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§1.Introduction

in [Gi 1] P. Gilkey studies the invariants of Riemannian manifolds with values in
forms and the same is done in [A-B-P] using a more elegant approach. Epstein [E]
introduces and elucidates the concept of natural tensor as a generalization of invariant
with values in forms.

in tater papers, [Gi 2], [Do 1], [G-H], the concept of hermitian invariant is
introduced and, following [E], the hermitian natural tensors are studied in [F-M].

In 2 similar way as in [E}, natural differential operators are defined in [S]. In this
paper we give the general notion of hermitian natural differential operator (briefly,
HNDO) on almost hermitian manifolds.

The main tool (Theorem 2.1 to classify HNDO's is the same as in the Riemannian
case, with the only modifications introduced by the fact that there are many hermitian
natural connections (see [F-M]) and then the expression of a HNDO is not unique. The
essential contribution of this paper is providing a list of examples of HNDO's and
showing that there are some relations between the almost hermitian geometry and the
spectrum of some of them.

In §2 we recall the necessary background and state the classification theorem for
HNDO's.

In §3 and S4 we give some examples of HNDO's of type 2: T(APM) ——I( AP*'M) and
0 T(aPM) —— T(A P! M) of order one and obtain all those which are homogeneous of
maximal weight whenp =0, 1.

In §5 some examples of HNDO's £: I'(aPM) ——T'(4PM) are given and we get all the
homogeneous of maximal weight when p = 0. There is a HNDO, for each p, that will play a
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prominent role in this paper; namely, given a homogeneous hermitian regular connection
D on the tangent bundle, we can define the associated D-laplacian AP = d® d®* + o®*dP
(d®*is the adjoint of d® (see remark 5.6)). This operator-is used in §6, where we apply the
techniques of [Gi 3] and [Gi 4] in order to determine the first two terms in the
asymptotic expansion of AP acting on 1-forms. This shows that the spectrum of AP on
functions and 1-forms allows us to know when an almost Kaehler or a nearly Kaehler
manifold is Kaehler. In [Do 2] and [Gi 3] the Kaehler condition is found out from the
spectrum of different operators acting on (p,q)-forms on a hermitian manifold. As far as
we know, our results can be considered as a starting point for the study of the spectrum
on almost hermitian manifolds which are not complex; and, on the other hand, as an
attempt of getting at the Kaehler condition from the spectrum of real operators. For the
geometry of nearly Kaehler manifolds see [GR 1,2) and interesting examples of almost
Kaehler manifolds are in [C-F~G].

in a forthcoming paper we shall deal with the complex lapiacian as the restriction
to Hermitian manifolds of a HNDO on almost hermitian manifolds, working on the
complexified tangent space.

After the completion of this paper we became aware of the recent work of
Donnelly ([Do 31, where he obtains the formula of Theorem 6.4 by using different
methods.

§2 Hermitian natural tensors and hermitian natural differential operators.

2.1. Let E be a functor from the category of hermitian vector spaces (V,g,J) into
itself (see [E-K] or [S)) satisfying

(1) E(V) c ®"V, for any (V,g,J); and

(i1) E(V) is invariant under the action of J induced on @"V.

We suppose also given

(iii) an ordered basis E(v,) of E(V) , for each ordered basis (v,) of a vector space V;

and

(iv) E(fv,) = (EfXE(V,)), for vector spaces V, W and any isomorphism f e Hom(V,W).

We denote the dual vector space (EV)*c ®"V* by E*V and we consider on EXV the

restriction E*g of the metric induced on ®"V* and the restriction E*J of the



111

endomerphism induced by J on @V .

If (v;) is an ordered basis of V and E(v,) = w,, we define the ordered basis E(V) of

EXV to be the ordered basis (w) so that w"(wj) = skj

A functor E satisfying (i) will be called a functor of rank r.

2.2. Given an almost hermitian manifold (M,g,J), @ functor £ as in 2.1 induces
riemannian bundles (EM,EQ) and (E*M, E*g) over M, which are riemannian subbundles of
(®TM,g') and (®"T*M, g'), respectively, where g’ is the riemannian structure induced by g.
On these bundles we have the endomorphisms of fibre bundles EJ: EM —— EM and EX*J: EX¥M
—— E¥M which are the restrictions to EM and E*M of the endomorphisms J: @' TM ——
®"TM and J: ®"T*M —— ®"TXM, respectively, induced by J. They verify (EJR = (EXJ)? =
=(-1)"id, and EQ(EJ «,EJ ») = Eg(s,s) and EXg(E*J «,E*J ») = EXg(s,¢). Furthermore, it follows
from 2.1(iii) that a local coordinate system x determines unique local bases of sections
E(a/x'), E(dx') for EM, EXM, respectively.

23 DEFINITION: Let E, F be functors as in 2.1. A hermitian natural tensor field t of

type (E,F) assigns to each almost hermitian manifoid (M,q,J) a tensor field tmm e I'(EM

® F*M) such that if f: (M,9,J) —- (M',g",J) is a holomorphic (J'efyx = fxoeJ) isometry of M

onto an open subset of M, then ety o) t is said to be homogeneous of

= Yrg by

weight w if t(nCQg'J) =c"t C being a non-zero real number.

™M.9.J)

As it is pointed out by Epstein [E], the problem of classifying all natural tensor
fields becomes very complicated; however, there is a natural concept of regularity for
such tensor fields, which was introduced in [6i 1] and [A-B-P] In order to settle the
same concept for aimost hermitian manifolds, we first need the following:

2.4DEFINITION; Let (M,g,J) be an aimost hermitian manifold of real dimension 2n

and let p be a point of M. A coordinate system x centered at p will be called a
J-coordinate system if (3/3x™')(p) = J(3/3xXp), i = 1,..,n.
Then , we have

2.5.DEFINITION; A hermitian natural tensor field t of type (E,F) is said to be regular

if for each almost hermitian manifold (M,g,J) and each J-coordinate system x on an open
subset U of M, the coefficients of ty, , With respect to the local basisE® F (3/3x'@dx))

are given by universal polynomials in
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9 On @9 2%gax®, 2%(0 )oxE,

where «, B are multiindices and Q is the Kaehler form defined as usual by Q(XY) =
glJx,Y).

Next theorem summarizes some results of [F-M] in order to apply them for
computing hermitian naturai differential operators.

2.5THEQREM: Let t be a regular hermitian natural tensor of type (E,F). Then t,

el'(EM® F*M) is the restriction of an element of M@ TM@®°T*M), (r =rank E, 5 = rank F),
which {s a linear combination of the elementary monomials

=3 q . J 301 3 -
m(Q,R) Zgl' = zx o gltds . gl I Oa‘ Oﬂp RB‘ By
where each o (resp. Bj) is a multi-index o = (uv...,unq), (BJ.= (V1"~-:Vnpj))' Oa' =

"a; . oh s 9 =n -
us...u,‘q(O)u‘ uy’ RBJ- - va v"H (R)v’ ~Yg ,and, if N=2k+2p+4q+ 21*1 it j=1 nj (si‘ nai 2
= number of covariant derivatives in o"{ » ;= Ng, — 4 = number of covariant derivatives
J

in RBJ_ ), we have N-s contractions of upper and lower indices (and possiblie aiternations
or symmetrizations in the upper or lower indices non-contracted). Notice thatr =21 - N+
s. Furthermore, the weight of such a monomial is w(im(QR)=s-r-~3 g -2 u 24q
Similarly to hermitian natural tensors we can define hermitian natural
differential operators as follows:
27DEFINITION; Let E, F, G, H be functors as in 2.1. A hermitian natural
differential operator O of type (EF,G,H) assigns to each almost hermitian manifold

(M,g,J) a differential operator O L T(EM ® F¥*M) —=I'(GM ® H*M) such that if . (M,g,J)
—-(M,g,J) s a holomorphic isometry of M onto an open set of M, then Omgy =

™ Borg.iy -
Now, we are going to express the regularity condition for HNDO's. Let (M,g,J) be an

almost hermitian manifold and x a local J-coordinate system on an open subset U of M.
] §

(f )BEB’ (gv)mEc and (h), for EM, F*M,

Then x determines local bases of sections (eu)neA,

GM and H*M, respectively. Let 2T(EM® F¥M)—oI(GM® H¥M) be a differential operator

of order k. Then, locally, we can write

O(Pye, @) =5 kabi o (ars® soxie axr)g @,
B b B 9,
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where the functions 2" ~ir ¢ @re symmetric in 1,0l

r

2.8.DEFINITION; A HNDO 2 is said to be regular if the coefficients a®i ~ir o of

Ouq.0y» In a0y local J-coordinate system, are given by universal polynomials in g;;, g¥,
kel 13} B8

Qper 2 (gij)/ax“, Q) ox”.
The weight of a HNDO is defined as in the case of hermitian natural tensors.
In order to get @ general expression of a HNDO, we need the concept of hermitian

natural connection, which we take from [F-M].

29.DEFINITION; A hermitian natural connection is 2 map which assigns to each

almost hermitian manifold (M,g,J) a linear connection D9+ on TM such that if f:(M,g,J)
—-(M,g',J') is a holomorphic isometry of M onto an open set of M, then

D99 gy = DITGD ¢ of¥ for every vector fields X,Y on M

Wwe shall say that a hermitian natural connection D is regular if, for every local
J-cocrdinate system, the Christoffel symbols of D are universal polynomials in the
components of the metric tensor, the Kaehler form, their derivatives and the components
of the metric induced on T*M,

In [F-M] a list of all the homogeneous hermitian natural connections is given.

Let E, F be functors as in 2.1. Let (M,g,J) be an aimost hermitian manifold and let D

De a homogeneous (of weight zero) regular hermitian natural connection on TM. Then, D

induces another connection D on EM ® F*M in a natural way. We write D = Do, D, and
define differential operators D, making commutative the diagrams

D
K
T(EM® F*M) » T(SKT*M) ® EM ® F*M)

D sk® 1
r(® T*M @ EM® F*M)
where S*: @ T*M — S* (T%M) is defined by SX(v 8.8 v,) = (1/kI) I g Vyey, .8 Voqy).
Then, it is easy to see that the symbol y (D,) e Hom(SK(T*M) @ EM @ F*M, SKT*M) @ EM @
F*M) of D, is the identity map . (For the definition of the symbol y () of an operator 2

of order r see [S]). Furthermore, D, is a homogeneous regular HNDO of order k and weight
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zero.
Therefore, the proof of theorem 3.7 in [S] works also here to show the following

210 THEOREM: Let 2 be a HNDO of type (E,F,G,H) and order k. Then, for each

homogeneous regular hermitian connection D, there exist k+1 unique hermitian natural

bundle maps t_: T(S"(T*M) ® EM ® F*M) —- T(GM & HXM), 0 < r < k, such that
0= 2‘-r'=0k tr ° Dr’
and the t_are reguiar if and only if 2 is. Furthermore,

t= vy (0-2.,,% te D).

=r+1
2.11.REMARK; A bundle map tr as that given in 210can be identified , in a natural
way, with a tensor field t_ e I'(S"(TM) ® EXM® FM® GM® H*M) and so, saying that t_is a

hermitian natural bundle map means that it is hermitian natural when considered as a

tensor field.

Given 0 = Zr,ok te D as in 210, 0 is homogeneous of weight w if and only if each

L. is homogeneous of weight w. From 2.6, the maximal weight of t, is a+d-b-c-k (a=rankt,

b=rank F, c=rank G, d=rank H). Then we shall say that J has maximal weight if it is

homogeneous of weight a+d-b-c~k.

§3.The set of HNDO's of type (R, A°TM. R, AP*'TM) and order one.

J.L. In this-section we shall deal with homogeneous regular HNDO's £ T(APT*M)-

—— T(aP*1T%M) of order one and maximal weight. By 2.10 such operators have the form
(3.0 O =ty+teD,
where t, and t, are homogeneous regular natural tensors of weight w =p+1~-p-1 =0, t.e
T(APTM @ 4P*'T*M) and t,e T(TM @ APTM @ AP*'T*M). Then, the classification of the
operators £ reduces to that of the tensors t, and t,.
First of all, we study the space of tensors L.

3.2.PROPOSITION: The space of tensors t, appearing in (3.1) is spanned by the

tensors t, whose action on w <I'(T*M ® APT*M), with components ®, kprq in an
4 - Kps
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orthonormal local J-frame (e ], is given by

tw) . =% (&)} I w
1™ Gé.,sgm A SMi T g g o )
1 Tp+t bF""‘ Ty ¢ gy ror Calt) alsy oigt1) aisey)
x Q. , ST )
1 "
Tyt 1) ofc+u+2) Tip) alp+i)

where 0 <r<{p-1)/2,0¢<s,u<p-1, orby

(twi . =73 ( -
el Lo Do e )
Y R S O R S VI N R
X ‘QJ. j T .
T{stu+1) "als+yu+2) “alpi olpH1)
where OSr¢<p/2, 1<s<p+i,0<u<p, orby
ol ¢ =2 san(@) (2 0y 5 g e o)
et 95y e Teft) oS o(s+1) To(seu) 18 rr
% 0 , R .
Aty Ja(s.+u+2) aip) wlp+t)

where 0 <r<p/2, 1 <s¢<p+1,0<u<p.

Proof; As we know, w(t,) = 0 and then, from 2.6, ¢, = n=q= 0 and the space of

tensors t, will be spanned by elementary monomials of the form

A Wy gl )
(5.2) pH gi1i2 gi;.k,1izkg 24 ooy g iz
where 2k+2b = 21 and E*DHP means that 21-(p+1) upper indices are contracted with
21-(p+1) lower ones and p upper and p+1 lower indices are skewsymmetrized.

The possible contractions using g-, g. and Q.. give us elements of the form g-, g..,

Q., Q- J, 8, and, thus, the monomials (3.2) can be written as

R PR i i PSS RS i i i, i,
alt” (@12 gleeiz Qlzeetizez glas1'es jaen | asw
p+1 = ; J1 JU

i- :
o Zstut 1
v SIVTL gt .y .
“utl Juty Ty dytvtz v 2yt 2w
Tty 2wt sy e 2we 2 -‘;-Jp+ o
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where Altpﬂp means that p upper indices and p+1 lower indices are skewsymmetrized
Therefore, the elementary monomials with some g.. or more than one g- vanish and so the

monomials (3.2) can be finally written as

p
pt

i mdmineaq dmras  izpsceid Zrece? i
JQUIEE G I Eee g e b
4 < 541 TR PP ) plp+1

Al

where 0 < T < (p-1)/2, 0 ¢ s,u < p-1, and it is not necessary that gie' appears in (3.3).
Notice also that only one index of g can be skew-symmetrized if the monomial is not

zero. Also, the indices of all the (- must be skewsymmetrized, because, if not, (3.3)

represents a zero map or a map defined only on AP*'T*M and not on all T*M @ APT*M.

Let t, be the tensor given by (3.3) (with g- appearing in its expression) and let v e
F(T*M® APT*M). Then
{tw) . =Z sgn(e) > sgnit) qioit“)Qi‘(z)i.‘G) Qi!(’Zr)it('zrﬂ;
1 '<-Jp+1 ic_“.ipr.respﬂ‘- te&:p anit) g

x .|i!(.’-:r+.’-:) h|’1‘£2r+s+1) 6ix(2r+s+2) ls‘;:f‘(P)
Jat1) Jote) Jo(s+1) Ya(s4u)

X G‘ W . 1 1

. . LY P B
Jageruri i o(erusr ) Jogpylagpery o't e

where 0 <r<(p-1)/2,0¢s,ugsp-1.

If in (3.3) the g does not appear, we have the following two possible expressions

for tyw:
(tw) . =3 3 sgn(o) 3_sgnir) QMDD ol
-‘r'-‘pﬂ 1°“,,-pclv5$:p+‘I tesp
% \_|".o ._(‘jt(2r+l)m k|,"l(2r+s-1)3ilt(2r+s) 5‘11(;.) %
Jor1y Jetz) Jois) Jaerty  Joteru)
% 0, 0

3 . AV 3 w. 3 3
}C’(s+u+1}30f.5+u*23 JG('p'JJcr(pH) Tl T

or
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(ol 5 =3 3 sgnio) egn(n) 0 ON@  gherevhen
1771, '04 py © SF'+1 1&,_,‘]

" ‘_Ex(?wh th2r+<) rr,u M(L,+=+1) );;i!(p) @

30(1) |7(<) U(sﬂJ Jgrﬁ.z] JU(5+U)

157 . -2

. W, .o .
Jags+us idogs+uszn ] Telyd

Tagp agpety p
where 0 < r ¢ p/2, 1< s < p+1, O< u <p, which, when we take a J-orthonormal frame, are
the required formuias.

3.3. The tensors t, given in Proposition 3.2 are listed in Table |, where we have

used the following notations:

1

o)Xy, ..., X)) = (= P (X, .. J Koe1)s

(€ o)Xy, ., X)) = Z, Pale, e, X, s Koy

(cPodXY)=3 . wlXYe,Je,.., Je. ) whenp+! is even,
' Np-ttyy ! 'fr-ll./z Ye-urz

(Fo)Xy, -, X)) = (CDR 00X, HKo, oy X g, X s Xy,

(JyZoX(Xy, o, Xyy) = (ST 0(IXy, o, IX, Xy, o Xoe 1)

(c,fwXX,, pﬂ_,.) 3 o elX, ., X e ,Jde,..,e ,Je. ).

't P S T Ny s

3.4. InTable || we have listed the expressions of some of the operators t1°D, when
they have a simple form. We have used the following notations: if D is a linear connection
in T, the operators d® : F(APT*M) —— T(AP*'T%M) and & : F(APT*M) —— T(4P"'T*M) are
defined by

P = Alt(Dw) %0 =- ¢, (Dw).

They satisfy (d°)? = 0 = (§°)2 if and only if D is symmetric (and then o° = d = d¥,and
L=5= 8¥, where ¢ is the Levi-Civita connection). Moreover, d® is a skew-derivation.

Now we study the space of tensors t,,.

3.5.PROPOSITION; The space of tensors t, in (3.1) is spanned by those tensors t,

whose action on an w e T(APT*M), with components ®, | withrespect toan orthonormal
1 ¥p

J-frame (e} is given by one of the following expresions:
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dw., . = 2 sanfs) I o . "

O o R T TR L IR N %, ] ,

a .1‘ Jp“1 oeapﬂ iy 1‘11 i3 JGU)...JM}JU(Sﬂ)...Jaksw)
x

. . -G i 0. QG
Jatarur 1) ats+2) Jop-zplatp-2) Ja(p-1) Je(p)lalpet)

where 2r+s+y = p;

[_[Ur_u)j . = % sgnic) I

W, .
i g ¥
177t UESPH ‘1"'1r1p W

W4 ‘r‘; Jg(i)"'las)]o(sﬂ)"‘Jt'(sﬂ!)’t'
a{s+u+ 1) o(s+u+2) -2y o(p-1) Y Calp)alprl)

where 2r+s+u = p-1;

(tod, o =2 sgnle) T ow o, . ... . . -
1] r e °E5p+1 11"'1r‘p 11IT~--|rl;’;’Jg-'“).“]a:s)]c(s*_‘)...JU($+u)|Fl~x

XQi . L Q. : L. Qi ; .,
Jagerus 1 als+ur 2 Iotp-2)op-1) Jagpy Platpe1)

(tw, . =3 egnis) = o
J1 Jp-H oesPH i ‘r’p—!’p 111'1? 1% 30(1)"'30(5310(s+1)"'JU(5+U)‘P'1‘F«

Taterur 1) a(erut2) Iop-1ylagpy -1 Bletpen)

(tw), . =32 sgnic) 3 w
) g7 i : R IRLEL, TAN : : i X
J1 Jp+1 ce‘pﬂ i 'r'p-l’p 111T 1',1;}' ng)"'Jas))c(sﬂ)"‘JU(S*-IJ)‘P'";'

I3 . A . V. [
Ta(srur1)a(srus2)  Jolp-1)lolp) Jalpr1) Y-t

(Lwy. . =
%

o ]1 JF|+1
sqnic) 2 Wiy iy is iy . :
T T I I IR T ¥ AR
Sort 2y TN ey et oty o tsr 2o

Ao
<
<

[

x 0 Q

) A C voQ ..
Totssur 1) alsru+z) e a(pety -z o
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tw, . =3 sOiis) I w
O T amg CANEL A W s g
A 0ES,, Wt T Tt atse 1y et

3Cr(sd'u«ﬂ )-}U(g+u+2) JG’(_p—1 _)jm:p) Jotp+i)

where 2r+s+u = p;

(gds o = 3 egnic) 2w
1 p+ UE-:D_H 11'"’:'1[' 1111 ---'Ir!'_ JU|:1).”szﬂ)JU(S'}t).“JO(S"'U).‘F'

(=)

» Q. 9] 15

¢ AL
Jo(seur 1) als+urz) JogpPalp+ty b

and the expressions obtained from the above list by adding a * in one, two or three of
the indices in 90 or §Q.

Proof: From 3.1 we have that w(ty) = O, and, then, from 26,9 =0 = n;, and there
exists one index i such that ¢ =1 and g = O for any k = i. Therefore, the space of tensors

t, is spanned by elementary monomials of the form

. - 34ia Iy gdn
miQeN =¥ q g , g g=r2ag S0 ..
> pti B111:, Flop gl g : ugus : Uoh- {¥op virs

where2k +2b+3=21+1 and E*WP means that p upper indices and p+1 lower indices
are skew-symmetrized, and 2 1-p upper indices are contracted with 2 1-p lower ones. The
possible contractions using g+, .., Q.. and ©.Q.. yield (up to sign) etements of the form

g,g.,0,0Q.,J 8, v0.,v0.,vJ,vd, 90,90,

CxC., 9.0, V.ol , ¥%0. , 90.x , 9*0Q.u ,

Vot , Odix, Voxdixe , XS, OUix , OXy,

Vo), W.0%, W Q%  9X0)- @Q* X 8Q.,8J,80Q.%,8)%,
where % = Jo . The contractions not listed above can be reduced to these by the
symmetries of ¢Q; that is, viojk = - Vi(‘)kj and vioj,k. =- vink (see [G-H}). Then,since g~

and g.. cannot appear in a nonzero monomial (because their skew-symmetrizations are

zero), the only non-vanishing elementary monomials are {up to sign).
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i Tt
A“F":H':I\'I‘]j JD v] 0 i \’ A]tp HI" jp 1v p(,] ; })
1792 pet ptped Yy dp-s Pt
i Tp- (R SR S
""*“-pn{*""] g P 8 An:n{‘” jp cvP 'ij 1
LRSI ST Hel S .. "
P gz A1l Yoipoz Clez e fetle
Hitp.‘.li\*ﬁ Poe 0 }, ,&,]t”{! I gEZo el )
Hdp p+i T mJ;"ﬂ
i
H]tp+11\v” PEo. AL *,M P1a %),
p Jp+1 P 1,.._)p+1

and the monomials obtained from this list when we add * to one, two or three of the
indices in ¢Q, wJ, 8Q or 8J, where the tensor V is given by

et ity itz (et aresglzresei gk Q..

\JH q T =3 - 0 J.H Ie s “kay Sorgrtdseurz et

The proposition follows by taking an orthonormal J-frame.
3.6 We list in Table |11 the tensors t, given in Proposition 35,whenp=0,l.Ifoe

r{T*M), 0* will denote the image of w by the canonical isomorphism between T*M and TM

given by the Riemannian metric g.

§4._The set of HNDQ's of type (R, APTM. R. 4P~ 1TM) and order one

4.1 In this section we shall deal with homogeneous reguiar HNDO's Z: T(APT*M)

——» T(&P71T*M) of order one and maximal weight. As we know, such a £ has a general

form

@1 D=ty+t,D,
where t, and t, are homogeneous regular hermitian natural tensors of weight
w=p-1=(p+1) = -2, t e T(APTM® AP'T%M) and t & T(TM ® APTM @ A1 TM).

Similarly to §3, we have

42 PROPOSITION; The space of tensors t, in (4.1) is spanned by those tensors

whose action on an o e T(T*M @ APT*M) (with components D, kpos with respect to an
1 pe
orthonormal local J-frame (e })is given by

{1 ot - = . BN
atjf.l.»j {7 e gQﬂ{U)' S AR5

x
1‘})—] ™ p‘i 104..1'. LR

FigeyJ5catorsen o)

x 2. : L8 ; R
Jaiern+ 1) a(e4ys2) Jn(p-zj Ja(p-1)
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where 0 <r <(p-1)/2; 0 <s,u<p-1; orby the expressions like the other two given in 3.2

but changing S,, by S,_, and withr 2 1.

4.3.PROPOSITION: The space of tensors ty in {4.1) is spanned by those tensors

whose action on an w « T(APT*M) is given by the same formulas as in 3.5, but changing p+1
by p-1.

Observe that the change of p+! by p-1 can also be applied to 3.2 to get 42
Therefore, Tabie | can be considered as a list of generators of tensors t, in 4.2, changing
p+1 by p-1  (for which, in addition, formuias with no Q are to be deleted, and in
formulas with some Q, one of these should be deleted). The generators of the space of

tensors t,, in 4.3, when p < 2, are given in Table IV.

§5. The set of HNDO's of type (R, APTM, R, APTM) and order two.

5.1 In this section we will consider homogeneous regular HNDO's 2 : T{APT*M) ——

I(aPT*M) of order two and maximal weight. Again, by 219 these operators can be written

as

(5.1) D=ty+t,«D+t,.D,,
where t,, t, and t, are homogeneous regular hermitian natural tensors of weight w =
p-p-2 =-2.

As in S§83 and 4, we have the following results:

PROPOSITION: The space of tensors t, e r(S2T*M® APTM @ APT*M), appearing in

(5.1), is spanned by those tensors whose action on an w e T'(S?T*M @ APT*M) (with

components e, zwith respect to an orthonormal local J-frame (e,}) is given by one of
1-Kpe

the following expressions:

fLow), o = 2 sanle) T @, .. .n . oes e . x
S0y d e T D T IRy ety ace) ~Tager)

T(s+yu+1) syt ) a(p-1) ‘¢ (p}

- 3 3 i *§ 1% Fi¥, oL, [ SN
1 £ e e W25 W dgeyy - Jars atea 1) Aaiee)

w4 5

. 7. )
Jaterye 1) To(erurs) Jogp-1) Teip)
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{t (.U\ =% aanie - o
W, w), =& quu)_ L Wox  §ji% i i¥i % % § i -
Sk s T T e Y e T ey dacs acer 1) datern)
Jaerur ) aters2)  dagp-1y Jop
. w) -7 ,-.qr" Y ooT I
T SN -1e 1 1180 ) BTV CiiE i iEiE P .
S Ak e T T e T PG00 3Gy e a2 aten)

Q
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5.3 PROPOSITION: The space of tensors t, e I'(TM ® APTM @ APT*M), appearing in

(5.1) is spanned by those tensors whose action on an w « A(T*M @ APT*M) is given by one
of the expressions in Proposition 3.5, with the following slight modifications:

(2)o e S, and

(b) we can also take the contraction in the first two indices of w in all the
expressions.

In general, the expressions of the generators of the space of tensors t; e [(4PTM®

APT*M) are very complicated, and we shall not write them here. We shall consider only

the casep = O.

5.4 PROPOSITION: The space of tensors t, e I(4°TM®A°T*M) in (5.1) is spanned by

the hermitian natural functions
1, ™, 190112, IO, 1180112, IINII2,
where N is the Nijenhuis tensor, ¢ is the scalar curvature and t* is, as usually, defined by
= 2
™*=(1/2) Ei_j=1 n R“.jj, .

Proof: Since w(t,) = -2, we have , from 26,9 =0 = n; and then, either there are

indices i,k such that ¢; =¢, = 1 and e, = O for 1= ik, or there is an index i such thate, = 2
ande = O for every | = i; then the result follows from [G-H, Theorem 7.1].

From S.1 and 5.4 we have

5.5.COROLLARY: Every homogeneous regular HNDO 0 of maximal weight acting on

functions is of the form
Df=af+ b8+ CUBINN + (d, T+ dy v + 0y IVONZ + 0, A0 + dg I8QIZ + dg INID) ¥,

where a, b, ¢, d; are real numbers and A is the ordinary laplacian.
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Proof; When p = O tensors t, in 5.2 reduce to t,(w) = ¢,,w, and the tensors t, in5.3
reduce to t,(w) = w(8J) or t',(w) = w(J 8J). Then, taking D = ¥, we get (t,°D, (M) = c”(vzf) =
g”(injf) = Af, and t,(9f) = df(8J) and t' (VM) = df(J 8J), and the result follows from here
and proposition 5.4.

2.6 For compact manifolds we consider the scalar product on I'(AT*M) given by

(ee,p) = JM wA*p .
For this scalar product we have that if 2 is a HNDO as in 5.5 then 2 is selfadjoint
if and only if b= ¢ = O (see [McK-S], p.46).
An interesting homogeneous regular HNDO acting on p-forms is the D-laplacian,
defined by
AP = P dPx « Ox P,

where D 1S a metric homogeneous regular hermitian natural connection on TM, and d®* is

the adjoint of d® with respect to the above scalar product. It is clearly elliptic and

selfadjoint, and we shall study its spectral asymptotic expansion in S6.

§6. The asymptotic expansion of AP acting on 1-forms.
within this section ™M will be a compact almost-hermitian manifold of real

dimension m = 2n. First, we recall some well known facts.
Let E be a vector bundle over M, and [ : I'(E) —— I'(E) a second order differential

operator with symbol given by the metric tensor. Let E, be the fibre of E over apoint x
« M. Let us choose a smoth fibre metric <, > onE, and let L%E) be the completion of I'(E)
with respect to the global integrated inner product ( , ). For t > 0, exp(-tZ): LAE) —=
L(E) is an infinitely smoothing operator of trace ciass. Let K(t,x,y,<): Ey —— E,_be the
kernel of exp(-t£). If x=y, K has an asymptotic expansion as t—0*, of the form

K(txx,0) ~ (4m t)™23, =t H(x,0),
where the H, (x,L) are endomorphisms of E,

If £ is selfadjoint, let D.i, Bi]n e be a spectral resolution of / into a complete

orthonormal basis of eigenvalues A, and eigensections 8, Then,
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tPKIEXX, L) = 5 exp(-t 1) @8>~ (4Amty™2 5 aix, Ot
where a,(x,£) = tr H (x,£) . Now, if we integrate on M, we have
Sexp(-td) ~ (Amu™Z3 _ = a ()t with g, () = [ a(x,0).

6.1 THEOREM (IGi 3,4]): Let D be a connection on E, and ¥ the Levi-Civita connection,
and denote also by D the connection induced by D and ¥ on T*M® E. Let LQ be the reduced
Laplacian defined by £s = - g D%;s for every s e I(E). If D is the unique connection on E
suchthat £= £, - ¢ I'(E) —— I'(E) is 2 O order operator, then we have

(@ Hy =

(BYH, = (1/6) (=x 1+ 6 £).

Now, let E, F be functors as in 2.1, and let / be a homogeneous regular HNDO of

type (E,F,E,F) of order two with symbol given by the metric tensor, then it has maximal

weight -2, and, according with theorem 242 it can be written in the form
= - i @2 .
L=-¢g'@ MCAAARTY
where ¥ is the connection induced on EM ® F*M by the Levi-Civita connection. Next, we

compute £in terms of toand the tensorB=D-9: TM® EM® F*¥M —— EM® F*M.

£.2.PROPOSITION: For every s e I'(EM ® F¥M),

(6.2) Es=-gl(v®)s+BBS) - tos
and the connection D on EM & F*¥M such that £ is a O order operator is given by the
linear fibre bundle map B =D - ¥, defined by

(6.3) Bys=-(1/2)t, (X*@5s)
for every X e T(TM) and s e I'(EM ® F*M), where ® TM ——= T*M is the canonical
isomorphism induced by the metric.

Proof: From the definition of [Q we have

Lys=- g! (DDs - Dv,jS) =-gl(9%s)-24" B(v;8) - g4 (9,(8);s + BB;S).

Since, in its standard form, LD can be written as

ZD = - g'] vzij + tp_‘ L A tQO’
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we have that

th @®8)=-2¢YBx;5)= - 28,5
for s e« F(EM® F*M) and & & T(T*M). On the other hand, y,(£) = Lg), so that the condition
that £ be a O order operator is equivalent (by Theorem 240) to t2, = t,, whence (6.3)

follows. Then, we have £ = t% - t; = - gV (9(B);s + BB;S) - ty(s).

Next we study the spectral asymptotic expansion of the operator AP, defined in 5.6.
First we determine the operator ¢
6.3.PROPOSITION: The adjoint operator of d®, with respect to the inner product

given in 5.6, is d®* = 8 - \g, where B = 3_, 2 B,i.
Proof: From the fact that d® is a skew-derivation and that &0 = (-1)"*™1 « 4D« on

p-forms, it follows that, if e e F(AP(T*M)), then

JH Po. & #f = JN & (o & #B) + IH o & 7.
On the other hand, we have

(o A*B) =d (x A%B) + B2 A (x Aop),
and, for X e 4(M) and p e T(A™(T*M)),

sy = (12 (o) A X0 = (1T X0 A sy,
whence,

BPac aeh=(-1Po ABPAxp=c & (P
Then,

® (x A*p) = d (e 4B) - o Anzf,

and, If we integrate,

JM o Ap = - Jmu. Arfi+ fﬂ o +80p = JM o %80 - )p.
Then, dP% = &0 - .
Let AP the D-1aplacian aP acting on p-forms (in particular, A% = 4, the ordinary

real laplacian). Then,
6.4 THEOREM; Let M be a compact almost hermitian manifold of real dimension 2n.
Then,



126

2,(aP,) = JN (-((n+3)/3) T+ A),

where A=-(1/2} 2 Tijk Tikj' T being the torsion tensor of D.

Proof: It follows in the same way as for the ordinary laplacian (see, for instance,

[P]), that the action of AP ona 1-form y is given by
(6.4) (aPp) (v) = -(g¥ Dzijp)(v) - gl(RD,, w;- gV D) W)y -
- (Dgp)v) + (D, p)XB) - (¥, p)B) + n(v,B),
where v is a vector field on M. On the other hand, if we write D, p= 9, p+ gx p, then, B
is related with B by

(6.5) By j = - p (BX, o).

(Notice that B is analogous to the tensor B defined before 6.2, however we change the
notation because we use B for the connection D on T*M induced by the connectio n D on

TM, and it is different of the connection D given in 6.1).

Now, for each point x e M we can consider a local frame {e;] around x which is
orthonormal at x and radially parallel from x, so that (vi(ej))x = 0. Then it follows from
(6.4) that, at x,

66)  aPp = -9 - (w8 p-2Bw w0 -BE ¢ pROD

- (Do) = Brg o0 - W(@,B) + B, (.
If we write aP in its canonical form (given by Theorem 240),
AP = -9 et Lot

we have

(6.7) tiwdp) = -2 §i(m‘.p) SO o K
for every 1-form w, and

(6.8) top = - (98) p- BB, p) + pROLD - By oy 1), - W(9,B) + B,
Then, from (6.3),

(6.9) Byp = - (1/2)t, (X®@p) = - p(Bye) + (1/2) L

Since our frame is parallel,
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(6.10) (VB = pUEBY) - 1/ 9Ty,
and

(6.11) -BB, W = -pB(B)+(1/2T c (/27

(n(BG, )% i p* Bl *) i

- (1/4) T(<T(M‘. DEBLES =

= - Biju‘ Bi'j +(1/2) Biju' Tj,i +(1/2) Tp'ji Bin - (1/74) Tj,i T“.J-i.

Now, from (6.10), (6.11) and (6.2) we get the trace of £
-tr £ = =@+ (174 T2 - 1BIZ - (9,B),,
but from (4.3) in [Mj],
© = + 2(v,B) + B By - IBIR,
and then, denoting 1 by 1,

tr £ = -1+8B0-B + (1/4) ITI2,

ik Bjik

Let A=- By By +(1/4) IITH2. Then , since By = (1/2)(Tyy + Ty - Ty, we have

kij ~  jki

A=-01/2)T,

ijk Tikj'

Now, from 6.1(b) and the above expressions, we have
a,(a0) = I” (176) (-2nt- 61+ 68B°+ 6 A) = Jn (= ((n+3)/3) v+ A),

since [, 88° = 0.

6.5.COROLLARY; Let D be the characteristic connection, and let SpcP(M) the
spectrum of AP acting on p-forms. Let M, be a Kaehler manifold, and let M, be a nearly
Kaehler or an almost Kaehler manifold. f SpcP(M,) = SpcP(M,) for p = 0,1 then M, is a

Kaehler manifold.

Proof: First, observe that, when D is the characteristic connection, we have (see

M)
A= (172 ITI12- /A ITIR,

where T, and T, are tensor fields on M satisfying that T, vanishes on almost Kaehler

manifolds and T2 vanishes on nearly Kaehler manifolds. On the other hand, since ADO = By,

a,(8%) = [[(/6)(-2n0 = ~(V3) [t
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Then,
[y A = 2,(a%) - ((n+3)/3) a,(aPy).
Now, if SpcP(M,) = SpcP(M,) for p = 0,1, then, we have
a,(a%)(M,) = 2,(a))(M,), a,(a%)(M) = a,(a%)(M,),
but, if M, is Kaehler, Iqu =0, so that
3,(a%)(M,) - ((n+3)/3) a,(a%)(M,) = 0,
and then,
]NZA = a,(aP (M) - ((n+3)/3) a,(a%p)(M,) =
2,(a%)(M,) - ((+3)/3) 2,(a%)(M,) = 0.
I M, is almost Kaehler, then T, =0, A=~ (1/4)ITJ? and [;; A= 0, whence IIT,|f?

=0, which implies that M, is Kaehler. Simflarly, if M, is nearly Kaenler, then T, =0,

A=-(1/DIT,I2and [, A=0, whence IIT Il = 0 and M, fs Kaehler.
A :
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T ABLE I

P t
1 [p>0 tlm Alt(w)
2 |p>0 tye Alt{(Juw)
3 {p2>1 tlw (C§C11m) QAgPTI?.?AQ
4 |p22| tuw ALt (J™w)
5 p>2| tyu Alt(Jrlnm)
6 [p>2| tyw Alt(cg‘m)/\n/\..gpf}?m?(?/\n
7 |p22| tye Alt(Jc?w)A Q@A... v AR
8 p>22| tiw=Alt(T"u@2@... ...@2)
9 lp>2] tu Alt(Jchl‘ma 2®... ...0 2)
10 |p2 1) tyw (ollw) A Q
11 jp>2) to (Jcll“’)'\ Q
12 |p> 3| t;u = Alt(J"c v ® )
13 ip>4 tye (c?cllw) A QA (p—m)/ZA Q
14 |p>4 tlw (Jc?cllm) A QA EP?m?(%/\Q
15(p> 5! tw = Ale( cTe, u® ee. P2 @g

TABLE II
tye D

1 (t, o Dw = a
2 (t, o Dw = Jd u
3 (t, 0 Du = (BePu) o(Pr1)/2
6 (¢, e Du = Alt(c’;Dm) A glpr1-m)/2
7! (t; o D)u - Alt(Jcr;Dw)A g(pr1-m)/2
10" (tlo D)w = GDw A Q
11° (tlo D)w = JGDwA e
13" (t;0 Do = cTs u A plp-m)/2
14" (t,0 D)o = Jc"sPw A (P m)/2

J
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TABLE III
ty (p=1) t, (p=1)
1
u#? tou= J Vg #
m{AltZ(VJ}) t0m= w(Alt(JIVJ))
w A S0 tge= Juw (A1t (vJ))
Ju A 8Q towz (Jw)(Alt(JIVJ))
w(sl)e tou= © A Jéqa
VJw#Q t0w= Jw A J8Q
1
J v 9 tgw= w(JsJ)a
ty (p=0) ty (p=0)
fén tof = £Je6
TABLE IV
t, (p=2) ty (p=2)
t qu= w(A1£29T) tyw = gl (ve o)
t0w= w(v ") tom = m(JIVQ“)
t0w= (C}w)&ﬂ t0w= le(JIVSZ")
ty = ci(w ® sJ) tyw = (c}w)JéQ
t0=ci(J1w® 5 J) t0m=ci(m®J6J)
1 2 1,1
ty = J wAltT(v)) tyw = °1(J w @ J&J)
ty = Jo Altz(vJ)
ty (p=1) ty (p=1)

to = w(s8J) to = w(JsJ)
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