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§ 1.lntroduction

In [Gi 1] P. Gilkey studies the invariants of Riemannian manifolds with values in

forms and the same is done in [A-B-P] using a more elegant approach. Epstein [E]

introduces and elucidates the concept of natural tensor as a generalization of invariant

with values in forms.

In later papers, [Gi 2], [Do 1], [G-H], the concept of hermitian invariant is

introduced and, following [E], the hermitian natural tensors are studied in [F-M].

In a similar way as in [E], natural differential operators are defined in [5]. In this

paper we give the general notion of hermitian natural differential operator (briefly,

HNDOJ on almost hermitian manifolds.

The main tool (Theorem to classify HNDO's is the same as in the Riemannian

case, with the only modifications introduced by the fact that there are many hermitian

natural connections (see [F-M)) and then the expression of a HNDO is not unique. The

essential contribution of this paper is prOViding a list of examples of HNDO's and

showing that there are some relations between the almost hermitian geometry and the

spectrum of some of them.

In §2 we recall the necessary background and state the classification theorem for

HNDO's.

In §3 and §4 we give someexamples of HNDO's of type 0: f(APM) --+f( AP"1M) and

D: r(APMJ --+ f(A p-l M) of order one and obtain all those which are homogeneous of

maximal weight when p =0, 1.

In §S some examples of HNDO's D: --.f(APM) ere given and we get all the

homogeneous of maximal weight when p = 0. There is a HNDO, for each p, that will playa

Work partially supported by C.A.I.CYT 1985-87, NQ 120.



110

prominent role in this paper; namely, given a homogeneous hermitian regular connection

D on the tangent bundle, we can define the associated D-Iaplacian IJ,,0 • dO dO" + dO"dO

(dO"is the adjoint of dO (see remark 5.6». This operator is used in 56, where we apply the

techniques of [Gi 3) and [Gi 4] in order to determine the first two terms in the

asymptotic expansion of IJ,,0 acting on l-Iorrns. This shows that the spectrum of IJ,,0 on

functions and i-rorrns allows us to know when an almost Kaehler or a nearly Kaehler

manifold is Kaehler. In [Do 2) and [Gi 3) the Kaehler condition is found out from the

spectrum of different operators acting on (p,q)-forms ona hermitian manifold. As far as

we know, our results can be considered as a starting point for the study of the spectrum

on almost hermitian manifolds which are not complex; and, on the other hand, as an

attempt of getting at the Kaehler condition from the spectrum of real operators. For the

geometry of nearly Kaehler manifolds see [GR 1,2) and interesting examples of almost

Kaehler manifolds are in [C-F-G).

In a forthcoming paper we shall deal with the complex laplacian as the restriction

to Hermitian manifolds of a HNDO on almost hermitian manifolds, working on the

complexified tangent space.

After the completion of this paper we became aware of the recent work of

Donnelly ([Do 3)), where he obtains the formula of Theorem 6.4 by using different

methods.

52.Hermitian natural tensors and hermitian natural differential ooerators.

£.1. Let E be a functor from the category of hermitian vector spaces (V,g,J) into

itself (see [E-K) or [5)) satisfying

(i) E(V)c @rV, for any (V,g,J); and

(ii) E(V) is invariant under the action of J induced onfJlv.

We suppose also given

(iii) an ordered basis [(Vi) of E(V) , for eachordered basis (Vi) of a vector space V;

and

(tv) E(fv) =(Ef)(E(vi», for vector spaces V, Wand any isomorphism f e Hom(V,W).

We denote the dual vector space (EV)*c @rV* by E*V and we consider on E*V the

restriction E*g of the metric induced on @rV* and the restriction E*J of the
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endomorphism induced by Jon fllV .

If (Vi) is an ordered basis of V and E(vi) =Wi' we define the ordered basis E(vi ) of

E*V to be the ordered basis so that =

A functor E satisfying (j) will be called a functor of rank r.

2.2. Given an almost hermitian manifold (M,g,J), a functor E as in 2.1 induces

riemannian bundles (EM,Eg) and (E*M, E*g) over M, Which are riemannian subbundles of

(@rTM,g') and (@rT*M, g'), respectively, Where g' is the riemannian structure induced by g.

On these bundles we have the endomorphisms of fibre bundles EJ: EM --+ EM andE*J: E*M

--+ E*M which are the restrictions to EM and E*M of the endomorphisms J': @rTM --+

@rTM andJ': 0 rT*M --+ respectively, induced by J. They verify (EJ)2 =(E*J)2 =

=(-1 )rid, andEg(EJ .,EJ.) = Eg(.,.) andE*g(E*J -,E*J.) = E*g(-,.). Furthermore, it follows

from 2.1CiiO that a local coordinate system x determines unique local bases of sections

E(O/oxi), E(dxi) for EM, E*M, respectively.

2.3.DEFINITION: Let E, F be functors as in 2.1. A hermitian natural tensor field t of

type (E,F) assigns to each almost hermitian manifold (M,g,J) a tensor field tCM,Q,J) e f(EM

@F*M) such that if f: (M,g,J) --+ (M',g',J') is a holomorphtc (J'of* = f*oJ) isometry of M

onto an open subset of M', then f*tCM,Q,J) = tCM',g',J') InM)' t is said to be homogeneous of

weight w if tCM.e 2g,J) = c" tCM,9,J) , c being a non-zero real number.

As it is pointed out by Epstein [E], the problem of classifying all natural tensor

fields becomes very complicated; however, there is a natural concept of regularity for

such tensor fields, which was introduced in [Gi 1] and [A-B-P]. In order to settle the

same concept for almost hermitian manifolds, we first need the following:

2.4.DEFINITION: Let (M,g,J) be an almost hermitian manifold of real dimension 2n

and let p be a point of M. A coordinate system x centered at p will be called a

J-coordinate system if (O/oxn+i)(p) =J(O/oxi)(p), i = 1,...,n.

Then, we have

2.5.DEFINITION: A hermitian natural tensor field t of type (E,F) is said to be regular

if for each almost hermitian manifold (M,g,J) and eachJ-coordinate system x on an open

subset Uof M, the coefficients of tCM,g.Jl with respect to the local basis E0 F (oloxi@dxj )

are given by universal polynomials in
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gij' Drs' gkl, ola:l(gjj)/oxCI, oll3l(Ors)/oxB.

where Ct.,J3 are multi indices and ° is the Kaehler form defined as usual by O(X,Y) =

g(JX,Y).

Next theorem summarizes some results of [F-M] in order to apply them for

computing hermitian natural differential operators.

2.6 THEOREM' Let t be a regUlar hermitian natural tensor of type (E,F). Then t(M,g,J)

er(EM@F*M) is the restriction of an element of r(@rTM@@sT*M), (r = rank E, s = rank F),

which is a linear combination of the elementary monomials

m(O,R) = I gj I' '" gl' l' gi4
j
L. gillo! j:l 0a - 0a RR- R-.

1 Z 2lt-.2. .til ! Pt···.,

where each 0; (resp. J3j ) is a multi-index 0; = (ul'... (J3j = (v Oaf =
p ,

Vu 'u (O)uu' RR,= Vv. V. (R)y y,and,ifN=2k+2P+4q+!,·:t Cl·+!)·:l'1l)·(ct na-2
... 'Ie&; f Z I', 5 '" i ... i

= number of covariant derivatives in ° .n, = n, - 4 = number of covariant derivativesa; 'I) Uj

in RB.), we have N-s contractions of upper and lower indices (and possible alternations
J

or symmetrizations in the upper or lower indices non-contracted). Notice that r = 2 I - N+

s. Furthermore, the weight of such a monomial is w(m(O,R» =s - r - ! cj - ! Tlj - 2 Q.

Similarly to hermitian natural tensors we can define hermitian natural

differential operators as follows:

2.7DEFINITION: Let E, F, G, H be functors as in 21. A hermitian natural

differential operator 0 of type (E,F,G,H) assigns to each almost hermitian manifold

(M,g,J) a differentlal operator LtM,g,J): r(EM@F*M) @H*M) such that if f: (M,g,J)

Is a nolomorphtc isometry of M onto an open set of M', then LtM,g,J) =

f* LtM',g',J') .

Now, we are gOing to express the regUlarity condition for HNOO's Let (M,g,J) be an

almost hermitian manifold and x a local J-coordinate system on an open subset U of M.

Then x determines local bases of sections (ea)aeA' (fB)f3eB' (9y)leC and (h')5eD for EM, F*M,

GM and H*M, respectively. Let O:r(EM@ H*M) be a differential operator

of order k. Then, locally, we can write

O(saB ea @ fB) =!rROKaBVi1··.il"a, (orsaB/oxif ...oxir ) 9y@ h' ,
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where the functions aB1i1··,i"ai are symmetric in i 1' ...• t,

2.8.DEFINITION· A HNOO 0 is said to be regular if the coefficients a ltV i...,i,.a' of

LtM,9,JJ' in any local J-coordinate system, are given by universal polynomials in gij' gkl,

o., akxl(gjj)/axa, aIB1(Ors)/axf3

The weight of a HNOO is defined as in the case of hermitian natural tensors.

In order to get a general expression of a HNOO, we need the concept of hermitian

natural connection, which we take from [F -M).

2.9.DEFINITION; A hermitian natural connection is a map which assigns to each

almost hermitian manifold (M,g,J) a linear connection O(M,g.J) on TM such that if f;(M,g,J)

--+(M',g',J') is a hotomorpntc isometry of Monto an open set of M', then

O(M,g,J) xY =O(M',g',J') r.,.xf*Y for everyvector fields X,Y on M.

We shall say that a hermitian natural connection 0 Is regular if, for every local

J-coordinate system, the Christoffel symbols of 0 are universal polynomials in the

components of the metric tensor, the Kaehler form, their oertvattves and the components

of the metric induced on T*M.

In [F-M) a list of all the hOmogeneous hermitian natural connections is given.

Let E, Fbe functors as in 2.1. Let (M,g,J) be an almost hermitian manifold and let 0

be a homogeneous (of weight zero) recutar hermitian natural connection on TM. Then, 0

k
induces another connection Don EM @F*M in a natural way. We write Ok = 0 0 0 D, and

define differential operators Ok making commutative the diagrams

Dk
r(EM 0 F*M) , r(Sk(T*M)@EM 0 F*M)

r(@k T*M@EM@F*M)

where s' .@k T*M --+ Sk (T*M) is defined by Sk(V 1@"'@ vk) = (1/k!) I ClIES Vo(lJ@..·0 Vo(k)'

Then, it is easy to see that the symbol 'tk(Dk) e Hom(Sk(T*M) @EM @ F*M , Sk(T*M) @EM@

F*M) of Ok is the identity map. (For the definition of the symbol 'rr(O) of an operator 0

of order r see [5]). Furthermore, Dk is a nomoqsneous regUlar HNDO of order k and weight
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zero.

Therefore, the proof of theorem 37 in [S] works also here to show the following

2.1 a.THEOREM; Let D be a HNDO of type (E,F,G,H) and order k. Then, for each

homogeneous regUlar hermitian connection D, there exist k+1 unique hermitian natural

bundle maps tr: r(Sr(T*M) @ EM e F*M) --+ r(GM@ H*M), a r k, such that

and the t, are reqular if and only if D is. Furthermore,

2.1l.REMARK: A bundle map t, as that given in 2.10can be identified, in a natural

way, with a tensor field t, e r(Sr(TM) @ E*M@ FM @ GM @ H*M) and so, saying that t, is a

hermitian natural bundle map means that it is hermitian natural when considered as a

tensor fie ld.

Given D = :Zr-ok tro Dr as in 2JO, D is homogeneous of weight w if and only if each

t, is homogeneous of weight w. From 2.6, the maximal weight of tk is a-c-o-c-k (a=rankE,

b=rank F, c=rank G, d=rank H). Then we shall say that D has maximal weight if it is

homogeneous of weight a+d-b-c-k.

53.The set of HNDO's of type (R. APTM. R. AP+1TM) and order one.

llin this section we shall deal With hOmogeneous regUlar HNDO's D: rCo.PT*M)-

--+ f(AP+1T*M) of order one andmaximal weight. By 2.1a such operators have the form

(3 1)

where to and t 1 are homogeneous reqular natura 1 tensors of weight w = p- l-p-l =0, t o&

r(APTM @ AP+1T*M) and tIe r(TM @ APTM @ AP+1T*M). Then, the classtncatton of the

operators D reduces to that of the tensors to and t 1.

First of all, we study the space of tensors t 1.

3.2.PROPOSITION: The space of tensors t 1 appearing in <3.1) is spanned by the

tensors t, whose action on Q) ..r(T*M @ APT*M), with components Q). • in an
'-1 ... 'pof-i
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orthonormal local J-frame rei}, is given by

(t1Ul ) 1· =I sgn (Cf)( I,)) .. *
J.';lE$ .. 101 , 1 .. j i* i* .. j"-' j ...j
1 p+l l 10 ... 1,- (. 1 1 r r . 0(1) o(s) (1(,,+1) (1(,,+u)

x n .
J 1
a(S+IJ+1)' (1(,,+u+2)

where 0 i r (p-I )/2, 0 s S,u P-1, or by

(t .. ) - "c '\(,.. ). {f.1 ., ..j - ..,gm.Cf) '. 1. Uli* ..i* .,. ..,. j j* ...j i* x
'1 r'+l ,.,..

r- , ... r (1(1) 0(5) (1(5+1) .O("+U) 1 1 r r

x\}.
J '" ) J ( .o,s+u+l

where r p/2, 1 s o- 1, 0 u s c, or by

(t 0) 1 = l: ' .) ( -, 1', .j r sgn lCf, .. 2.. Ulj
"1 "p+1 \.\ ,,(1)

j j* ...j* i i*
,,(5) (1(,,+1) O(S+IJ) 1 1

x\}. '" \)i i
J. ,J, • ) '",' )" ( +1)0ls+u+ 1) ,,(s+u+,:: .p, (f P ,

where 0 r p/2, 1 s p+1, 0 u p.

EcQQL As we know, w(t,) = 0 and then, from 2,6, &j = Tlj = q = 0 and the space of

tensors t, will be spanned by elementary monomials of the form

(3.2)

where 2k+2b = 21 and means that 21-(p+1) upper indices are contracted with

2Hp+ 1) lower ones and p upper and p+1 lower indices are skewsyrnrnetrtzed

The possible contractions using g", g" and 0" give us elements of the form g", g",

0, 0", J: ,S: , and, thus, the monomials (3,2) can be written as

x fi, . ''-1 l
1 1 l' J' J
'lJ+v+2w'+1" lJ+v+2\1'+2 'p p+l
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where Altp+,P means that p upper indices and o- 1 lower indices are skewsymmetrized

Therefore, the elementary monomials with some g.. or more than one g" vanish and so the

monomials (3.2) can be finally written as

where 0 r (p-!)/2 , 0 s,u p-l, and it is not necessary that gie ii appears in (3.3).

Notice also that only one index of g" can be skew-symmetrized if the monomial is not

zero. Also, the indices of all the 0" must be skewsymmetrized, because, if not, (3.3)

represents a zero map or a map defined only onAP+1T*M andnot on all T*M 0 APT*M.

Let t, be the tensor given by (3.3) (with g" appearing in its expression) and let 1.0 e

r(T*M 0 APT*M). Then

(t,OJ\ . =2, 2, sgn(o-)L:c 8gn(1:)
1 ···Jp+l '<""'p

A '" .
- jer(1) Jer(s) Jer(s+ 1) Jer(s+u)

x 0, .
Jer(;.+u+l) Jcr(s+u+2)

x

where 0 s r (p-O/2, 0 S,U p-1.

If in (3.3) the g" does not appear, we have the following two possible expressions

for tll.O :

(t,UJ) =.I I_c. sgn(o-) ... x
J, "Jp+1 'o...ipcr""'p+1

x jo .. ;,1(2r+s) ... Oil(p)
J"I:1) Ja (2) J(T(s) J(T(s+ 1) J(T(s+u)

): o· . ['). OJ··.
Jer(s+u+l)Jo(s+u+2) Jo(p)J(T(p+1)'o '1" 1p+1

or
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x •.J;1(2r+l) J'I(2r+;;) 8;0 sit (2r+s+1) " ,,si,l(p) x
J(1(l) ..' .1"(;;) .1(1(s+1) j(1(s+2) J(T(s.+u)

v O. . 0.. 00...
J(T(s+u+l)J(1(;;+u+2) J.:.(p).1(1(p+O ,<.11" lp

where 0 r pl2, 1 s p+ 1, u sp, which, when we take a J-orthonormal frame, are

the required formulas.

II The tensors t, given in Proposition 3.2 are listed In Table I, where we have

used the following notations:

(Ja)(X1, ... , Xp+1)=(_j)p+l Q)(JX1, ... ,JXp+1)'

(C11w)(X1' ... , Xp_1)=2j_1
2nQ)(ej> ej • Xl' , Xp_1)'

(c} Q)(X,Y) =2j j W(X, Y, ej , Jei ' , ej ,Jei. ) when o- 1 is even,
...(,-d/L

(Jsw)(XI' , Xp+1) " (-I)S Q)(X1, JX2, ... , JXs+1'XS+2' ... , Xp+ 1)'

(J1Soo)(XI' , Xp+1) " (-I)S w(JX1• .. . . JXs' Xs+1' ... ,XP+ 1),

(c/w)(XI' ... ,Xp+1-r) = 2i i w(X1' ... ,X +1-r' ej ,Jej , ... ,ei ,Jej ).
t ... "'/2. P 1 1 "'/Z .,./:-

3.4. In Table II we have listed the expressions of some of the operators t,OD, when

they have a simple form. We have used the following notations: if D is a linear connection

in TM, the operators dO : r(APT*M) _ .... r(AP+1T*M) and &0 : r(APT*M) - .... r(AP-'T*M) are

defined by

dO 10 =Alt(Dw)

They satisfy (dO)2 = 0 = (&0)2 if and only if D is symmetric (and then dO = d = dV,and

5° =5=5v, where V is the Levi-Civita connection). Moreover, dO is a skew-derivation.

Now we study the space of tensors to'

35 PROPOSITION' The space of tensors to in (3.1) is spanned by those tensors to

whose action onanQ) e r(APT*M), with components wI: k with respect to an orthonormal
t ...P

J-frame Ie.l is given by one of the following expresions:
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x 0 . . ... 0 i i V. OJ. i '
Jo(s+v+ 1) J,;,(s+'J+2) "o(p-3)" o(p-2) Ju (p-1) u(p)- cr(p+ 1)

where 2r+s+u =p,

where 2r+s+u = p-l;

x OJ .
- cr(s+v+1) Jcr(s+v+2)

(t to) . =
[I \ \+1

x n .
•, JU(s+v+1) jcr(s+v+2)
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x 0 i . n.. &0. ,
- cr(s+u+1).\.(s+u+2) ...•• Jcr(p-l ) Jcr(p) J 1)

where 2r+s+u =p,

xO· . ...0· 80;
Jcr(s+u+1)Jcr(s+u+2) Jcr(pr cr(p+1) p

and the expressions obtained from the above list by adding a * in one, two or three of
the indices in eo or SO.

Proof: From 3.1 we have that w(to) =0, and, then, from 2.6, q = 0 =T'lj' and there

exists one index i such that t j = 1 andt
k
= 0 for any k:t t. Therefore, the space of tensors

to is spanned by elementary monomials of the form

where 2 k + 2 b ... 3 =2 I ... 1 and means that p upper indices andp- 1 lower indices

are skew-symmetrized, and 2 l-p upper indices are contracted wlth 2 l-p lower ones. The

possible contractions using g", g.. , 0 .. andV.O.. yield (up to sign) elements of the form

g" , g.. , 0" , 0 .. ,J: ,S:, V.o .. , vo.. , V.J: , V'J: , V.O·· , 'V'O",

SO. ,SJ ,SO.* ,&J* •

where .* = J•. The contractions not listed above can be reduced to these by the

symmetries of VO; that is, VjOjk = - VjOkj and VjOj*k* =- VjOjk (see [G-H».Then, since goo

and goo cannot appear in a nonzero monomial (because their skew-symmetrizations are

zero), the only non-vanishing elementary monomials are (up to sign):



120

Alt P f,),···ip-l iPO }
p+ll' j ... j 'V' OJ J j .,1 p-l P

Alt P iVilip-Z 'V'ip- 1J ip }
R+l' Jr··Jp Jp+1 '

and the monomials obtained from this list when we add * to one, two or three of the

indices in VO, VJ, 60 or OJ, Where the tensor V is given by

,,'1 \ __ ,/'1'2 "hr-hr Ji2r+1 1;2t'+s RiZr+s+I ;.ik r, ".
v • H . " CJ c'," .. "J J
-'I -'I .1 , ... -.1$ $+1 -:;+u .1s+u+l-'s+u+2 1-1 1

The proposition follows by taking an orthonormal J-frame.

3.6 We list in Table III the tensors to given in Proposition 3.5, when p = 0, 1, If 00.

r(T*M), Ql# will denote the image of Ql by the canonical isomorphism between T*M and TM

given by the Riemannianmetric g.

§4. The set of HNDO's of type CR, APTM R.AP-1TM) andorder one.

In this section we shall deal with homogeneous regular HNDO's 0: r(APT*M)

- ... r(AP-1T*M) of order one and maximal weight. As we know, such a 0 has a general

form

where to and t, are homogeneous regular hermitian natural tensors of weight

w=p-l-(p+ 1) = -2, toE r(APTM 8 AP-'T*M) and tIE r(TM 8 APTM 8 AP-IT*M).

Similarly to §3, we have

4.2.PROPOSITION: The space of tensors t, in (4.1) is spanned by those tensors

whose action on an Ql Ii r(T*M 8 APT*M) (with components Ql
k1

...lr.
p
•
t

with respect to an

orthonormal1ocal .r-rrarne fejl)is given by
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where 0 r (p-t )12; 0 s,u p-}; or by the expressions like the other two given in 3.2

but changing Sp+l by Sp_l andwith r l 1.

4.3.PROPOSITION: The space of tensors to in (4.1) is spanned by those tensors

whose action on anto e r(APT*M) is given by the same formulas as in 3.5, but changing p- 1

by p-1.

Observe that the change of p- 1 by p-l can also be applied to 3.2 to get 4.2.

Therefore, Table I can be considered as a list of generators of tensors t 1 in 4.2, changing

p- 1 by P-l (for which, in addition, formulas with no 0 are to be deleted, and in

formulas with some 0, one of these should be deleted). The generators of the space of

tensors to' in 4.3, when p 2, are given in Table IV.

55. The set of HNDO's of type (R.J/TM. R APTM) andorder tWQ.

llin this section we will consider homogeneous regUlar HNDO's D : r(APT*M)--+

r(APT*M) of order two andmaximal weight. Again, by 2.10, these operators can be written

as

(5.1 )

where to' t 1 and t2 are homogeneous regUlar hermitian natural tensors of weight w =

p-p-2 z -2.

As in 553 and 4, we have the following results:

5,2 PROPOSITION: The space of tensors t2 e r(S2T*M @APTM @APT*M), appearing in

(5.1), is spanned by those tensors whose action on an III e r(S2T*M @APT*M) (with

components 00. • with respect to an orthonormal local J-frame Ie.l) is given by one of

the following expressions:

(LOJ).. - ";' sgn(cr). =. (Jj .... .• . X
. L J 1 - - 1 1 1 1'" 1'''' JA J'" 1 ]("'P 'p l,,"·'r"" 1 1 ... r r (1(1)'" (I(S)-(I(s+l) .... (I(s+u)

x n. . n..
.. J(I(s+u+l) J(I(s+u+2) ..... J(I(p-1)
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5.3 PROPOSITION: The space of tensors t, e r(TM @ @;.PT*M), appearing in

(5.1) is spanned by those tensors whose act ion on an (J) .. ;.(T*M @;.PT*M) is given by one

of the expressions in Proposition 3.5, with the following slight modifications:

(a) 0"eSp' and

(b) we can also take the contraction in the first two indices of (J) in all the

express ions.

In general, the expressions of the generators of the space of tensors to e r(;'PTM@

t,.PT*M) are very complicated, and we shall not write them here. We shall consider only

the case p = o.

5.4PROPOSITION· The space of tensors to e r(;.°TM@;.°T*M) in (5.1) is spanned by

the hermitian natural functions

where N is the Nijenhuis tensor, 't' is the scalar curvature and t* is, as usually, defined by

t* = ( 1/2) I j •j : 120 Rjj *jj* .

Proof: Since w(to) = -2, we have, from 2.6, Q =0 = 'lj and then, either there are

indices i,k such that &j =&k = 1 and &, =0 for I '" i,k, or there is an index i such that &j =2

and &1 = 0 for every 1'" i; then the result follows from [G-H, Theorem 7.11

From 5. I and 5.4 we have

5.5.COROLLARY: Every homogeneous reqular HNDO D of maximal weight acting on

functions is of the form

where a, b, c, dj are real numbers and /:, is the ordinary laplacian.
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EcQQt When p = 0 tensors t2 in 5.2 reduce to t2(w) = Cl lw, and the tensors t l in 5.3

reduce to t 1(w) =w(&J) or t' 1(00) =w(J &J). Then, taking D = V, we get (t2"D2 )(f) = c11(v
2n=

gij(V2
ip =M, and t,(Vf) = df(&J) and t' ,(Vf) = df(J &J), and the result follows from here

andproposition SA

5.6. For compact manifolds we consider the scalar product on rCAT*M) given by

(cx.,P) =fM cx.A,.p .

For this scalar product we have that if 0 is a HNDO as in 5.5 then 0 is selfadjoint

if and only if b = c = 0 (see [McK-S], p.46).

An interesting homogeneous regular HNOO acting on p-forms is the D-laplacian,

defined by

where D Is a metric homogeneous regular hermitian natural connection on TM, and dO*- is

the adjoint of dO with respect to the above scalar product. It is clearly elliptic and

selfadjoint, andwe shall study its spectral asymptotic expansion in 56.

56. The asymptotic expansion of 6° acting on I-forms.

Within this section M will be a compact almost-hermitian manifold of real

dimension m = 2n.First, we recall somewell known facts.

Let E be a vector bundle over M, and L : r(E) --+ r(E) a second order differential

operator with symbol given by the metric tensor. Let Ex be the fibre of E over a point x

.. M. Let us choose a smoth fibre metric <, > on E, and let L2(E) be the completion of r(E)

with respect to the global integrated inner product ( , ). For t > 0, exp(-t L}: L2(E) --+

L2(E) is an infinitely smoothing operator of trace class. Let KCt,x,y, L) : Ey --+ Ex be the

kernel of expt-t z). If x=y, K has an asymptotic expansion as t-+O+, of the form

where the Hk(x,U are endomorphismsof Ex.

If L is selfadjoint, let D..,8.) z+ be a spectral resolution of L into a complete
I I Ie

orthonormal basis of eigenvalues Ai and eigensections 8j . Then,
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whereak(x,L) =tr H.,.(x,L). Now, 'if we integrate on M, we have

r. exp(-t A.) - (4n t)-ml2 r .. a (L) tk
1 I k=O k '

6.1.THEOREM ([Gi 3,4]): Let 12 bea connection on E, and v the Levi-Civita connection,

and denote also by 12 the connection induced by 12 and Von T*M@ E. Let LQ be the reduced

Laplacian defined by LoS =- gij 122ijS for every s e r(E). If Q is the unique connection on E

such that E= LQ - L : r(E) --+ r(E) is a Olh order operator, then we have

(a) Ho ; I

(b) H, ; (1/6) (-'f 1+ 6

Now, let E, F be functors as in 2.1, and let L be a homogeneous regular HNDO of

type (E,F,E,F) of order two with symbol given by the metric tensor, then it hasmaximal

weight -2, and, according with theorem 2.10, it canbewritten in the form

L=- gij v2.. + t . V + t
IJ 1 0'

where V is the connection induced on EM @ F*Mby the tevt-ctvtta connection. Next, we

compute Ein terms of to and the tensora; 12 - v :TM @ EM 0 F*M--+ EM 0 F*M.

6.2.PROPOSITION: For every s e r(EM @ F*M),

(6.2) E s • - gij (Vj(li)jS + - tos

and the connection 12 on EM 0 F*M such that E is a Olh order operator is given by the

linear fibre bundle map a= 12 - V, defined by

(6.3)

for every X e r(TM) and S e r(EM @ F*M), where b: TM --+ T*M is the canonical

isomorphism induced by the metric.

Proof: From the definition of LLl we have

L s =- gij (D.D.s - 0 .s) =- gij (V2s) - 2 gij 8.(V.s) - gij (V.(8).s + B.8.s).Ll =;J IJ J I - J

Since, in its standard form, Lll can be wrttten as

L =- gij v2.. + tQ. • V + tLlII IJ 1 0'
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we have that

tQ., (ex.@ s) =- 2 gij B(ex. s) =- 2 B-, J -ex.

for s 6< r(EM@ F*M) and ex. E rn*M) On the other hand, "I2(L) = "I2(LQ.)' so that the condition

that E be a Olh order operator is equivalent (by Theorem 2.10) to tQ.1 = t 1; whence (6.3)

follows. Then, we have E = tQ.o - to =- gjj (Vj(.6.)jS + 6;.6.js) - to(s).

Next we study the spectral asymptotic expansion of the operator t:,.D, defined in 5.6.

First we determine the operator dO*.

6.3.PROPOSITION: The adjoint operator of dO, with respect to the inner product

given in 5.6, is dO* = FP - \s' whereB= 2j_ 1
2n Bji.

Proof: From the fact that dO is a skew-derivation and that SO = (_l)np+n+l. dO. on

p-Iorrns, it follows that, jf ex.e r(APn*M», then

fM d°ex. A =fM dO (ex. A + fM ex. A

On the other hand, we have

dO (ex. A =d (ex. A + Eib A (ex. A

and, for Xe X(M) and Jle r(Arn*M»,

.\xJl =(-1 )2n-l (*)1) A Xb =(-1 t+1 Xb A *)1,

whence,

Then,

dO (ex. A =d (ex. - ex. A

and, if we integrate,

fM d°ex. A =- fMex. A + fM ex. =fM ex. A*(05° - '8)p.

Then, dO* =SO - \B'

Let t:,.0p the D-laplacian t:,.0 acting on o-rorrns (in particular, t:,.°o =s, the ordinary

real laplacian). Then,

6.4.THEOREM: Let M be a compact almost hermitian manifold of real dimension 2n

Then,
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a1(l!.D1) =JM (-«n+3)/3h+ A),

where A =- (1/2) z T being the torsion tensor of O.

Proof: It follows in the same way as for the ordinary laplacian (see, for instance,

lPn, that the action of l!.D on a l-Iorrn p. is given by

(6.4) (l!.Dp.) (v) = _(glj 02jj p.)(v) - gij (RDiVp.)j - gij (Om,v) p.)j -

- (DB p.)(v) + (Ov p.)(B) - (9v p.)(B) +P.(9)3),

.v ..-

where v is a vector field onM. On the other hand, if we write Ox p. =9x P. + Bx p., then, B

is related with B by

(6.5)
..-
Bx j1=- p. (B(X,.».

(6.6)

...
(Notice that B is analogous to the tensor.6. defined before 6.2, however we change the

notation because we use Bfor the connection °on T*M induced by the connectio nOon

TM, and it is different of the connection 12 given in 6.1).

Now, for each point x e M we can consider a local frame Ie.) around x which is

orthonormal at x and radially parallel from x, so that (9j(ej»x=O. Then it follows from

(6.4) that, at x,

2 tV - - "" D .- 9 ii P. - (9jB)j p. - 2 Bj(9j p.) - Bj(Bj p.} + p.(R i.1)

- (9TO,.jJ1)1 - (Bm,.)p.)j - j1(9.6) + (6. j1)(6).

If we write l!.D in its canonical form (given by Theorem 2.10),

l!.D = - 9 2. + t 9 + t
II I· 0'

we have

(6.7)

for every I-form 1Il, and

(6.8) to p. = - (9j6)j p. - 6j(Sj j1) + j1(RDj . j) - <f3TO•• ) p.)j - p.(9.B) + (B.p.)B.

Then, from (6.3),

(6.9)

Since our frame is parallel,
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and

Now, from (6.10), (6.11) and (6.2) we get the trace of E

-tr E = - + (1/4) IITII2 - 115112 - (9k8)k'

but from (4.3) in [M],

= '(Of + 2 (9k8)k +BUkBjik - 118112,

and then, denoting or" by or,

tr E = - r +SEib - B" k B" k + (1/4) IITII2.
IJ J'

Let A =- BUkBjik + (1/4) IITII2. Then, since Bijk = (1/2) (Tijk + Tkij - Tjki), we have

A = - ( 112) Tijk Tikj"

Now, from 6.1 (b) and the above expressions, we have

a,(lI D, ) = f
M
(1/ 6) (- 2n or - 6 "C + 6 S8b+ 6 A) = f

M
(- ( (n+3 )/ 3 ) or + A ),

since J
M

SSb = O.

6.S.COROLLARY: Let D be the characteristic connection, and let SpcP(M) the

spectrum of liD acting on o-rorrns Let M1be a Kaehler manifold, and let M2 be a nearly

Kaehler or an almost Kaehler manifold. If SpcP(M1) = SpcP(M2) for p = 0,1 then M2 is a

Kaehler manifold.

Proof: First, observe that, when D is the characteristic connection, we have (see

[M))

where T1 and T2 are tensor fields on M satisfying that T1 vanishes on almost Kaehler

manifolds and T2vanishes on nearly Kaehler manifolds. On the other hand, since liDo =lIo'
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Then,

1
M
A = - «n+3)/3) a1(t,Do).

Now, if SpcP(M1) =SPcP(M2 ) for p =0,1, then, we have

but, if M, is Kaehler, JM A =0, so that
1

a1Ce.
D,)(M,) - «n+3)/3) a,(.t,Do)(M,) = 0,

and then,

f
M
A =a,Ce,D 1)(M2) - «n+3)/3) a, (L:,DO)(M2) =:,

a,(t,D 1)(M, ) - «n+3)/3) a1(t,Do)(M,) =0.

If M2is almost Kaehler, then T, '" 0, A =- (1/4) IIT211
2 and JM A =0, whence IIT211

2

:z.

= 0, which trnoues that M2 is Kaehler. SImilarly, 1fM2 ts nearly Kaehler, then T2 = 0,

A =- (1/2) liT1112 and 1
M
A =0, whence liT ,11 =0 andM2 Is Kaehler.:. .
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TAB LEI

P t
1

1 p> 0 t
1w = Alt(w)

2 p> 0 tiw = Alt(Jw)

3 p> 1 t
1w =

(p+l)/2nl\. .. . .. 1\ n

4 p> 2 t
1w = Alt(Jmw)

5
m

t
1w = Alt(J

1w)

6 t
1w

m ) (p+l-m)/2= Alt(cJw 1\ n 1\ '" ••• • • • 1\ n

7
m

t 1w = Alt(JcJw)/\ n 1\ ••• ..• " n

8 m n ... e n )t
1w = Alt (J CJW Q'D o Ci' ...

9
m n

... @ 0)t
1w = Alt (J 1cJw n e ...

10 t
1w = (Cllw) A n

11 t
1w = (Jcllw) A n

12 p> 3 t
1w = Alt(Jmc 1 1w @ n)

13 t
1w = 1\ n 1\. 1\ n

m (p-m)/2
14 t

1w = (Jc
Jc 11w)

/\ 01\ ••• • • • "n

15 51 t
1w

n m (p-m)/2 @
= ...... n

TABLE II

t 1 0 D

1 ' (t 1 0 D)w = dDw

2' (t 1 0 D)w = JdDw

3' (t 1 0 D)w = n(p+1)!2

6' (t 1 0 D)w m n(p+1-m)/2= Alt{cJDw) /\

7' (t 1 0 D)w m n(p+l-m)/2= Alt (JCJDw ) 1\

10 '. (t 1 0 D)w = sDw 1\ n

11 ' (t 1 0 D)w = J oDw 1\ n

13' (t 1 0 D)w = moD /\ 0(p-mi / 2c
J

w

14' (t 1 0 D)w m D n(p-m)/2= JcJo w 1\
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TABLE III

to (p = 1 )

tow = 'ilw#rJ.

tow = w{Alt 2 ( 'ilJ ) )

tow = w 1\ 6rJ.

tow = Jw 1\ 6rJ.

tow = w(6J)rJ.

tow = 'ilJw#rJ.

to = J1 'il
w#rJ.

(p = 0)

to (p =- 1 )

tow= J
1'il

JW#rJ.

tow= w (AIt (J 1'il J ) )

tow= Jw (Alt('ilJ))

tow= (Jw)(Alt(J
1'ilJ))

tow= w 1\ J6"

tow= Jw 1\ J611

tow= w(J6J)rJ.

to (p=O)

fJ6rJ.

TABLE IV

to (p = 2)

tow= w(AIt
2'ilJ)

tow= w ('il ,rJ.")

1
tow= (c

J
w ) 6 rJ.

1
6J)to = c

1
(w @

1 1
6 J)to = C

1
( J w@

to = J1 w(Alt 2 ('ilJ))

to = Jw Alt
2
(v.r )

to (p = 2)

to w = J 1w('ilrJ.")

tow = w(J 1'ilrJ.")

to w = J1 w(J
1'ilrJ.")

1
tow = (c

J
w) J 6 rJ.

1
tow = c 1 (w @ J 6J)

1 1
tow = c

1
(J w J 6J)
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