. Choose now the arclength parametrized geodesic of λ−1(σ) defined by

σnp(u) = Ψ(au, bu), δ1 a2 + b2 = ε1,
b2

a2
=

p2

n2
.

4. Let ρ be the curvature function of σ into AdS2(−4). A direct computation gives

the curvature κ and the torsion τ of σnp in AdS3

κ = a2ρ + 2ab,

τ 2 = κ2 − ε1δ1κρ + 1.

¿From here we get τ = −ε2
p
n
κ ± 1. Therefore, σnp is a trajectory of [AdS3,Fmnp]

with n2 6= p2.

5. When σ is chosen to be timelike in AdS2(−4), then the solutions σnp are either

spacelike or timelike according to n2 < p2 or n2 > p2, respectively.

Furthermore, the converse of these algorithms also hold. That is, all trajectories of

these relativistic particle models are obtained according to them.
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5.2. The dynamics in [AdS3,Fmnp] with n2 = p2

Notice that, in this case, no solutions are obtained as geodesics in Hopf tubes. In

addition, no solutions are obtained in Lorentzian hyperbolic Hopf tubes. Therefore, besides

the one-parameter class of ordinary helices, the model presents the following families.

Trajectories being geodesics of Riemannian hyperbolic Hopf tubes

These solutions are obtained by means of the following algorithm.

1. Choose a spacelike unit speed curve σ(s) in the anti de Sitter plane AdS2(−4)

with curvature function ρ. Consider its hyperbolic Hopf tube λ−1(σ), which is a

Riemannian flat surface in AdS3 (see Appendix B). As above, it can be parametrized

with coordinate curves being, respectively, the fibers and the horizontal lifts of σ,

in the following way

Ψ(s, t) = cosh (t) σ̄(s) + sinh (t) iσ̄(s).

2. Take now the arclength parametrized geodesics of λ−1(σ) defined by

σ±pp(u) = Ψ(±pu, pu).
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3. Let ρ be the curvature function of σ into AdS2(−4). The curvature κ and the torsion

τ of σ±pp in AdS3 are

κ = −1

2
ρ + 1,

τ 2 = −κ2 − κρ + 1.

Then τ = κ− 1, so that σ±pp are trajectories of [AdS3,Fmnp] with n2 = p2.

As the converse in this algorithm also holds, all nondegenerate Lancret of the model

are obtained following this method.

Trajectories being geodesics of scrolls over null curves

These s are degenerate Lancret curves obtained from the following algorithm.

1. Take a null curve α(s), s ∈ I ⊂ R, in AdS3. Given a Cartan frame {A(s), D(s), F (s)}
along α, consider the flat scroll SαD (notice that µ = ±1, see Appendix A), which

can be parametrized by

Φ(s, t) = α(s) + tD(s), (s, t) ∈ I × R.
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2. For an arclength parametrized geodesic β of SαD, one can see that its acceleration is

spacelike. Furthermore, its curvature and torsion functions are computed to satisfy

τ = ±ε1κ± 1 and so it is a trajectory of this model.

3. The converse also holds. Indeed, for a degenerate Lancret path β of [AdS3,Fmnp]

with n2 = p2, its acceleration is spacelike and we may assume that τ = κ + ε1. The

remaining cases can be handled likewise.

4. Define a null curve α in AdS3 by

α(s) = β(s)− 1

2
s(T (s)−B(s)).

5. Take the following vector fields along α

A(s) = −ε1

2
s β(s) +

1

2
(T (s) + B(s)) +

ε1

2
s N(s),

D(s) = −ε1(T (s)−B(s)),

F (s) = −1

2
s (T (s)−B(s)) + N(s).

It is not difficult to see that {A(s), D(s), F (s)} is a Cartan frame along α with µ = 1

and ρ = τ .

6. Consider the scroll SαD, which is a flat surface in AdS3 and can be parametrized

by Φ(s, t) = α(s) + tD(s).
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7. Finally, notice that β can be viewed as a geodesic in this scroll, because β(s) =

Φ(s, ε1

2
s).
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6. A summary of trajectories ([7])

We can describe the dynamics of the relativistic particle models [AdS3,Fmnp] by

applying the above algorithms. We then summarize the corresponding moduli space of

trajectories as follows.

(A) The model [AdS3,Fmnp] with n2 > p2

The moduli space of s is made up of the following classes of trajectories:

A one-parameter class of ordinary helices.

A class of spacelike nondegenerate Lancret curves obtained as geodesics of Hopf

tubes

Γ(n2>p2) = {γnp | γ is a curve in H2(−4)}.

A class of spacelike nondegenerate Lancret curves obtained as geodesics of Rieman-

nian hyperbolic Hopf tubes

Σ+
(n2>p2) = {σnp |σ is a spacelike curve in AdS2(−4)}.
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A class of timelike nondegenerate Lancret curves obtained as geodesics of Lorentzian

hyperbolic Hopf tubes

Σ−
(n2>p2) = {σnp |σ is a timelike curve in AdS2(−4)}.

(B) The model [AdS3,Fmnp] with n2 < p2

The moduli space of s is made up of the following classes of trajectories.

A one-parameter class of ordinary helices.

A class of timelike nondegenerate Lancret curves obtained as geodesics of Hopf tubes

Γ(n2<p2) = {γnp | γ is a curve in H2(−4)}.

A class of spacelike nondegenerate Lancret curves obtained as geodesics of Rieman-

nian hyperbolic Hopf tubes

Σ+
(n2<p2) = {σnp |σ is a spacelike curve in AdS2(−4)}.

A class of spacelike nondegenerate Lancret curves obtained as geodesics of Lorentzian

hyperbolic Hopf tubes

Σ−
(n2<p2) = {σnp |σ is a timelike curve in AdS2(−4)}.
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(C) The model [AdS3,Fmnp] with n2 = p2

The moduli space of s is made up of the following classes of trajectories.

A one-parameter class of ordinary helices.

A class of spacelike nondegenerate Lancet curves obtained as geodesics of Rieman-

nian hyperbolic Hopf tubes

Σ+
(n2=p2) = {σnp |σ is a spacelike curve in AdS2(−4)}.

A class of degenerate Lancret curves obtained as geodesics of scrolls over null curves

Υ = {βαD(s) = α(s)± s

2
D(s) |α is a null curve in AdS3}.

Remark. It should be noticed that a Lancret curve in AdS3 with Lorentzian rectifying

plane at any point is simultaneously degenerate and nondegenerate, because it admits

both null and non null axes. Consequently, it can be viewed as a geodesic of a Hopf tube

but also as one in a flat scroll over a null curve. Therefore, a Lancret curve can be regarded

as a trajectory in different models.
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7. A general Lagrangian density in 3-dimensional space

forms ([19])

Let M3
ν (C) be a 3-dimensional pseudo-Riemannian space form of curvature C and

index ν. Let γ : I → M3
ν (C) be an immersed curve with speed v(t) = |γ′(t)|, curvature k,

torsion τ and Frenet frame {T,N, B}. The Frenet equations write down as follows
∇T T = ε2kN,

∇T N = −ε1kT + ε3τB,

∇T B = −ε2τN,

where ε1 = 〈T, T 〉, ε2 = 〈N, N〉 and ε3 = 〈B, B〉. Let

L(γ) =

∫
γ

f(k, τ)ds (8)

be the action for any real function f defined on an open set of R2. Let Γ = Γ(t, r) :

[0, L] × (−δ, δ) → M be a variation of a curve γ : [0, L] → M3
ν (C) with Γ(t, 0) = γ(t).

Associated with Γ we consider the variation vector field W = W (t) = ∂Γ
∂r

(t, 0) along γ(t).

We also write V = V (t, r) = ∂Γ
∂t

(t, r), W = W (t, r), v = v(t, r), T = T (t, r), N = N(t, r),

B = B(t, r), etc., with the obvious meanings. Let s denote the arclength parameter, and

let V (s, r), W (s, r), etc., be the corresponding reparametrizations.
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Then, by using standard arguments involving the above formulas and integration by

parts, the first variation of L(γ) along γ in the direction of W is given by

L′(0) = [B(γ, W )]L0 −
∫ L

0

〈
∇T P − ε1CfkN + ε1ε2C

f ′τ
k

B, W

〉
ds, (9)

where the vector P is given by

P = ε1(f − (2kfk + τfτ ))T + ε1kfτB −∇T (fkN) + ε2∇T

(
f ′τ
k

B

)
and the boundary term is

B(γ, W ) =

〈
∇2

T W, ε2
fτ

k
B

〉
+
〈
∇T W, fkN − ε2

k
f ′τB

〉
+

〈
W, P +

ε1ε2Cfτ

k
B

〉
.

the critical curves are characterized by the vanishing of the Euler-Lagrange operator

E
E := −

(
∇T P − ε1CfkN + ε1ε2C

f ′τ
k

B

)
= 0. (10)

It is a straightforward computation to show that equation (10) is equivalent to the Euler-

Lagrange equations

−ε1ε2kf − ε2(ε3τ
2 − ε1k

2)fk + 2ε1ε2kτfτ + f ′′k +

(
τ
f ′τ
k

)′
+ τ

(
f ′τ
k

)′
+ ε1Cfk = 0, (11)

ε3τf ′k + ε3
τ 2

k
f ′τ + ε3 (τfk)

′ − ε1 (kfτ )
′ − ε2

(
f ′τ
k

)′′
− ε1ε2C

f ′τ
k

= 0. (12)

25



The critical curves of the Lagrangian (8) admit two Killing vector fields P and J given

by

P =ε1 (f − (kfk + τfτ )) T −
(
f ′k +

τ

k
f ′τ

)
N +

(
−ε3τfk + ε1kfτ + ε2

(
f ′τ
k

)′)
B, (13)

J =− ε1fτT − f ′τ
k

N − ε3fkB, (14)

satisfying that

i) E = −(∇T P + εCJ ∧ T )

ii) ∇T J = −P ∧ T

where ε = ε1ε2ε3.

The critical curves of the Lagrangian (8) satisfy the integral equations{
〈P, P 〉+ εC 〈J, J〉 = d,

〈P, J〉 = e,
(15)

for suitable constants d and e.

In [7] we have studied actions in D = 3 spacetimes whose Lagrangian is a linear

function m + nk + pτ on the curvature and torsion of the particle path, finding out

that trajectories are Lancret curves, or generalized helices. Indeed, the critical curves are
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always Lancret curves, which are obtained by geometrical integration involving the Hopf

fibrations (see also [4]). Here we go further by assuming that the Lagrangian density is

an arbitrary function on the curvature and torsion of the particle path which is lying in a

3-dimensional pseudo-Riemannian space form. We have got two Killing vector fields along

curves P and J and exploited the machinery supplied by them, which became a fruitful

tool in our earlier and recent paper. Actually, the integral equations are reduced to a

system involving P and J , which is equivalent to the Euler-Lagrange equations if, and

only if, 〈J, J〉 is not constant. We note that when the Lagrangian density is m + nk + pτ ,

then 〈J, J〉 is constant. Then we have solved the motion equations and found out solutions

which, as a pretty interesting fact, are not generalized helices.

To obtain explicitly the critical curves of the Lagrangian, we have chosen suitable

coordinate frames where the Frenet equations have been integrated. With the help of the

corresponding Lie algebras, a complete system of solutions is given in the de Sitter S3
1 and

anti de Sitter H3
1 worlds as well as in the non-flat Riemannian space forms S3 and H3.
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8. Variational problems with torsion in greater di-

mensions ([6])

We consider the action L : Λ → R given by

L(γ) =

∫
γ

(pk2 + q)ds,

where p and q are constants. The simplest action describing the motion of a particle is

achieved when p = 0, so that it is proportional to the proper time. The worldlines of the

particles are geodesic curves in the background space.

To compute the first-order variation of this action along the elementary fields space

Λ, and so the field equations describing the dynamics of the particles, we use a standard

argument involving some integrations by parts. Then by using the Frenet equations we

have

L′(0) = [B(γ, W )]L0 −
∫ L

0

〈∇T P, W 〉 vdt, (16)

where the vector field P is given by

P = ε1ε3p∇T

(
k3

k1

N3

)
+ ε0pk1N2 + ε0qT
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and the boundary term reads

B(γ, W ) =

〈
∇2

T W, ε1
p

k1

N2

〉
+

〈
∇T W,−ε1ε3p

k3

k1

N3

〉
+ 〈W, P 〉 ,

W standing for a generic variational vector field along γ. We take curves with the same

endpoints and having there the same Frenet frame, so that [B(γ, W )]L0 vanishes. From

here we obtain the following result.

The trajectory γ ∈ Λ is the worldline of a relativistic particle in the d-

dimensional background Rd
ν if and only if

(i) The Frenet apparatus is well defined ion the whole world trajectory.

(ii) The vector field P is constant along γ.

In some sense, the vector field P can be interpreted as the linear momentum of the

particle and then the above is a consequence of the conserved linear momentum law.

Note that the vector field P possesses a non-vanishing space-like component orthogonal

to the particle trajectory, which seems to be a manifestation of a generic feature of higher-

derivative theories.
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A straightforward computation shows that P is constant if and only if the following

equations of motion hold:

pk2(1− εϕ2)− q = 0, (17)

k′1(1− εϕ2)− 3εk1ϕϕ′ = 0, (18)

−ε2ε3ϕ
′′ + ε2ε4ϕk2

4 − εk2
1ϕ(1− εϕ2) = 0, (19)

2k4ϕ
′ + ϕk′4 = 0, (20)

k3k4k5 = 0, (21)

where ε = ε0ε1ε2ε3 and ϕ = k3/k1. The last equation of motion yields k5 = 0, so that

the motion will be restricted to (at most) a 5-dimensional subspace. On the other hand,

from Eq. (20) we easily find that ϕ2k4 is a constant B, which determines k4 in terms of

the lower curvatures.

The solutions of the equations of motion

The main goal of this section is to integrate the motion equations of Lagrangians

giving models for relativistic particles that linearly involve the torsion of the worldline.

We have already integrate Eqs. (20) and (21) in the last section, so that we are going to

integrate here Eqs. (17) to (19).
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8.1. The 4-dimensional case

In the first place we will integrate the motion equations in R4
ν . Let Z1 and Z2 be

constant vector fields and consider the vector field W = γ ∧ Z1 ∧ Z2, then the boundary

term reads

B(γ, W ) = 〈(p N1 ∧N2 − ε1ε3pϕ T ∧N3 + γ ∧ P ) ∧ Z1, Z2〉 .

From this we define a map Φ : X(γ) → X(γ) by

Φ(Z) = (p N1 ∧N2 − ε1ε3pϕ T ∧N3 + γ ∧ P ) ∧ Z,

where X(γ) denotes the algebra of differentiable vector fields along the trajectory path

of the particle. Observe that 〈Φ(Z), Z〉 = 0 for every vector field Z. It is not difficult to

see that Φ is covariantly constant, i.e. ∇T Φ = 0, so that the vector fields Q = Φ(P ) and

V = Φ(Q) are also constant vectors and

Q = p N1 ∧N2 ∧ P − ε1ε3pϕ T ∧N3 ∧ P,

V = p N1 ∧N2 ∧Q− ε1ε3pϕ T ∧N3 ∧Q + γ ∧ P ∧Q.

Then J = −γ ∧ P ∧Q + V is a Killing vector field along γ. The vector fields P , Q and J

read

P = ε0q T + ε0pk1(1− εϕ2) N2 + ε1ε3pϕ
′ N3, (22)

Q = −ε0ε1ε3p
2ϕ′ T + ε0ε3p

2ϕk1(1− εϕ2) N1 + ε0ε3pq N3, (23)

J = p2(−ε3q T − ε0ε1ε2pϕ
2k1(1− εϕ2) N2 − ε0ε1pϕ

′N3), (24)
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and they can be interpreted as generators of the particle mass M and spin S, with the

mass-shell condition and the Majorana-like relation between M and S given by 〈P, P 〉 =

M2 and 〈P, J〉 = MS. Note that there will be the possibility of tachyonic energy flow,

since the mass could be positive, negative or zero, according to the causal character of

the vector field P . Time-like and light-like trajectories are the natural ones in space-time

geometries, but some recent experiments point out the existence of superluminal particles

(space-like trayectories) without any breakdown of the principle of relativity; theoretical

developments exist suggesting that neutrinos might be instances of “tachyons” as their

square mass appears to be negative.

By using that P and Q are constant vector fields along γ, so that 〈P, P 〉 = εPu2 and

〈Q, Q〉 = εQv2 also are, we obtain the following two first integrals for ϕ:

ε3p
2(ϕ′)2 + ε0q

2 + ε2p
2k2

1(1− εϕ2)2 = εPu2, (25)

p2[ε0p
2(ϕ′)2 + ε1ϕ

2p2k2
1(1− εϕ2)2 + ε3q

2] = εQv2. (26)

From here one easily finds that there exists a constant A such that

k2
1(1− εϕ2)3 = A.

If A is nonzero, this equation jointly with Eq. (25) yield

(ϕ′)2 =
(εPu2 − ε0q

2)(1− εϕ2)− ε2p
2A

ε3p2(1− εϕ2)
.
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This ODE can be integrate and its solution reads

aE
(
arcsin (bϕ) ,

ε

b2

)
= t + C1,

where C1 is an arbitrary constant, a =
√

ε3p2

ε(εP u2−ε0q2)
, b =

√
ε(εP u2−ε0q2)

−ε2p2A+εP u2−ε0q2 and E stands

for the elliptic function of second kind. From here and Eq. (17) we obtain the curvatures

k2
1 =

A

(1− εϕ2)3 , k2 =
q

p (1− εϕ2)
,

k2
3 =

Aϕ2

(1− εϕ2)3 .

If A = 0 then we easily obtain ϕ2 = ε, so that k3 = ±k1, and from equation (17) we

deduce q = 0. Note that this case can not appear in the Lorentzian background.

8.2. The 5-dimensional case

In this section we study the motion equations when the forth curvature k4 is non-zero,

so the curve γ is fully in R5
ν . Note that most of the computations in the 4-dimensional

case are useful here.

33



The linear momentum vector field P reads now as

P = ε0q T + ε0pk1(1− εϕ2) N2 + ε1ε3pϕ
′ N3 + ε1ε3ε4ϕk4 N4,

from which we get the following ODE

ε3p
2(ϕ′)2 =

(εPu2 − ε0q
2)(1− εϕ2)ϕ2 − ε2p

2Aϕ2 − ε4B
2(1− εϕ2)

(1− εϕ2)ϕ2
.

This differential equation can be integrated to obtain the function ϕ. Now and using a

similar reasoning as in the 4-dimensional case we obtain the following curvature functions

k2
1 =

A

(1− εϕ2)3 , k2 =
q

p (1− εϕ2)
,

k2
3 =

Aϕ2

(1− εϕ2)3 , k4 =
B

ϕ2
.
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9. Variational problems concerning light-like curves

(9.1) Lagrangian density is linear in the curvature in M3
1 (C) ([16])

Let M3
1 denote a 3-dimensional space-time with background gravitational field 〈, 〉,

constant curvature G and Levi-Civita connection ∇.

We consider mechanical systems with Lagrangians which linearly depend on the cur-

vature of a light-like curve. This curvature function is sometimes called torsion since it is

obtained from the third derivative of the relativistic null path. The space of elementary

fields in this theory is the set Λ of null Cartan curves, [15], satisfying given first order

boundary data to drop out the boundary terms which appear when computing the first

order variation of the action.

Let γ : I = [a, b] → M3
1 be a null Cartan curve such that {γ′(s), γ′′(s), γ′′′(s)} is

positively oriented for all s ∈ I with Cartan frame {L, W, N}, where 〈L, L〉 = 〈N, N〉 = 0

and 〈L, N〉 = −1. The Cartan equations are given by (see [15] for details):

L′ = W,

W ′ = −kL + N,

N ′ = −kW,

(27)

where the prime ()′ denotes covariant derivative.
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We consider the action S : Λ → R given by

S(γ) = 2c

∫
γ

(λ + µk(s))ds.

When λ = 1 and µ = 0 it leads to the action studied by Nersessian and Ramos in [22, 23].

The case µ = 1 has been considered by Nersessian in [24].

To compute the first-order variation of this action, along the elementary fields space

Λ, and so the field equations describing the dynamics of this particle, we use a standard

argument involving some integrations by parts. Then by using the Cartan equations we

have

S ′(0) = [Ω]ba − c

∫ b

a

〈V, (µk′′′ + 3µkk′ − λk′)L〉 ds (28)

where

Ω = −cµL(h) + 2cµ
〈
∇2

LV, N
〉

+ c(µk + λ) 〈∇LV, W 〉

− c 〈V,∇L((µk + λ)W )〉+ 2c(
1

2
µk′′ − λk + 2µG) 〈V, L〉+ 2cµk 〈V, N〉 ,

(29)

V standing for a generic variational vector field along γ and h = −〈∇2
LV, W 〉.

We take curves with the same endpoints and having the same Cartan frame in them,

so that [Ω]ba vanishes. Under these conditions, the first-order variation is

S ′(0) = −c

∫ b

a

〈V, (µk′′′ + 3µkk′ − λk′)L〉 ds,
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from which we obtain the following statement.

The trajectory γ ∈ Λ is the null worldline of a relativistic particle in the

(2+1)-dimensional spacetime if and only if:

(i) W , N and k are well defined on the whole world trajectory.

(ii) The following differential equation is satisfied

µk′′′ + 3µkk′ − λk′ = 0. (30)

A first integration of the equation gives us

k′′ +
3

2
k2 − λk + C = 0,

where C is a constant. By standard techniques of integration, this equation leads to

(k′)2 + k3 − λk2 + 2Ck + D = 0, (31)

where D is another constant. Note that constants C and D are not arbitrary, since they

are related with the mass m and the spin s of the particle.

Now we are going to analyze all possible cases and present pictures of the corresponding

curvature functions.
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To get the explicit solution of the motion equation, put (k′)2 = P (k), where P is a

polynomial of degree 3. By using standard techniques involving the elliptic Jacobi func-

tions, the solution can be found according to the roots α1, α2 and α3 (α1 ≤ α2 ≤ α3) of

the equation P (t) = 0.

Before obtaining all the solutions, note that since P (k) = (k′)2 then k takes values

only where P is non negative. Trivial solutions are k(s) = αi, where αi is a real root of P .

Now we are going to analyze all possible cases and present pictures of the corresponding

curvature functions.

I. P has a real root of multiplicity 3: α = α1 = α2 = α3

We have that α = λ/3 and the curvature function is given by

k(s) =
λ

3
− 4

(s + E)2
, s ∈ (−∞, λ/3)

where E is a constant of integration depending on the initial condition satisfying that

s + E is always different from zero (see Figure ?? (i)).
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II. P has two real roots, the lowest with multiplicity 2: α = α1 = α2 < α3

The root α3 is given by λ− 2α. There are two possibilities:

k(s) = λ− 2α + (3α− λ) coth2

(
1

2

√
λ− 3α(s + E)

)
, s ∈ (−∞, α)

k(s) = λ− 2α + (3α− λ) coth2

(
1

2

√
λ− 3α(s + E)

)
, s ∈ (α, λ− 2α]

where E is a constant (see Figure ?? (ii)-(iii)).

III. P has two real roots, the greatest with multiplicity 2: α = α1 < α2 = α3

We obtain that α2 = α3 = (λ− α)/2, and the solution is given by

k(s) = α +
3α− λ

2
tan2

(
1

2

√
λ− 3α

2
(s + E)

)
, s ∈ (−∞, α]

where E is a constant (see Figure ?? (iv)).
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IV. P has three distinct real roots: α1 < α2 < α3

Let us denote α = α1 and β = α2, then α3 = λ − α − β. There are two possibilities

for the curvature:

k(s) = α− (β − α) tn2

(
1

2

√
λ− 2α− β(s + E),

√
λ− α− 2β

λ− 2α− β

)
,

k(s) = λ− α− β + (α + 2β − λ) sn2

(
1

2

√
λ− 2α− β(s + E),

√
λ− α− 2β

λ− 2α− β

)
,

defined on the intervals (−∞, α] or [β, λ− α− β], respectively (see Figure ?? (v)-(vi)).

V. P has complex roots

Let us suppose that α1 and α2 are complex (so α3 is real). Then the curvature is given

by

k(s) = α3 − (α3 − α2) sn2

(
1

2

√
α3 − α1(s + E),

√
α2 − α3

α1 − α3

)
, s ∈ (−∞, α3].

(See Figure ?? (vii)).
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Sketching worldlines

Once we know the curvature functions, the worldlines of the relativistic particles can be

obtained by integrating the Cartan equations. The explicit integration of these equations

is a difficult task, sometimes impossible (even when the curvature is a nice function). In

our case, the goal of finding the exact worldlines can be reached by numeric integration.

Now we we will sketch (with the help of Mathematica) the particle worldlines in all

discussed cases in the preceding section.
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(vii) Complex roots

Figure 1: Curvature function for the different possibilities of the roots of the polynomial
P . It is quite interesting to remark that in cases (i), (ii) and (iii), as s increases, k(s)
approaches to a constant, said otherwise, the trajectory looks like a helix.

9

Fig.1: Curvature function for the different possibilities of the roots of the polynomial P .

It is quite interesting to remark that in cases (i), (ii) and (iii), as s ncreases, k(s)

approaches to a constant, said otherwise, the trajectory looks like a helix.
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Figure 1: Curvature function for the different possibilities of the roots of the polynomial
P . It is quite interesting to remark that in cases (i), (ii) and (iii), as s increases, k(s)
approaches to a constant, said otherwise, the trajectory looks like a helix.

9

Fig.2: Curvature function for the different possibilities of the roots of the polynomial P .
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α1 = α2 = α3,
k(s) ∈ (−∞, α1]

α1 = α2 < α3,
k(s) ∈ (−∞, α1]

α1 = α2 < α3,
k(s) ∈ (α2, α3]

α1 < α2 = α3,
k(s) ∈ (−∞, α1]

α1 < α2 < α3,
k(s) ∈ (−∞, α1]

α1 < α2 < α3,
k(s) ∈ [α2, α3]

α1 = α + βi,
α2 = α− βi, α3 real,

k(s) ∈ (−∞, α3]

Figure 2: Worldlines for different curvature functions

10

Fig.3: Worldlines for corresponding curvature functions.
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k(s) ∈ (−∞, α3]

Figure 2: Worldlines for different curvature functions

10

Fig.4: Worldlines for corresponding curvature functions.
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(9.2) Lagrangian density linear in the curvature in Ln ([18])

Let Ln be an n-dimensional Lorentz-Minkowski space with background gravitational

field 〈, 〉 and Levi-Civita connection ∇. First of all, we will describe the geometry of null

curves in Ln in terms of the Cartan frame of the curve (see [15] for details).

Let γ : [a, b] → Ln be a null Cartan curve such that the frame
{
γ′(σ), γ′′(σ), . . . , γ(n)(σ)

}
is positively oriented, for all σ ∈ [a, b], σ being the pseudo-arc parameter. Let us consider

its corresponding Cartan frame {L = γ′, W1, N,W2, . . . ,Wn−2}, where

〈L, L〉 = 〈N, N〉 = 0, 〈L, N〉 = −1,

〈Wi, L〉 = 〈Wi, N〉 = 0, 〈Wi, Wj〉 = ±1.

The Cartan equations read

L′ = W1,

W ′
1 = −k1L + N,

N ′ = −k1W1 + k2W2,

W ′
2 = k2L + k3W3,

W ′
i = −kiWi−1 + ki+1Wi+1 i ∈ {3, . . . , n− 3} ,

W ′
n−2 = −kn−2Wn−3,

(32)

where ()′ means covariant derivative and ki are the Cartan curvatures of the curve.
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The actions L for the curve depend locally on its geometry and they possess various

symmetries, both local and global. The local symmetry is reparametrization invariance

and it restricts severely the form of L. We consider the action L : Λ → R given by

L(γ) =

∫
γ

(µk1 + λ)dσ, (33)

µ and λ both being constant. The simplest action describing the motion of a particle is

achieved when it is proportional to the pseudo-arc length parameter (i.e. µ = 0), which

has been studied by Nersessian and Ramos in [22, 23] when n = 2, 3. When the action is

linear on the curvature of the particle path, some advances have been achieved in [16, 24].

A null curve γ is said to be a critical point of the action L when

d

dω

∣∣∣∣
ω=0

L(γω) =
d

dω

∣∣∣∣
ω=0

∫
γω

(µk1 + λ)dσ = 0,

for all variation throughout null curves γω of γ.

To compute the first-order variation of this action along the elementary fields space

Λ, and so the field equations describing the dynamics of the particle, we use a standard

argument involving some integrations by parts. Then the Cartan equations yield

L′(0) =
1

2
[Ω(γ, V )]ba −

1

2

∫ b

a

〈V, E1(γ)L + E2(γ)W2 + E3(γ)W3 + E4(γ)W4〉 dσ, (34)
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where

E1(γ) = µk
′′′

1 + 2µk2k
′
2 + 3µk1k

′
1 − λk′1,

E2(γ) = 2µk′′2 − k2(2µk3 − µk1 + λ),

E3(γ) = 2µ(k2k
′
3 − 2k′2k3),

E4(γ) = k2k3k4,

(35)

and the boundary term reads

Ω(γ, V ) =
〈
∇3

LV, µW1

〉
+
〈
∇2

LV,−µk1L + 3µN
〉

+ 〈∇LV, (µk1 + λ)W1 − µk2W2〉+ 〈V, P1〉 ,
(36)

where P1 is the vector field given by

P1 =
(
µk′′1 + µk2

1 − λk1

)
L− µk′1W1 + (µk1 − λ)N + 2µk′2W2 + 2µk2k3W3, (37)

and V stands for a generic variational vector field along γ.

To drop [Ω(γ, V )]ba we have to consider curves with the same endpoints and having

the same Cartan frame there. Under these conditions, the first-order variation reads

L′(0) = −1

2

∫ b

a

〈V, E1(γ)L + E2(γ)W2 + E3(γ)W3 + E4(γ)W4〉 dσ.

As a consequence we have

48



A null curve γ ∈ Λ is critical for the linear action L(γ) in Ln if and only if

the following statements hold:

(i) Wi, N and kj are well defined along the whole trajectory; and

(ii) The following differential equations are fulfilled:

E1(γ) = 0, E2(γ) = 0, E3(γ) = 0, E4(γ) = 0.

These equations are called the Euler-Lagrange equations. The following is an easy

consequence from the last equation of (35).

The critical points for the linear action L(γ) in Ln lie in a Lorentzian sub-

space of dimension not greater than five.

By considering the special case where the action is constant (µ = 0), the Euler-

Lagrange equations are reduced to

−λk′1 = 0, −λk2 = 0, k2k3k4 = 0.

As a consequence we have

The critical points for the constant action in Ln are just null helices in

3-dimensional Lorentzian linear subspaces.

We have made a more general treatment of Lagrangian in the 3-dimensional case

(see [17]). There we have explicitly obtained all solutions for a linear action as well as
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got remarkable progress regarding other more difficult Lagrangians. Therefore, it seems

reasonable to investigate the critical points of the linear action in the 4-dimensional case.
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(9.3) Lagrangian density is a general function on the curvature in L3 ([17])

We consider the action L : Λ → R given by

L(γ) =

∫
γ

f(k)dt,

where f is a differentiable function. The simplest action describing the motion of a particle

is achieved when f(k) is proportional to the pseudo-arc length parameter, and it is studied

by Nersessian and Ramos in [22, 23]. When the action is linear on the curvature of the

particle path, some advances have been produced in [24, 16]. No other cases appear to

have been considered.

A null curve γ will be a critical point of the action L if

d

dω

∣∣∣∣
ω=0

L(γω) =
d

dω

∣∣∣∣
ω=0

∫
γω

f(kω)dt = 0,

for all variation of null curves γω of γ.

Then the Cartan equations yield

L′(0) =
1

2
[Ω(γ, V )]ba −

1

2

∫ b

a

〈V, E(γ)L〉 dt, (38)

where

E(γ) = ϕ′′′ + (kϕ)′ + kϕ′, ϕ = −f(k) + 2kf ′(k) + k′′f ′′(k) + (k′)2f (3)(k) (39)
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and the boundary term reads

Ω(γ, V ) =
〈
∇3

LV, f ′(k)W
〉

+
〈
∇2

LV, f ′(k)(3N − kL)− f ′′(k)k′W
〉

+
〈
∇LV, (f(k) + f ′′(k)k′′ + f (3)(k)(k′)2)W − 2f ′′(k)k′N

〉
+ 〈V, P 〉 .

Here the vector field P is given by

P = (ϕ′′ + kϕ)L− ϕ′W + ϕN, (40)

V standing for a generic variational vector field along γ.

The trajectory γ ∈ Λ is the null worldline of a relativistic particle in the

(2+1)-dimensional spacetime if and only if

(i) W , N and k are well defined in the whole world trajectory.

(ii) The following differential equation is fulfilled: E(γ) = 0.

The vector field X given by

X =
(
(k′)2f (3)(k) + k′′f ′′(k) + f(k)

)
L− 2k′f ′′(k)W + 2f ′(k)N + P × γ

is constant along γ. Then

J = −P × γ + X =
(
(k′)2f (3)(k) + k′′f ′′(k) + f(k)

)
L− 2k′f ′′(k)W + 2f ′(k)N (41)

52



is a Killing vector field along γ that jointly with the constant vector field P allow us to

find non-trivial first integrals of the Euler-Lagrange equations.

Bearing in mind Eqs. (39) and (41) we obtain that f and k have to satisfy the following

ordinary differential equations

(ϕ′)2 − 2ϕ(ϕ′′ + kϕ) = εp2,

−2f ′(k)ϕ′′ + 2k′f ′′(k)ϕ′ − 2f(k)ϕ− ϕ2 = ω.

9.1. P is either non-null or null

f being a quadratic function

f(k) = ρk2 + µk + λ

Case 1: ρ = µ = 0, λ 6= 0 (the constant case)

This case represents the simplest action describing the motion of a particle, since it

is proportional to the proper time along the light-like trajectory of the particle in space-

time. We have P = −λ(kL + N) and J = λL, so that 〈P, P 〉 = −2λ2k = εp2 and

〈P, J〉 = λ2 = ω, and therefore

k = −εp2

2ω
.
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This shows that γ is a Cartan helix, [8, 15], with axis given by the vector P . Note that

ω 6= 0, otherwise λ = 0 which can not hold. Moreover, massive (tachyonic) solutions

correspond to the null helices with negative (positive) curvature. This was shown by

Nersessian and Ramos using a Hamiltonian formulation for this geometrical model, [23].

Here we offer an alternative proof which exploits the geometry of the particle trajectories.

Case 2: ρ = 0, µ 6= 0 (the linear case)

Without loss of generality we normalize the constant µ to be one, then we find P =

(k′′ + k2 − λk)L− k′W + (k − λ)N and J = (k + λ)L + 2N . In this case ϕ = k − λ and

we obtain a first solution when ϕ = 0, or equivalent k = λ, that is, γ is a Cartan helix.

So, the constant vector field J = 2λL + 2N provided us a constant of the motion given

by 〈J, J〉 = −8λ.

If ϕ 6= 0, the first integrals provided by the vector fields P and J read

(k′)2 − 2(k − λ)(k′′ + k2 − λk)− εp2 = 0,

−2k′′ − 3k2 + 2λk + λ2 − ω = 0.
(42)

From that we obtain

(k′)2 + k3 − λk2 + (ω − λ2)k + λ3 − ωλ− εp2 = 0, (43)

which can be written as (k′)2 + Q(k) = 0, Q being the polynomial Q(X) = X3 − λX2 +

(ω − λ2)X + λ3 − ωλ− εp2. Putting q = k + λ we recover Eq. (39) in [24], showing that
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the system under consideration contains massive and tachyonic branches. Later we will

come back to this, when we determine the curvature functions of the particle trajectories

in both sectors.

By using standard techniques involving the elliptic Jacobi functions, the solution can

be found in terms of the roots α1, α2 and α3 of the equation Q(X) = 0. First, assume

that all roots of Q are real, α1 ≤ α2 ≤ α3. Then it is well-known that

λ = α1 + α2 + α3,

ω − λ2 = α1α2 + α1α3 + α2α3,

εp2 + ωλ− λ3 = α1α2α3,

(44)

from which we easily deduce

α1 ≤
λ

3
, α2 ≤

λ− α1

2
. (45)

Before obtaining all solutions, note that since Q(k) = −(k′)2 then k takes values

only where Q is negative. Trivial solutions are k(s) = αi, where αi is a real root of Q,

so that we find again the null Cartan helices. In this case 〈P, P 〉 = −2k(k − λ)2 and

〈P, J〉 = −3k2 + 2λk + λ2. As before, the massive and tachyonic sectors correspond with

negative or positive curvature, respectively. Now we are going to analyze all possible cases.
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I. Q has a real root of multiplicity 3: α = α1 = α2 = α3

We have that α = λ/3 and the curvature function is given by

k(t) =
λ

3
− 4

(t + E)2
, s ∈ (−∞, λ/3)

where E is a constant of integration, depending on the initial conditions, satisfying that

t+E is always different from zero. From Eq. (42) or (44) we find the relations 8λ3+27εp2 =

0 and 4λ2 − 3ω = 0. Note that the constant of the motion εp2 and ω are completely

determined by the constant λ.

II. Q has two real roots, the lowest with multiplicity 2: α = α1 = α2 < α3

The root α3 is given by λ− 2α. There are two possibilities:

k(t) = λ− 2α + (3α− λ) coth2

(
1

2

√
λ− 3α(t + E)

)
, s ∈ (−∞, α)

k(t) = λ− 2α + (3α− λ) coth2

(
1

2

√
λ− 3α(t + E)

)
, s ∈ (α, λ− 2α]

where E is a constant. In this case the relations among α, λ, ω and p are −2α(α−λ)2 = εp2

and −(α− λ)(3α + λ) = ω.

56



III. Q has two real roots, the greatest with multiplicity 2: α = α1 < α2 = α3

We obtain that α2 = α3 = (λ− α)/2, and the solution is given by

k(t) = α +
3α− λ

2
tan2

(
1

2

√
λ− 3α

2
(t + E)

)
, s ∈ (−∞, α]

where E is a constant. Now the mass-shell condition and the Majorana-type relation read

(1/4)(α− λ)(α + λ)2 = εp2 and −(1/4)(α + λ)(3α− 5λ) = ω.

IV. Q has three distinct real roots: α1 < α2 < α3

Let us denote α = α1 and β = α2, then α3 = λ − α − β. There are two possibilities

for the curvature:

k(t) = α− (β − α) tn2

(
1

2

√
λ− 2α− β(t + E),

√
λ− α− 2β

λ− 2α− β

)
,

k(t) = λ− α− β + (α + 2β − λ) sn2

(
1

2

√
λ− 2α− β(t + E),

√
λ− α− 2β

λ− 2α− β

)
,

defined in the intervals (−∞, α] or [β, λ − α − β], respectively. In this case we have the

following relations among constants: −(α + β)(α− λ)(β − λ) = εp2 and (α + λ)(β + λ)−
(α + β)2 = ω.
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V. Q has complex roots

Let us suppose that α1 and α2 are complex (so α3 is real). Then the curvature is given

by

k(t) = α3 − (α3 − α2) sn2

(
1

2

√
α3 − α1(t + E),

√
α2 − α3

α1 − α3

)
, s ∈ (−∞, α3].

Write α1 = α+βi and α2 = α−βi, then the mass-shell condition and the Majorana-type

relation read −2α ((α− λ)2 + β2)) = εp2 and λ2 + 2αλ− 3α2 + β2 = ω.

We use cylindrical coordinates to integrate the Cartan equations of the curves.

Case 3: ρ 6= 0 (the quadratic case)

As before, without loss of generality we can assume that ρ = 1. The Euler-Lagrange

equation is given by

2k(5) + (10k + µ) k(3) + 20k′′k′ + k′
(
15k2 + 3µk − λ

)
= 0, (46)

In this case ϕ = 2k′′ + 3k2 + µk − λ and we have two families of solutions. If ϕ = 0,

then P = 0 and J = −2(k2−λ)L−4k′W +2(2k +µ)N is a constant vector field verifying

〈J, J〉 = εj2. Then, the first family of solutions satisfies the equation

(k′)2 + k3 +
µ

2
k2 − λk −

(µ

2
+

ε

16
j2
)

= 0.
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This equation has the same nature that the equation (43) and the solutions are seemed.

We now suppose that ϕ 6= 0, then the vector fields P and J read

P =
(
2k(4) + k′′(8k + µ) + 6(k′)2 + 3k3 + µk2 − λk

)
L

−
(
2k(3) + k′(6k + µ)

)
W +

(
2k′′ + 3k2 + µk − λ

)
N,

J =
(
2k′′ + k2 + µk + λ

)
L− 4k′W + 2(2k + µ)N.

If ϕ 6= 0, using the above equations we obtain the following first integrals:

− 2
(
2k(4) + k′′(8k + µ) + 6(k′)2 + 3k3 + µk2 − λk

) (
2k′′ + 3k2 + µk − λ

)
+
(
2k(3) + k′(6k + µ)

)2 − εp2 = 0,

− (8k + 4µ)k(4) + 8k′k(3) − 4(k′′)2 − (40k2 + 24µk + 2µ2)k′′

− 8µ(k′)2 − 15k4 − 14µk3 + (2λ− 3µ2)k2 + 2λµk + λ2 − ω = 0.

On the other hand, it is easy to see that another first integral is given by

2k(4) + 10kk′′ + µk′′ + 5(k′)2 + 5k3 +
3

2
µk2 − λk + c = 0,
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c being a constant. These three first integrals can be combined to obtain the following

ordinary differential equation of degree two:

1

16
(k′)2

(
−4(k′′)2 − 2(2k + µ)(k′)2 + 5k4 + 2µk3 − 2λk2 + 4ck + 2cµ + λ2 + ω

)2
+(2k′′ + 3k2 + µk − λ)(4kk′′ − 2(k′)2 + 4k3 + µk2 + 2c)− εp2 = 0.

The integration of this equation is very complicated, but we can use computing methods

to make us an idea of their solutions (see the following pictures).

k(t) γ(t)

Fig. 5
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k(t) γ(t)

Fig. 6
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