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1 Introduction

A classical and well known result by Fenchel says that the total curvature of any simple

closed curve in the Euclidean 3-space satisfies that∫
γ

κ(s) ds ≥ 2π,

and equality holds if and only if γ is a convex plane curve. Therefore, the minimum of

the total curvature action over simple closed curves in the Euclidean space is 2π and it is

reached just on the convex plane curves.

Then it seems natural to consider the total curvature functional acting on a suitable

space of curves of a certain surface, or more generally in a Riemannian space, and then

to study the associated variational problem.
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That was planned by J. Arroyo, M. Barros and O. J. Garay in

- Some examples of critical points for the total mean curvature functional, Proc. Ed-

inburgh Math. Soc. 43 (2000), 587-603,

- Holography and total charge, J. Geom. Phys. 41 (2002), 65-72.

Also M. S. Plyushchay, in

- Masess particle with rigidity as a model for the description of bosons and fermions,

Phys. Lett. B 243 (1990), 383-388,

proposed that model to study the dynamics of massless particles.
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Arroyo, Barros and Garay’s results are summarized as follows:

• As for surfaces, the extremals of the total curvature are achieved by curves of

parabolic points.

• As for constant curvature spaces Mn(k)

- The dynamics is reduced to dimension n ≤ 3 and curvature k ≥ 0.

- When k = 0, the dynamics happens on plane curves in R3.

- When k > 0, the extremals on a 3-sphere are achieved by horizontal lifts (also

known as Legendre curves), via the Hopf map, of curves on a 2-sphere.

- Some other partial results providing examples of critical curves in Berger

spheres as well as in the complex projective space.

I We see that the round 3-sphere is, essentially, the only constant curvature Rie-

mannian space where the variational problem makes sense and we know that it is also a

homogeneous space.
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Then it seems natural to consider the variational problem associated to the

total curvature functional for curves in homogeneous 3-spaces whose isometry

group is 4-dimensional.

A space M whose isometry group acts transitively on itself is called a homogeneous

space.

Let M(c) be a 3-dimensional simply connected space of constant curvature c, for any

c ∈ R. It is known that M(c) is homogeneous and its isometry group is 6-dimensional.

By relaxing the curvature condition, we find a bi-parametric family E(c, r), where

c, r ∈ R and c 6= 4r2, of homogeneous spaces with 4-dimensional isometry group (see next

table).

6 4 3

H3, R3, S3 H2 × R, S2 × R,

P̃SL(2,R), Nil3,

Berger spheres

Sol3
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On the other hand, any homogeneous 3-space E(c, r) with rigidity of order four can

be viewed as a bundle over a surface with constant curvature. This fibration provides a

Riemannian submersion

p : E(c, r) → B2(c),

with geodesic fibers (vanishing first O’Neill invariant). In addition, the vertical flow is

generated by a unit Killing vector field ξ which allows one to give the following expression

for the second O’Neill invariant, A,

AXξ = ∇X ξ = r (X × ξ) ,

where X is a horizontal vector field and r, the bundle curvature (B. Daniel [4]), is a

constant. Therefore, p : E(c, r) → B2(c) is a Killing submersion in the sense of Manzano,

Espinar and de Oliveira ([5, 6]).
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Both constants, c (curvature of the base) and r (bundle curvature), classify the ho-

mogeneous 3-spaces, up to isometries and topology. In other words, each pair of real

numbers, (c, r), determines, up to topology, a congruence class E(c, r) of homogeneous 3-

spaces whose isometry group has either dimension 4, if c 6= 4r2, or dimension 6 (constant

curvature), if c = 4r2.

c < 0 c = 0 c > 0

r = 0 H2 × R - S2 × R
r 6= 0 P̃SL(2,R) Nil3 Berger spheres
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2 The total curvature functional

(M, 〈 , 〉) Riemannian manifold; p1, p2 ∈M , xi ∈ Tpi
M ,

Ω = {γ : [a1, a2] →M, γ(ai) = pi, γ
′(ai) = xi, 1 ≤ i ≤ 2}

F : Ω → R, F(γ) =

∫
γ

κ(s) ds.

We wish to study the variational problem associated to this functional and find the

extremal curves.

Given γ ∈ Ω, the tangent space Tγ Ω is identified with the space of fields along γ

vanishing at the ending points. If W ∈ Tγ Ω, we define a curve in Ω passing through γ in

the direction of W as

Γ : (−ε, ε) → Ω, Γ(t) = expγ(s) tW (s).

The first variation was computed Arroyo, Barros and Garay in [1]:

DF(γ)[W ] =
∂

∂t
(F(Γ(t)))

∣∣∣∣
t=0

=

∫
γ

〈E(γ),W 〉ds+ B(γ,W ),
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where E(γ) is the Euler-Lagrange operator and B(γ,W ) is the boundary operator.

The Frenet equations yield

E(γ) = τ 2N − τsB − τη −R(N, T )T,

B(γ,W ) =
m∑

i=1

〈∇TW (si), N(si)〉+
m∑

i=1

〈W (si),∇T N(si)〉,

where η belongs to the subbundle normal to that spanned by {T,N,B}(s) along γ(s).

Then, γ is a critical point of F in Ω if and only if (see [1]) the following Euler-Lagrange

equation is satisfied

R(N, T )T = τ 2N − τsB − τη (1)

The solution, widely discussed by Arroyo, Barros and Garay in [1] and [2], is strongly

governed by the curvature of the ambient space.
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3 Lancret helices in homogeneous 3-spaces

We wish to work in S3(1) where we know that there are a very special curves, Lancret

helices, which were characterized by Barros in General helices and a theorem of Lancret,

Proc. A.M.S., 125 (1997), 1503-1509.

Namely, in a Riemannian space equipped with a unit Killing field ξ, the curves making

a constant angle with ξ are called Lancret helices with axis ξ.

After Barros’ characterization, we knew that the critical curves of F in S3(1) are

Lancret helices with axis the Hopf field and slope π/2.

As every homogeneous 3-space admits a unit Killing vector field, it seems natural to

study the following:

Problem 1: Are there Lancret helices being extremal of the total curvature

action in homogeneous 3-spaces with 4-dimensional isometry group?
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Then we undertook the task of getting a geometrical characterization of those helices

in M3 = E(c, r).

Let M3 = E(c, r) be a homogeneous 3-space, p : M3 → B2(c) the corresponding

Riemannian submersion, and let ξ be the associated unit vertical Killing vector field.

• ξ will be the axis of the helices we are looking for.

• Given a curve β(s) in B2(c), let β̄(s) be a horizontal lift. Both can be taken arc

length parameterized.

• Consider the surface Sβ = p−1(β) in M3, which can be parameterized by

X(s, t) = ϕt(β̄(s)),

where {ϕ t : t ∈ R} is the one-parameter group generated by ξ.

• Sβ is a flat surface called Hopf cylinder over β(s).
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• Its shape operator was computed by Espinar and Oliveira in [5]:(
κg −r
−r 0

)
where κg is the geodesic curvature of β(s) in B2(c).

• Let γ(s) be a geodesic of Sβ. Then

d

ds
〈γ′(s), ξ(γ(s))〉 = 〈∇γ′γ′(s), ξ(γ(s))〉+ r〈γ′(s), γ′(s)× ξ(γ(s))〉 = 0,

which shows that the angle between γ(s) and ξ is constant.

Therefore

The geodesics of Hopf cylinders are Lancret helices.

The converse also holds, namely,

Proposition 3.1 The Lancret helices of the homogeneous 3-spaces with 4 or 6-dimensional

isometry group are geodesics of Hopf cylinders.

� � � � �
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Some useful formulas:

κ =
κg − 2rm

m2 + 1
(2)

τ =
κg m− r(m2 − 1)

m2 + 1
(3)

τ = mκ+ r (4)

where m = cotϕ.

The classical theorem of Lancret ensures that formula (4) with r = 0 provides a simple

characterization of Lancret helices in the Euclidean space. Barros proved (see [3]) that

this result also holds for S3 and H3 and observed that the only Lancret helices in H3 are

circular ones, i. e., those with curvature an torsion being both constant.
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Thus, it seems natural to ask for a Lancret-type theorem in homogeneous 3-spaces

with rigidity of order four. Said otherwise

Problem 2: Does equation (4) characterize Lancret helices in such homo-

geneous 3-spaces?

We give a negative answer:

Proposition 3.2 Let M3 = E(c, r) be an homogeneous 3-space with c 6= 4r2, and let

γ(s) be a Lancret helix in M3 with curvature κ(s) and torsion τ(s). Then there exists

a curve α(s) in M3 with curvature function κα = κ and torsion τα = τ which is not

congruent to any Lancret curve in M3.
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4 Extremals of the total curvature in E(c, r)

The Riemannian curvature operator of a homogeneous 3-space M3 = E(c, r) was com-

puted by Daniel in [4]:

R(X, Y )Z = (c− 3r2)(〈Y, Z〉X − 〈X,Z〉Y )

+ (−c+ 4r2)[〈Y, ξ〉〈Z, ξ〉X − 〈X, ξ〉〈Z, ξ〉Y + 〈X, ξ〉〈Y, Z〉ξ − 〈Y, ξ〉〈X,Z〉ξ].

In particular, along a curve γ(s) with Frenet frame {T,N,B}(s):

R(N, T )T = (c− 3r2)N + (−c+ 4r2)[〈T, ξ〉2N − 〈T, ξ〉〈N, ξ〉T + 〈N, ξ〉ξ],

which can be combined with (1) to obtain:

τ 2 = r2 + (c− 4r2)〈B, ξ〉2, τs = (c− 4r2)〈N, ξ〉〈B, ξ〉.

We can manipulate these equations to find

τ 2 = r2 + (c− 4r2)〈B, ξ〉2 (c− 4r2)(r − 2τ)〈N, ξ〉〈B, ξ〉 = 0 (5)
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τ 2 = r2 + (c− 4r2)〈B, ξ〉2 (c− 4r2)(r − 2τ)〈N, ξ〉〈B, ξ〉 = 0

According to the second equation, we only need to study the following two cases:

(i) c− 4r2 = 0 Then the homogeneous space E(c, r) has constant curvature r2 and

then, up to topology, it must be either R3 (if r = 0) or S3 (if r 6= 0). In the

former case the extremals are plane curves while in the later the extremals are the

Legendrian curves, that is, the horizontal lifts, via the Hopf map, of curves in the

two sphere. Anyway, in both cases ξ lies in the normal plane along each extremal.

(ii) r − 2τ = 0 Then the first equation of (4) shows that

〈B, ξ〉2 = − 3τ 2

c− 4r2
,

and so 〈B, ξ〉 is a constant. Furthermore, d
ds
〈B, ξ〉 = (r − τ)〈N, ξ〉 and so the

extremals in this class have either horizontal normal or torsion τ = r. However in

the last case τ = 0 and so the binormal is horizontal. �
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Summarizing, we have that

Lemma 4.1 Let γ(s) be an extremal of the total curvature functional in E(c, r), then

either

(E1) ξ lies in its normal plane along γ(s), or

(E2) ξ lies in its rectifying plane along γ(s), or

(E3) ξ lies in its osculating plane along γ(s).

Then we have to consider extremals with:

Horizontal normal Horizontal binormal

〈N, ξ〉 = 0 〈B, ξ〉 = 0
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I 1st case. 〈N, ξ〉 = 0

Then d
ds
〈T, ξ〉 = κ〈N, ξ〉 + r〈T, T × ξ〉 = 0, which shows that the curve is a Lancret

helix. Then

Proposition 4.2 A Lancret helix in E(c, r) is an extremal of the total curvature if

and only if it has constant torsion (as well as constant curvature) satisfying that

τ 2 = c sin2 ϕ+ r2 (4 cos2 ϕ− 3) =
c+ r2(m2 − 3)

m2 + 1
. (6)

Remark 4.3 It should be noted that, from to the above proposition, the only obstruc-

tion to the existence of extremal Lancret helices in E(c, r) comes from c+ r2(m2− 3) > 0,

and so we have the following

Corollary 4.4 Every homogeneous 3-space E(c, r), except H2×R, admits a real one-

parameter class of extremal Lancret helices.
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Examples of extremals with horizontal normal:

1. Riemannian product homogeneous 3-spaces. Then r = 0.

– H2(c)× R: no extremal Lancret helices.

– S2(c)× R: a one-parameter class of extremal Lancret helices.

In fact, for any m ∈ R − {0}, we choose in S2(c) the circle βm with geodesic

curvature

κg =

√
c(m2 + 1)

m
, (7)

and then take γm as the geodesic with slope m in the Hopf cylinder shaped on

βm. Then γm is an extremal of the total curvature in S2(c)× R.

2. Heisenberg group. Now c = 0. Then, (6) yields m >
√

3, so that for any ϕ ∈ (0, π/6)

there exists an extremal Lancret helix. These are geodesics in Hopf cylinders built

over circles in the Euclidean plane with curvature

κg =
r

m
(
√
m4 − 2m2 − 3 +m2 − 1), m = cotϕ.
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I 2nd case. 〈B, ξ〉 = 0

Then d
ds
〈B, ξ〉 = (r − τ)〈N, ξ〉 = 0 and so τ = r.

What kind of curves are we talking about? This is a hard question.

Let ψ(s) be the angle that T (s) = γ′(s) makes with ξ. Then we have the following

characterization of the horizontality of the binormal:

Proposition 4.5 Given a curve γ(s) in E(c, r), the following statements are equiva-

lent:

(1) It has horizontal binormal;

(2) Its curvature function κ(s), satisfies that κ(s) + ψ′(s) = 0;

(3) It is an extremal of the total curvature with τ = r.

Remark 4.6 (1). It should be observed that, as a consequence of the above propo-

sition, curves in E(c, r) with curvature function satisfying κ(s) = −ψ′(s), automatically

have constant torsion τ = r.

(2). Note also the existence of curves in E(c, r) with τ = r whose binormal is not

horizontal. For example, the horizontal lifts of any curve in B2(c).
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Algorithm to construct the class of extremals with horizontal binormal:

(1) First, choose an arbitrary positive function h(s), which will play the role of the

curvature function of the extremal, and define the function

ψ(s) = −
∫ s

0

h(v) dv.

(2) Now take the curve β(s) in B2(c) (unique up to rigid motions) which is determined

by its arc-length function u(s) and its curvature function κ(s) given, respectively,

by

u(s) =

∫ s

0

sinψ(v) dv, κg(s) = −2r cotψ(s).

(3) Finally, use β(s) as a profile curve to construct its Hopf cylinder Sβ in E(c, r) and

then choose in this flat surface the curve, γ(s), with slope function (measured with

respect to ξ) ψ(s). We conclude that γ(s) is an extremal of the total curvature

functional on E(c, r) with horizontal binormal (consequently τ = r) and curvature

function h(s). Moreover, all of extremals with horizontal binormal are obtained in

this way.
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Remark 4.7 It should be noted that this argument can be viewed as the solution of

the so called “solving natural equations” for curves with horizontal binormal in E(c, r).

In fact, we obtain explicitly the curve from its curvature function through quadratures.

Certainly, it is a surprising result having in mind that the spaces E(c, r) have not the

highest rigidity. Moreover, the next theorem measures the size of this class of curves.

We can exploit the above argument to exhibit a one-to-one correspondence between

the class of convex plane curves and the family of extremals with horizontal binormal in

E(c, r). It can be obtained from the following result

Theorem 4.8 For every convex curve α in the Euclidean plane, there exists a curve γ in

E(c, r) with the same curvature function that α and torsion τ = r, which is an extremal,

with horizontal binormal, of the total curvature action on E(c, r).
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A relevant special case appears when r = 0. In this case the homogeneous 3-space is

a Riemannian product E(c, 0) = B2(c) × R, where (up to topology) B2(c) is either S2(c),

if c > 0, or H2(c), when c < 0. Then, as a consequence of the above argument we have

the following characterization for extremals with horizontal binormal

Corollary 4.9 Any extremal γ(s) with horizontal binormal in B2(c) × R lies in a

Hopf cylinder built on a geodesic of B2(c). These curves can be explicitly parameterized as

follows

γ(s) =

(
β(u(s)),

∫ s

0

cosψ(v) dv

)
,

where β(u) is a unit speed geodesic in B2(c) with arc-length function given by

u(s) =

∫ s

0

sinψ(v) dv and ψ(s) = −
∫ s

0

κ(v) dv,

κ(s) being an arbitrary function making the role of the curvature function of γ(s).
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Observe that if β is a geodesic in B2(c), then Sβ is a totally geodesic surface in E(c, 0) =

B2(c)× R.

On the other hand, extremals with horizontal binormal have torsion zero. Therefore,

the first claim of the above corollary can be viewed as a codimension reduction result,

which is the classical behavior in spaces with constant curvature. In contrast, extremals

in S2(c)×R with horizontal normal do not lie in any totally geodesic surface (see Example

with label 7).
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5 New examples

A. Extremals in Riemannian products

In H2(c)× R all extremals have horizontal binormal (see Corollary 4.9).

In S2(c)× R we have two kind of extremals:

(i) Extremals with horizontal binormal (see Corollary 4.9);

(ii) Extremals with horizontal normal (see Example with label 7).

The class (ii) consists of Lancret helices having both constant curvature and torsion

given, respectively, by

τ =

√
c

m2 + 1
, κ =

1

m

√
c

m2 + 1
.
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As for explicit examples, let us write S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1} and

H2 = {(x, y, z) ∈ L3 : x2 + y2 − z2 = −1, z > 0}.

Take the geodesics β(u) = (cos u, 0, sinu) ⊂ S2 and β(u) = (coshu, 0, sinhu) ⊂ H2.

Then apply Corollary 4.9 to find extremals.

To do that we build curves in the surface β × R starting from a prescribed function

that makes the role of curvature function.

(A.1) Circles viewed as extremals. Consider a constant function κ(s) = −a, then

we have ψ(s) = as and therefore

I γ(s) = (cos(− 1
a
cos(as)), 0, sin(− 1

a
cos(as)), 1

a
sin(as)): extremal in S2 × R,

I γ(s) = (sinh(− 1
a
cos(as)), 0, cosh(− 1

a
cos(as)), 1

a
sin(as)): extremal in H2 × R.
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(A.2) Clothoids regarded as extremals. Pick up the function κ(s) = −s. We can

solve the natural equations to obtain the clothoid in terms of the Fresnel integrals

α(s) = (u(s), t(s)) =

(∫ s

0

sin (v2/2) dv,

∫ s

0

cos (v2/2) dv

)
.

Since ψ(s) = s2

2
, we have that

I γ(s) =
(
cos
(∫ s

0
sin (v2/2) dv

)
, 0, sin

(∫ s

0
sin (v2/2) dv

)
,
∫ s

0
cos (v2/2) dv

)
: extremal

in S2 × R ⊂ R4,

I γ(s) =
(
sinh

(∫ s

0
sin (v2/2) dv

)
, 0, cosh

(∫ s

0
sin (v2/2) dv

)
,
∫ s

0
cos (v2/2) dv

)
: extremal

in H2 × R ⊂ L3 × R.

26



(A.3) Catenaries as extremals. Now, take the function κ(s) = 1
1+s2 . The unit

speed curve having this curvature function is the catenary

α(s) = (u(s), t(s)) =
(√

1 + s2, lg(s+
√

1 + s2
)
.

In this case, ψ(s) = arctan s, and, consequently, we obtain that the following curves

I γ(s) =
(
cos

√
1 + s2, 0, sin

√
1 + s2, lg(s+

√
1 + s2

)
: extremal in S2 × R

I γ(s) =
(
sinh

√
1 + s2, 0, cosh

√
1 + s2, lg(s+

√
1 + s2

)
: extremal in H2 × R.

� � � � �
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B. Extremals in nilmanifolds

Nilmanifolds are geometries identified with E(0, r) and, consequently, appear as Rie-

mannian submersions over a Euclidean plane.

The 3-dimensional Heisenberg group N3
r is R3 endowed with the metric ds2 = dx2 +

dy2 + θ2, where θ is the one-form defined by

θ = dz + r(y dx− x dy).

It is known that ξ = ∂z is an infinitesimal translation whose associated one-parameter

subgroup is

{ϕt : N3
r → N3

r : t ∈ R}, ϕt(x, y, z) = (x, y, z + t).

The extremals are curves lying in Hopf cylinders. This key fact will be used to give

explicit extremals in the Heisenberg group.
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Hopf cylinders Sβ, shaped on a plane curve β(s), are flat surfaces which can be obtained

as follows.

Choose an arc-length plane curve, β(s) = (x(s), y(s)).

Their horizontal lifts β̄(s) project down over β(s), and then β̄(s) = (x(s), y(s), z(s)),

where horizontality implies that the third coordinate must satisfy θ(β̄′(s)) = 0.

Hence, horizontal lifts turn out to be determined by the solutions of the differential

equation
dz

ds
= r

(
x
dy

ds
− y

dx

ds

)
. (8)

Then Sβ is parameterized by

X(s, t) = ϕt(β̄(s)) = (x(s), y(s), z(s) + t).
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B.1 Extremals with horizontal normal.

They are Lancret helices. Then we apply the corresponding algorithm, given in Section

4, to obtain

Corollary 5.1 For any ϕ ∈ (0, π/6), there exists an extremal Lancret helix in N3
r,

with slope m = cotϕ, in a suitable Hopf cylinder.

Lancret helices in N3
r are curves, γ(s), forming a constant angle with ξ and they are

precisely the set of geodesics of the Hopf cylinders of N3
r (Propositon 3.1). The Lancret

helices providing extremals must be geodesics of Hopf cylinders shaped on circles of the

Euclidean plane. Let β(s) =
(
R cos s

R
, R sin s

R

)
be the unit speed circle with radius R and

centered at the origin. The equation (8) says that horizontal lifts of the above circles are

just circular helices

β̄(s) =
(
R cos

s

R
,R sin

s

R
, rRs+ c

)
, ∀c ∈ R.

The corresponding Hopf cylinders can be parameterized by

X : R2 → N3, X(s, t) =
(
R cos

s

R
,R sin

s

R
, rRs+ t

)
.
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Now, we use Proposition 4.2 to see that extremal Lancret helices in the Heisenberg

group are those whose torsion satisfies

τ 2 = r2(4 cos2 ϕ− 3) =
r2(m2 − 3)

m2 + 1
,

and, according to (3), they are geodesics in Hopf cylinders over circles with radius

R =
1

κg

=
m

r (
√

(m2 + 1)(m2 − 3) +m2 − 1)
, m = cotϕ.

Then, for any ϕ ∈ (0, π/6) we obtain the extremal Lancret helices parameterized by

γm(s) = X

(
s√

1 +m2
,

ms√
1 +m2

)
=

(
R cos

s

R
√

1 +m2
, R sin

s

R
√

1 +m2
,
(rR +m)s√

1 +m2

)
.
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B.2 Extremals with horizontal binormal. We use the following algorithm derived

from the results in Section 4. It works on any E(c, r) and, in particular, on the Heisenberg

group:

(i) Consider any unit speed curve β(u) in B2(c) with curvature function κg(u).

(ii) Define functions ψ(u) = −arcotκg(u)

2r
and s(u) =

∫ u

0
cscψ(v) dv.

(iii) Now, in the Hopf cylinder Sβ = π−1(β(u(s))), choose the curve γ(s) with slope

ψ(u(s)) to obtain an extremal with horizontal binormal in E(c, r).

Following this procedure we give a few more examples of critical curves belonging to

the second class.
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(B.2.1) An extremal built on a catenary. The curvature function

κg(u) =
1

1 + u2

yields the catenary

β(u) = (x(u), y(u)) = (arcsinh(u),
√

1 + u2).

From here and (8) one has

z(u) = r
(√

1 + u2 arcsinh(u)− u
)
.

Then a horizontal lift, β̄, of β is given by

β̄(u) =
(
arcsinh(u),

√
1 + u2, r

(√
1 + u2 arcsinh(u)− u

))
.

Then the Hopf cylinder shaped on β, Sβ = π−1(β) is parameterized by

X(u, t) =
(
arcsinh(u),

√
1 + u2, r

(√
1 + u2 arcsinh(u)− u

)
+ t
)
.

Now in the flat surface Sβ choose the curve γ(s) whose slope, measured with respect

to the vertical axis, is given by

ψ(u) = −arcot
1

2r(1 + u2)
.

33



A parameterization of γ(s) is

γ(s) = X(u(s), t(s)) ,

where

u(s) = −
∫ s

0

2r(1 + v2)√
1 + 4r2(1 + v2)2

dv, t(s) =

∫ s

0

1√
1 + 4r2(1 + v2)2

dv ,

which can be expressed in terms of Elliptic functions. Then, γ(s) provides an extremal

for the total curvature action (with horizontal binormal) on the Heisenberg group (Fig.

1).
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(a) β is a catenary.

Figure 1. A critical curve γ (curve in red) for the total curvature in Nil3 with r = 1. Here, γ lies on a

Hopf cylinder shaped on a planar curve β (curve in green), whose horizontal lift β̄ is shown in black.
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(B.2.2) An extremal built on a logarithmic spiral. The curvature function

κg(u) =
1

u
,

yields the curve β(u) = (x(u), y(u)) where

x(u) =
1

2
u (cos(log(u)) + sin(log(u))) , y(u) =

1

2
u (sin(log(u))− cos(log(u))) . (9)

Again from (8) we obtain

z(u) =
ru2

4
. (10)

Then a horizontal lift of β is given by β̄(s) = (x(s), y(s), z(s)) and the corresponding Hopf

cylinder by X(u, t) = (x(u), y(u), z(u) + t).

Now in Sβ we take the curve γ(s) whose slope, measured with respect to the vertical

axis, is given by

ψ(u) = −arcot
1

u
.

A parameterization of γ(s) is

γ(s) = X(u(s), t(s)) ,

where

u(s) = −
∫ s

0

2rv√
1 + 4r2v2

dv =
√

1 + s2 , t(s) =

∫ s

0

1√
1 + 4r2v2

dv = arcsinh(s) .
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Then, γ(s) is also an extremal for the total curvature action (with horizontal binormal)

on the Heisenberg group (Fig. 2).

(b) β is a logarithmic spiral.

Figure 2. A critical curve γ (curve in red) for the total curvature in Nil3 with r = 1. Here, γ lies on a

Hopf cylinder shaped on a planar curve β (curve in green), whose horizontal lift β̄ is shown in black.
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(B.2.3) An extremal constructed out of an involute of a circle. The curvature

function

κg(u) =
1√
u

yieds the curve β(u) = (x(u), y(u)), where

x(u) =
1

2

(
cos(2

√
u) +

√
u sin(2

√
u)
)
, y(u) =

1

2

(
−2
√
u cos(2

√
u) + sin(2

√
u)
)
. (11)

From (8) we have

z(u) = r
√
u . (12)

Then we find a horizontal lift of β and the Hopf cylinder shaped on β

β̄(s) = (x(s), y(s), z(s)) , X(u, t) = (x(u), y(u), z(u) + t) .

Then, the curve γ(s) parameterized by γ(s) = X(u(s), t(s)), with

u(s) = −
∫ s

0

2r
√
v√

1 + 4r2v
dv = −1

4

(
2
√
s(1 + 4s)− arcsinh

(
2
√
s
))

,

t(s) =

∫ s

0

1√
1 + 4r2v

dv =
1

2

√
1 + 4s ,
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lies in Sβ forming an angle ψ with respect to the vertical axis given by

ψ(u) = −arcot
1

2r
√
u
.

Therefore, γ(s) is an extremal, with horizontal binormal, on the Heisenberg group (Fig.

3).

Figure 3. A critical curve γ (curve in red) for the total curvature in Nil3 with r = 1. Here, γ lies on a Hopf

cylinder shaped on an involute of a circle β (curve in green), whose horizontal lift β̄ is shown in black.
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6 Summary

The current status of this variational approach can be now described as follows:

1. In the hyperbolic space H3, there is no extremal.

2. If c = 4r2, then E(c, r) has constant curvature, r2, and, up to topology, it should be

either

2.1 R3, when r = 0, and extremals are plane curves; or

2.2 S3(r2), the round sphere with curvature r2, when r 6= 0. Now, the dynamics

works through curves with torsion ±r, i. e., horizontal lifts via the Hopf map

of curves in the corresponding round two-sphere.
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3. If c 6= 4r2 and r = 0, then the homogeneous 3-space is a Riemannian product and

there are two possibilities:

3.1 If c > 0, then E(c, 0) = S2(c) × R and there are two families of extremals for

the total curvature action, namely,

3.1.1 The class of curves with horizontal normal, which is a one-parameter class

{γm,m ∈ R − {0}} of Lancret helices. This family can be described as

follows: for any m ∈ R− {0}, choose in S2(c) the circle βm with geodesic

curvature

κg =

√
c(m2 + 1)

m
,

and then take γm as the geodesic with slope m in the Hopf cylinder shaped

on βm.

3.1.2 The class of curves with horizontal binormal, which automatically have

torsion zero. This family consists of curves lying in Hopf cylinders built

over great circles in S2(c) (see Corollary 4.9).
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3.2 If c < 0, then E(c, 0) = H2(c) × R. Now the space of extremals is made up

of curves with horizontal binormal. Up to rigid motions, they are the curves

lying in Hopf cylinders built over geodesics in the hyperbolic plane H2(c) (see

Corollary 4.9).

4. If c 6= 4r2 and r 6= 0, the space of extremals consists of two families of curves:

4.1 A real one-parameter class of Lancret helices (see Proposition 4.2).

4.2 The class of curves with horizontal binormal, which automatically has constant

torsion τ = ±r. This class can be parameterized by the space of differentiable

real functions.
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c ∼ r r c Space Extremals

c = 4r2 r < 0 H3 no

r = 0 R3 plane curves

r > 0 S3(r2) horizontal liftings with τ = ±r

c 6= 4r2 r = 0 c > 0 S2(c)× R curves with horizontal normal;

1-parameter family of Lancret helices

c > 0 S2(c)× R curves with horizontal binormal and

τ = 0 (Cor. 4.9)

c < 0 H2(c)× R curves with horizontal binormal and

τ = 0 (Cor. 4.9)

c 6= 4r2 r 6= 0 curves with horizontal normal;

1-parameter family of Lancret he-

lices (Prop. 4.2)

curves with horizontal binormal and

τ = r (Prop. 4.5)
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