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bDepartamento de Matemáticas, Universidad de Murcia,

Campus de Espinardo, 30100 Murcia, Spain

E-mail: mbarros@ugr.es, aferr@um.es

Abstract: We exhibit a surprising phenomenon that happens in the conformal Lorentz

Minkowski three space, which has no counterpart in a Riemannian setting. Whenever a

curve, no matter its causal character, propagates transversely through a conformal geodesic

null vector field, it is generating the worldsheet of an extrinsic Polyakov string solution.

Furthermore, the Polyakov extrinsic energy of these solutions only depend on the world-

sheet topology and it can be computed not only intrinsically, but also holographically by

measuring the hyperbolic angles in the boundary corners. This geometric approach, to

provide extrinsic string solutions, can be considered as an alternative to the Pohlmeyer

reduced mechanism. Then, we describe how to translate these solutions to the language

of Pohlmeyer theory. We will also show that any curve in the conformal boundary of the

anti de Sitter 3-space can be viewed as a piece of the generalized Wilson loops associated

with an extrinsic string solution obtained by this geometric mechanism.
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1 Introduction

As long as we know, it is important to construct classical string solutions in H
5
1×S

5, where

we write H
5
1 by AdS5, because the AdS/CFT correspondence. Now, people construct

classical string solutions in H
3
1 × S

3 and then, after embedding, in the bigger space. Most

of these solutions correspond with stationary string surfaces, that is, those with zero mean

curvature function (see for example [10, 14, 21] and references therein). The Pohlmeyer

reduction provides a powerful and elegant tool in this process, because it makes equivalent

the related sigma models in both factors to the sinh-Gordon and sin-Gordon equations,

respectively. To apply this construction in the anti de Sitter factor several methods are

used. For example, the dressing method is based on the choice of a vacuum solution of

the string equation. People usually pick a minimal (spacelike) or stationary (timelike)

surface that corresponds with Hopf surfaces obtained, respectively, when lifting geodesics

in H
2
1 and H

2 via the corresponding Hopf mappings from H
3
1 to these surfaces. The chosen

vacuum solutions play the same role as the Clifford torus in the 3-sphere.

In this paper, we consider the Polyakov extrinsic string action, which is known in dif-

ferential geometry as the Willmore functional. Its relation with the Nambu-Goto-Polyakov

action, that provides the classical string theory, is conceptually discussed. In particular, the

latter can be viewed as a sub-theory of the former one. Therefore, each stationary surface,

which is a classical string solution, provides in addition an extrinsic string solution.

Nowadays, we know some geometrical methods to construct extrinsic string solutions

in both S
3 and H

3
1. The most popular reduces the searching for extrinsic string solutions

with a certain degree of symmetry to that of elastic curves, that is, curves that are critical

for the total squared curvature, in suitable surfaces (see [3] and references therein, see

also [16] as a key reference for the Bernoulli elastica). The action certainly takes place

directly in H
3
1, S

3 or in any conformal picture of these backgrounds. As far as we know, the
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relation of these solutions with the sinh-Gordon and sin-Gordon models, via the Pohlmeyer

reduced theory, is unknown.

We describe a surprisingly new geometric method to generate as many extrinsic string

solutions as we wish. The core of this method is as simple as the following statement:

Whenever a curve propagates in the Lorentz-Minkowski three space, L3, through a geodesic

null vector field, it is generating the worldsheet of an extrinsic string configuration. We also

exhibit an algorithm that allows us to explicitly construct that huge family of solutions. It

should be noted that these solutions are not necessarily stationary (zero mean curvature)

in L
3. However, its moduli space contains a submoduli, made up of stationary solutions,

which, in turn, can be nicely described in terms of three moduli: two functions determining

the propagating curve, which can be chosen to be lightlike, and a real number which plays

the role of lightlike slope (see [4] for details).

Nevertheless, the surprise, regarding this simple phenomenon, goes further. We will

see that every extrinsic string solution, in this new family, carries a topological charge that

can be holographically computed. More precisely, we will show that the Polyakov extrinsic

energy of these solutions only depend on the worldsheet topology, and, furthermore, it is

encoded in the boundary and can be computed just measuring the hyperbolic angles in the

boundary corners.

On the other hand, since the Polyakov extrinsic action measures the Willmore energy

of worldsheets, the conformal invariance of the model becomes obvious. This allows one to

bring the so built extrinsic string solutions, for example using a stereographic projection, to

the 3-dimensional anti de Sitter space, H3
1 = AdS3. To this respect, we indicate a method

to get those conformal stationary surfaces, that is extrinsic string solutions that provide

classical ones in the anti de Sitter context. This is made in the last section, where the

natural question, in connection with its relationship with the Pohlmeyer reduced theory, is

considered. Though the general treatment seems theoretically clear, it involves formidable

computations. Finally, we consider the behavior of these extrinsic string solutions in the

conformal boundary of the anti de Sitter three space to study the corresponding generalized

Wilson loops.

2 Fluctuating geometry

Many interesting systems in physics and biology are described by fluctuating surfaces.

String theories and theory of biological membranes are two enlightening samples in this

wide variety of nonlinear phenomena. Though all of these theories describe phenomena

of different nature, they are amazingly associated, basically, with the same action. This

kind of universality may be strongly related to the fact that very often such actions have

an underlying geometric meaning. An important characteristic of these theories is that

the fluctuations do not change the topology of the surfaces. Therefore, in agreement with

this requirement, we state the following setting for dynamical variables. Let Γ be a set of

nonnull piecewise regular curves in L
3 and No a spacelike unit normal vector field along Γ.

We choose a surface S with boundary ∂S (which could be empty) and denote by IΓ(S,L
3)
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the space of timelike immersions satisfying the following first order boundary conditions

φ(∂S) = Γ, Nφ/Γ = No,

where Nφ stands for the Gauss map associated with the immersion φ. Roughly speaking,

by identifying each immersion φ ∈ IΓ(S,L
3) with its graph, φ(S), viewed as a surface with

boundary in L
3, then IΓ(S,L

3) can be viewed as the space of timelike surfaces in L
3 having

the same boundary and being tangent along the common boundary. It should be noted

that these first order boundary conditions have already been considered in the compact

case (see for example [2, 8] and some references therein).

The discussion of strings historically began with the Nambu-Goto action which is

defined, on the space of immersions that fix the boundary but need not be tangent along

the common boundary, by

NG(φ) = co

∫

S

dAφ,

where co is a constant related with the tension of the surface and dAφ is the element of

area relative to the induced metric. Now, strings are curves that evolve in the target

space generating surfaces that provide extremals of this energy action. This topic, from

a geometric point of view, is well understood for a long time and the string solutions

correspond with those surfaces with zero mean curvature Hφ = 0. Let us point out a

couple of remarks:

(1) The first one is merely formal. Surfaces with zero mean curvature function in a

Riemannian setting are called minimal surfaces. However, this term is not appropri-

ated for timelike surfaces in a Lorentzian context (for example in the spacetime L
3

or AdS3). Several authors still use mimetically the term, as well as others use the

term maximal surfaces. Nevertheless, most of people use the more appropriate one

of stationary surfaces.

(2) Our second remark concerns to the core of this string theory. It is obvious that the

values of the Nambu-Goto energy, in particular extremal values (those reached by

the string solutions), have an intrinsic nature. In other words, those values can be

computed inside the worldsheets, so that people living in a string solution are able

to measure the Nambu-Goto tension that its world receives from the surrounding

spacetime. On the contrary, those people have no idea of the extremal nature of

the world where they are living, because the mean curvature has an extrinsic nature.

Thus, though the nature of the Nambu-Goto is intrinsic, it provides string solutions

whose critical nature can not be intrinsically valued.

The Nambu-Goto action presents problems if one wishes to quantize the string using a

path-integral approach. In this respect, A. M. Polyakov [19] proposed to replace the area

action by an equivalent action that involves an intrinsic metric besides the induced one

from the ambient spacetime metric. Both theories provide the so called classical string

solutions that correspond with stationary surfaces (H = 0). It should be noted that the

new Polyakov action is still intrinsic from its own origin.
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Certainly, from a geometric point of view, this intrinsic-extrinsic disagreement between

action and solutions is not satisfactory. If we wish to evolve curves in a target spacetime

to generate surfaces being extremals of a certain action, it seems natural to involve the

extrinsic geometry of surfaces in the density of the action. This idea was materialized in

1986 independently by A. M. Polyakov [20] and H. Kleinert [15]. Both authors introduced

the same new string action using different motivations and methods. In fact, Kleinert

defined the action trying to imitate the elastic functional for membranes, obviously in a

Eucliden context, introduced in 1973 by W. Helfrich (Z. Naturforsch 33a, 305). On the

contrary, Polyakov used two kind of arguments. On the one hand, something related with

the qualitative properties (critical behavior of the string tension and others) of strings. On

the other hand, a fascinating argument showing that it is the only choice (up to divergences)

of action that is invariant under similarity transformations. In this way the so called

Polyakov extrinsic action was born as a string action. More precisely, this action is defined

on IΓ(S,L
3) and it measures the total extrinsic curvature of the pair (φ(S), φ(∂S)) in L

3,

PKH : IΓ(S,L
3) → R, PKH(φ) =

∫

S

H2
φ dAφ −

∫

∂S

κφ ds,

where Hφ stands for the mean curvature of the immersion φ(S) and κφ is the geodesic

curvature of φ(∂S) in φ(S).

In this paper, we deal with the dynamics associated with this Polyakov extrinsic string

action, which by the way, is the flat version of the so called, in differential geometry,

Willmore functional. On the space of boundary immersed timelike surfaces, which are

tangent along the common boundary, in a generic spacetime, say M , it works as

W(φ) =

∫

S

(H2
φ +Rφ) dAφ −

∫

∂S

κφ ds,

where Rφ stands for the sectional curvature of the target space on the tangent plane of

φ(S), the extrinsic Gaussian curvature of the surface. The systematic study of the varia-

tional problem associated with this action was proposed by T. J. Willmore in a meeting

at Oberwolfach in 1960. Since then, it has became into a very popular problem of great

interest not only in the theory of surfaces, but also in other different contexts of mathe-

matics and physics. This popularity is due in part to the still open Willmore conjecture.

However, it is of special interest, because its conformal invariance. More precisely, the

above Willmore action is invariant under conformal changes in the target spacetime metric

and consequently it is a problem stated in the conformal class of that metric. Obviously,

this important property extends that for similarity transformations, which was showed by

Polyakov. Moreover, it should be noted that it was known by W. Blaschke and G. Thomsen

in 1923, [5, 22], for the conformal class of the Euclidean metric. The so called Blaschke’s

program was extended to any Riemannian metric and with slight changes to Lorentzian

conformal classes (see for example [7] and [23]). As an obvious consequence, the Polyakov

extrinsic string theories in both L
3 and AdS3 are equivalent.

Summarizing, we have two non-equivalent string theories associated with corresponding

different string actions:
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1. The Nambu-Goto string action, NGP, which is equivalent to the intrinsic Polyakov

one, that provides solutions being stationary surfaces, H = 0, usually called classical

string solutions.

2. The Polyakov extrinsic action that, in contrast to the previous one whose origin is

intrinsic, contemplates the extrinsic geometry of the string surfaces in the target

spacetime. Similarly, it should be called as the Willmore-Polyakov-Kleinert-Helfrich

(WPKH) action, and actually it is defined in the conformal class of the target metric.

The field configurations, or critical points, associated with the WPKH action are

known in differential geometry as Willmore surfaces for the prescribed boundary conditions.

In the context of string theories, they are worldsheets of the Polyakov extrinsic string

action and so bearing in mind the original extrinsic nature of the action they will be called

extrinsic string solutions. However, the concept of critical point needs some extra technical

considerations. A critical point of such a problem means a critical point of the induced

problem on reasonable compact pieces or nonnull polygons. More precisely, a connected,

simply connected with nonempty interior, compact domain, Ω ⊂ S, is said to be a nonnull

polygon if it has a piecewise smooth boundary, ∂Ω, which is made up of a finite number of

nonnull curves. Now, φ ∈ IΓ(S,L
3) provides a classical string solution if for any nonnull

polygon Ω ⊆ S, the restriction φ|Ω is a critical point of the Polyakov extrinsic action

on Iφ(∂Ω)(Ω,L
3).

The field equation associated with this variational problem, computed in [3], is

∆φHφ + 2Hφ

(

H2
φ −Kφ

)

= 0, (2.1)

where Kφ denotes the Gaussian curvature of φ(S). In particular, every stationary surface

(H = 0) is automatically Willmore and consequently the NGP string theory can be re-

garded as a sub-theory of the WPKH string theory. Said otherwise, in the moduli space

of the extrinsic string solutions one can find a sub-moduli space made up of the classical

string solutions.

It should be noted that, in particular, the surface S could be boundary free and in

this case no boundary condition is needed. Let us give, as an illustration, a pair of explicit

examples (see [6]):

Example 2.1. A rotational stationary surface: The hyperbolic catenoid.

Choose S = R
+ × R and define the timelike immersion φ ∈ I(S,L3) by

φ(s, t) = (sinh s sinh t, s, sinh s cosh t).

Then we obtain a stationary surface and consequently it is a classical string solution as

well as an extrinsic string solution.

Example 2.2. A ruled stationary surface: The helicoid of the third kind.

Take S = R
2 and the timelike immersion φ ∈ I(S,L3) given by

φ(s, t) =

(

t

cosh s
,−t tanh s, sinh s

)

.
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It is easy to check that its mean curvature function vanishes identically and so it provides

a string solution in both theories.

Besides those classical string solutions that correspond with stationary surfaces, other

extrinsic string solutions with non-zero constant mean curvature are known (see [21]). It

should be noted that this kind of solutions are examples of the so called Weingarten surfaces

and, in some sense, they play the same role as the round sphere in the Euclidean context

(see for example [9]). Furthermore, the whole class of extrinsic string solutions admitting

a rotational symmetry has been obtained in [3] and it can be briefly described as follows:

1. Rotational worldsheets obtained when rotating a timelike free elastic curve, around

a nonnull axis, in a de Sitter plane.

2. Rotational worldsheets with spacelike axis and whose profile string is a free elastic

curve in a hyperbolic plane.

3. Rotational worldsheets with lightlike axis and profile string a timelike free elastic

curve in an anti de Sitter plane.

3 Null scrolls as extrinsic string solutions

Let γ : I ⊂ R → L
3 be a regular curve in L

3 and B(s), s ∈ I, a vector field along the curve

which is transversal to γ(s) everywhere. Let φ : I × R → L
3 be the immersion defined by

φ(s, t) = γ(s) + tB(s).

As for the first fundamental form we have φs = γ′(s) + tB′(s) and φt = B(s), so that

φ(s, t) parametrizes a timelike surface, S(γ,B), on the domain {(s, t) ∈ I × R : g(s, t) =

〈φs, φs〉〈φt, φt〉 − 〈φs, φt〉2 < 0}, which we will call ruled surface with base curve γ(s) and

ruling flow B(s). It is clear that we can consider two classes of timelike ruled surfaces

according to the ruling flow is lightlike or not. The ruled surfaces with lightlike ruling flow

are called null scrolls ([11, 18]). One of the aims of this paper is to show the following:

Theorem 3.1. Every null scroll is an extrinsic string solution in the Lorentz-Minkowski

conformal structure.

Proof. To prove this result, we first note that given a null scroll S(γ,B), parametrized by

φ(s, t) = γ(s) + tB(s), then we can normalize the ruling flow to have

〈γ′(s), B(s)〉 = −1.

Moreover if the base curve is non null, then without loss of generality, we can parametrize

it by its arclength so 〈γ′(s), γ′(s)〉 = ǫ, where ǫ = 1 if the curve is spacelike, while ǫ = −1

when the base curve was chosen to be timelike. However, we can change, if necessary, the

base curve in order to be a lightlike curve (see [1]). In fact, if 〈γ′(s), γ′(s)〉 = ǫ, then we

look for a curve β(s) = γ(s) + t(s)B(s) satisfying 〈β′(s), β′(s)〉 = 0 and 〈β′(s), B(s)〉 6= 0.
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From β′(s) = γ′(s)+ t′(s)B(s)+ t(s)B′(s), we determine the function t(s) as a solution of

the following Ricatti differential equation

2 t′(s) = 〈B′(s), B′(s)〉 t2(s) + 2〈γ′(s), B′(s)〉 t(s) + ǫ,

where it should be noted that 〈β′(s), B(s)〉 = 〈γ′(s), B(s)〉 = −1. Consequently, any null

scroll S(γ,B) can be parametrized by φ(s, t) = γ(s) + tB(s) trough a null base curve and

〈γ′(s), γ′(s)〉 = 〈B(s), B(s)〉 = 0 and 〈γ′(s), B(s)〉 = −1.

In this setting the induced metric on the null scroll S(γ,B) is given by the following matrix

(

g11 g12
g21 g22

)

=

(

2t 〈γ′(s), B′(s)〉+ t2 〈B′(s), B′(s)〉 −1

−1 0

)

.

Now, the Laplacian in this reference is

∆ = −2
∂2

∂s∂t
− 2

(

〈γ′, B′〉+ t 〈B′, B′〉
) ∂

∂t
−
(

2t〈γ′, B′〉+ t2 〈B′, B′〉
) ∂2

∂t2
.

To compute the Gauss map and the shape operator of S(γ,B), we define C(s) =

γ′(s) × B(s). Then C(s) is a unit spacelike vector field along γ(s), which is anywhere

orthogonal to S(γ,B) and so it defines the Gauss map of the null scroll along its directrix.

The Gauss map is given by

N(s, t) =
φs(s, t)× φt(s, t)

|g11g22 − g212|
= C(s) + tB′(s)×B(s).

Now, an easy computation allows us to see that

B′(s)×B(s) = −f(s)B(s),

where f(s) = 〈γ′(s), B′(s)×B(s)〉 = det[γ′(s), B′(s), B(s)], and then the Gauss map of

the null scroll is given by

N(s, t) = −t f(s)B(s) + C(s).

Sometimes the function −f(s) is called the parameter of distribution of the ruled surface

S(γ,B).

A straightforward computation yields

Ns = −f Xs −
(

〈γ′, γ′′ ×B〉+ t f ′
)

Xt

and

Nt = −f Xt,

so the matrix of the shape operator dN is

dN ≡
(

f t f ′ + 〈γ′, γ′′ ×B〉
0 f

)

.
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Therefore, mean and Gauss curvatures functions of the null scroll S(γ,B) are given by

H(s, t) = f(s) and K(s, t) = f(s)2.

This gives us an important information, namely

∆H(s, t) = 0, and H2(s, t)−K(s, t) = 0,

and the proof finishes.

The above result can be paraphrased as: Whenever a curve propagates in L
3 trans-

versely through a geodesic null vector field, it is generating the worldsheet of an extrinsic

string solution. However, the case where curves propagate through geodesics, nonnull flows,

behaves quite different. To illustrate this situation, we propose the following experiment.

Suppose that γ is a curve contained in the Euclidean plane P = {(x, y, 0)} in L
3. Let Cγ be

the right cylinder over the given curve, which turns out to be a timelike flat surface in L
3.

Now, it seems natural to ask how do we choose the curve γ in order to Cγ be an extrinsic

string solution? To answer this question, we compute all the ingredients of Cγ appearing

in the equation (2.1). Then, we see that Cγ is an extrinsic string solution if and only if the

curvature κ(s) of γ(s) in P satisfies the following second order differential equation

2κ′′ + κ3 = 0, (3.1)

which is nothing but the field equation associated with the Bernoulli free elastica in the

plane P . This result should be compared with our main result (Theorem 3.1). Now, the

general solution of this second order differential equation can be expressed in terms of the

Jacobi elliptic cosine

κ(s) =
√
κo cn

(

√

κo
2
s,

√

1

2

)

, κo > 0. (3.2)

In general, for curves in P , the solving natural equation problem can be done by quadratures.

In other words, we can recover, using quadratures, the curve from its curvature function.

Indeed, assume that we have the curvature function, say κ(s), of a curve α(s) = (x(s), y(s))

lying in P . Then, we can see κ(s) as the instant variation of the angle θ(s) that the unit

tangent to α(s) makes with the x-axis, that is, κ(s) = dθ
ds
. From here, one can readily

obtain the curve from its curvature, α(s) = (
∫

cos
∫

κ(s)ds,
∫

sin
∫

κ(s)ds). For a general

curvature function, these integrations can not be made explicitly, however, we can do it for

elastic curves. In fact, first notice that a first integral of (3.1) is

(κ′(s))2 +
1

4
κ4(s) = c,

for an arbitrary positive constant c. Then we can write

κ′(s) =
√
c sinϕ(s),

κ′′(s) =
√
c κ(s) cosϕ(s).
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As a consequence, we obtain κ(s) = ϕ′(s) = θ′(s) and so κ′(s) =
√
c y′(s). Therefore, we

can choose a coordinate system so that γ(s) = (x(s), y(s) with

y(s) =
1√
c
κ(s) =

√
κo√
c
cn

(

√

κo
2
s,

√

1

2

)

, κo > 0, c > 0. (3.3)

Moreover

x′(s) = cosϕ(s) =
y′′(s)√
c y(s)

, c > 0,

and consequently, we obtain

x(s) =

√
κo√
c
E

(

am

(

√

κo
2
s,

√

1

2

)

,

√

1

2

)

, κo > 0, c > 0, (3.4)

where E (u, p) is the elliptic integral of the second kind of modulus p and am (t, p) is the

Jacobi amplitude.

As a consequence of this argument, we obtain that up to Lorentz transformations,

besides Lorentzian planes, the right cylinders built on the two parameter class of plane

curves with coordinates given in (3.4) and (3.3) are the only cylinders with timelike ruling

flows that provide extrinsic string solutions.

4 A holographic principle for scrolls solutions

The geometry of null scrolls is plenty of amazing properties. They certainly provide a basic

concept to distinguish between Lorentzian and Euclidean geometries. Let us list some of

these geometric important properties:

1. The mean curvature function of a null scroll is, up to the sign, the parameter of

distribution.

2. Since H2(s, t) = K(s, t), we can say that null scrolls are Weingarten surfaces (see [9]).

Actually, one can see that null scrolls are the only Lorentzian surfaces of L3 whose

mean and Gaussian curvatures are related as above (see also [9, 12]). This provides an

important bridge between intrinsic and extrinsic geometries of null scrolls. Therefore,

people living in a null scroll can see how the null scroll is curved in L
3.

3. A null scroll is stationary (H = 0) if and only if it is flat (K = 0).

4. A null scroll is a B-scroll if and only if it has constant mean curvature. This gives

an alternative definition of B-scrolls without involving any additional tool such as a

Cartan frame (see [11]).

5. The functions on a null scroll which are constant along the ruling flow are harmonic.

Even more, this kind of geometry is able to encode important physical properties too.

In fact, we have shown that null scrolls can be viewed as extrinsic string solutions and we

would like to compute the topological charges that they could carry. To do that, let us
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compute the critical values of the Polyakov extrinsic energy of a nonnull polygon, say Ω,

in a null scroll S(γ,B). The boundary ∂Ω is a simple closed curve made up of a finite

number, say n, of smooth nonnull curves. We denote by θj , for 1 ≤ j ≤ n, the exterior

hyperbolic angles at the corresponding vertices. The hyperbolic angle between two nonnull

vectors in a Lorentzian surface was introduced in [3] and the Gauss-Bonnet formula for

these nonnull polygons was obtained as follows

−
∫

Ω
K dA+

∫

∂Ω
κ ds+

n
∑

j=1

θj = 0.

Then we can compute the Polyakov energy of this polygon as

WPKH(Ω) =

∫

Ω
H2 dA−

∫

∂Ω
κ ds =

∫

Ω
K dA−

∫

∂Ω
κ ds =

n
∑

j=1

θj .

As a consequence, if we denote by Pn the space of nonnull polygons with n corners, then

WPKH(Ωn) ∈
(

−nπ
4
,
nπ

4

)

, ∀Ωn ∈ Pn.

Therefore, the critical values of the Polyakov extrinsic energy on pieces of null scrolls

not only have an intrinsic nature, but also they are topological invariants. These topological

charges are encoded in their boundaries, namely, in the corners along the boundaries. This

shows a holographic principle for the WPKH critical values which, obviously, has no reply

neither in an Euclidean context nor in the NGP setting. In other words, every curve,

propagating in L
3 through a geodesic lightlike flow, generates an extrinsic string solution

which, piecewise, carries topological charges that can be holographically computed by

measuring the hyperbolic angles in the boundary corners of pieces.

5 An algorithm to build the big zoo of scroll solutions

We are going to provide a simple method to explicitly construct the scroll solutions for

the WPKH string theory, as well as an algorithm to build as many extrinsic string so-

lutions as we wish. To proceed with, it will be useful to consider the following point

of view. First, note that a null scroll, S(γ,B), is completely determined, up to Lorentz

transformations, when we know γ′(s) and B(s) lying in the light cone, and satisfying the

“normalization condition”

〈γ′(s), B(s)〉 = −1.

Then, choose an orthonormal frame in L
3 where the Lorentz-Minkowski metric is written

as dx2 + dy2 − dz2, and so the light cone C by x2 + y2 = z2. In this framework any vector

~u ∈ C may be written as

~u = (x, y, z) = z (cosα, sinα, 1).

Therefore, (z, α), which we will call elliptic polar coordinates, parametrize C. Observe that

the corresponding coordinate curves are straight lines and circles, respectively. In this

frame, the null scroll data can be written as

γ′(s) = c(s) (cosω(s), sinω(s), 1), B(s) = r(s) (cosϕ(s), sinϕ(s), 1),
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and the normalization condition yields

cos (ω − ϕ) = 1− 1

c(s) r(s)
.

A straightforward computation allows us to obtain the mean curvature of S(γ,B), in terms

of this frame, as

H(s, t) = f(s) = −det[x′(s), B(s), B′(s)]

= −c(s) r(s) r′(s) det







cosω(s) sinω(s) 1

cosϕ(s) sinϕ(s) 1

cosϕ(s) sinϕ(s) 1







−c(s) (r(s))2 det







cosω(s) sinω(s) 1

cosϕ(s) sinϕ(s) 1

−ϕ′(s) sinϕ(s) ϕ′(s) cosϕ(s) 0







and then

H(s, t) = −c(s) (r(s))2
[

ϕ′(s)− ϕ′(s) cos (ω − ϕ)
]

= −c(s) (r(s))2
[

ϕ′(s)− ϕ′(s) +
ϕ′(s)

c(s) r(s)

]

.

Consequently, we find that

H(s, t) = f(s) = −r(s)ϕ′(s). (5.1)

Remark 5.1. The mean curvature of a null scroll only depends on the lightlike ruling flow.

In particular, stationary null scrolls (H = 0) correspond with parallel lightlike ruling flow,

that is, ruling flow with ϕ(s) constant. In this sense, they can be regarded as cylinders with

lightlike generatrices. The moduli space of stationary null scrolls has been obtained in [4].

It can be viewed as a kind of circle bundle over the space of congruence classes of lightlike

curves in L
3. This result deeply contrast with the case of stationary cylinders with nonnull

generatrices, where we only get a Lorentzian plane.

The algorithm. This new framework to study null scrolls has important consequences.

Actually, it allows us to construct explicitly the extrinsic strings propagating through

lightlike ruling flows. For example, we can give an algorithm to build explicitly the complete

class of extrinsic string solutions with prescribed Polyakov extrinsic density, say a function

h ∈ C∞(I, R), and this fact can be viewed as a kind of solving natural equations for scroll

extrinsic string solutions. To do it, we first choose any positive function, r(s), defined on

the same interval and use (5.1) to compute a third function by

ϕ(s) =

∫ 0

s

h(s)

r(s)
.

Then, we have the following lightlike flow

B(s) = r(s) (cosϕ(s), sinϕ(s), 1),
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which can be used as the ruling flow to generate all the extrinsic solutions corresponding

to scroll string solutions whose Polyakov extrinsic density is the given function h(s). Then,

the profile strings of these solutions have an arbitrary positive time function c(s) and an

angular function which must be determined from

ω(s) = ϕ(s) + arccos

(

1− 1

c(s) r(s)

)

.

Now, use quadratures to obtain the profile strings as

γ(s) =

∫ s

0
c(u)(cosω(u), sinω(u), 1)du.

In this way, we get that the scroll extrinsic string solution S(γ,B) has mean curvature

function h(s).

To illustrate this algorithm we give the following

Example 5.2. Suppose that we wish to obtain all scroll extrinsic string solutions, with

constant mean curvature, say h = 1, which are generated when propagating, in L
3, the

lightlike helix γ(s) = (sin s,− cos s, s).

To solve this problem, we need to construct the lightlike ruling flows, that allow one

to propagate the string in order to get the solutions. We put

B(s) = r(s) (cosϕ(s), sinϕ(s), 1),

which must satisfies the following two constraints

cos (s− ϕ(s)) = 1− 1

r(s)
(normalization condition),

ϕ′(s) = − 1

r(s)
(constant mean curvature condition).

Consequently, the angular function ϕ(s) must be a solution of the following differen-

tial equation
dϕ(s)

ds
= cos [s− ϕ(s)]− 1.

We use the change ψ(s) = s− ϕ(s) to reduce it to

dψ(s)

ds
= 2− cosψ(s),

which can be easily solved by separation of variables

dψ

2− cosψ
= ds,

finding the following general solution

ψ(s) = 2 arctan

{√
3

3
tan

[√
3

2
s+ C

]}

, C ∈ R,

– 12 –
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which provides the following parameters for the lightlike ruling flows

ϕ(s) = s− 2 arctan

{√
3

3
tan

[√
3

2
s+ C

]}

,

r(s) =
1

1− cos
{

2 arctan
{√

3
3 tan

[√
3
2 s+ C

]}} .

Consequently, there exists just a one-parameter class of lightlike flows that allow us

to propagate the lightlike helix γ(s) = (sin s,− cos s, s) to generate extrinsic string solu-

tions with constant mean curvature h = 1. Obviously, this result can be extended to

other strings.

6 The solutions viewed in the anti de Sitter world

The anti de Sitter three space, AdS3, with curvature −1 can be viewed in C
2
1, endowed

with the induced metric, as the following quadric

H
3
1 = {(ξ, η) ∈ C

2 : |ξ|2 − |η|2 = −1}.

As L3 can be naturally identified with C× (−R), let F : L3 → R be defined by F (ζ, k) =

| ζ|2 − k2. On the open solid hyperboloid Σ = {( ζ, k) ∈ L
3 : F (ζ, k) < 1}, let E : Σ → H

3
1

be the stereographic map given by

E(ζ, k) =

(

2

1− F (ζ, k)
ζ,

2

1− F (ζ, k)
k + i

1 + F (ζ, k)

1− F (ζ, k)

)

.

Now, the anti de Sitter metric, say g, can be pulled back by E to obtain the following,

manifestly conformally flat, metric on Σ

ḡ = E∗(g) =
4

(1− F (ζ, k))2
(| dζ|2 − dk2). (6.1)

The WPKH action measures the Willmore energy of the string worldsheets, which, as

we have explained in section 2, makes obvious its conformal invariance. Therefore, as a

consequence of our main theorem, we obtain: Every curve propagating in the anti de Sitter

three space, (Σ, ḡ), through a lightlike straight lines flow, generates an extrinsic string

solution. In other words, the class of null scrolls in L
3, when viewed under the metric ḡ,

still provides extrinsic string solutions in the anti de Sitter 3-space.

It is well known that the classical string theory, that is the NGP one, in anti de

Sitter 3-space is equivalent to sinh-Gordon theory via the Pohlmeyer reduction (see [17]).

Therefore, each classical string solution in (Σ, ḡ) can be written, at least theoretically,

in terms of a wavefunction (a solution of the sinh-Gordon equation). However, finding

explicit solutions via this inverse Pohlmeyer mechanism, in general, involve formidable

computations (see [14] and references therein).

The problem of finding the class of scroll extrinsic string solutions in L
3 that provides

classical string solutions in AdS3 is equivalent to the following geometric problem: find

– 13 –
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those null scrolls which are conformal stationary under the conformal change (6.1). For

simplicity, we denote by go = | dζ|2 − dk2 the metric in L
3, so the conformal change (6.1)

can be written as

ḡ = ρ2 go, ρ(ζ, k) =
2

1− F (ζ, k)
.

Then, one needs to know how the mean curvature functions of a surface are related after

making a conformal change in the target metric. In our case, the null scrolls in L3 giving

zero mean curvature (stationary surfaces) inAdS3 are those whose mean curvature function

(in L
3) satisfies

H = C(ρ) = go(∇ρ, C),

where we are using the notation introduced in section 3. The chief idea to discuss the

last equation is that the mean curvature function of a null scroll is completely codified

in the ruling flow and, in addition, it is invariant along that flow. Now, this idea can be

combined with the algorithm, to construct extrinsic string solutions with prescribed mean

curvature function, that we gave in section 5. Therefore, given any function, say H(s), we

consider the class of ruling flows B(s) = r(s) (cosϕ(s), sinϕ(s), 1) with −r(s)ϕ′(s) = H(s).

Now, the null scrolls associated with that class provide the whole family of extrinsic string

solutions whose mean curvature is H(s). However, to compute the conformal stationary

solutions, the mean curvature must be

H = go(∇ρ, C) = det(γ′(s), B(s),∇ρ).

This equation provides all of base curves γ(s) = (x(s), y(s), z(s)) of extrinsic string solutions

S(γ,B), having the given ruling flow, which are conformal stationary and so being classical

string solutions in AdS3.

Remark 6.1. The last argument provides a simple way to construct stationary surfaces,

and so classical string solutions, in AdS3. In a forthcoming paper, we will discuss, in

detail, the moduli space of classical string solutions obtained in this way. Moreover, we

will compare this moduli space of classical string solutions with that obtained directly in

AdS3 by considering the idea of null scroll and then characterizing the sub-moduli space

of stationary null scrolls.

Once we have discussed the way to obtain those null scrolls in L
3 which are conformal

stationary, and so providing classical string solution in the anti de Sitter three space, let

us briefly describe how to translate these solutions to the language of Pohlmeyer reduced

theory. To do it, first of all we need to recall the following well known classical statement:

every timelike surface in L
3, or in AdS3, can be parametrized by two families of lightlike

curves. This is a chief point that provides the geometric support to the Virasoro constraints.

To make it clear, let us use the following better known notation in this context. Suppose

we have a parametrization Y (z, z̄) of a certain timelike surface. Then, we put

z =
1

2
(u− v), z̄ =

1

2
(u+ v), and ∂ = ∂u − ∂v, ∂̄ = ∂u + ∂v,
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and so ∂Y = Yz and ∂̄Y = Yz̄. Consequently, we get

∂Y · ∂Y = 〈Yz, Yz〉, ∂̄Y · ∂̄Y = 〈Yz̄, Yz̄〉,

which shows that the Virasoro constraints are equivalent to the fact that the original

parametrization is made through two families of lightlike curves. As an important conse-

quence, we see that the Virasoro constraint are invariant under conformal changes in the

target space, so they are actually established in the conformal class of the target space-

time metric.

For example, consider a null scroll S(γ,B) in L
3 naturally parametrizated by

φ(s, t) = γ(s) + tB(s), B(s) = r(s)
(

eiϕ(s), 1
)

.

Then, it is obvious that this parametrization does not encode the Virasoro constraints,

because, in general,

〈φs, φs〉 = 2t 〈γ′(s), B′(s)〉+ t2 〈B′(s), B′(s)〉,

does not identically vanish. Certainly, one can obtain a parametrization of S(γ,B) by two

families of lightlike curves, what, in general, could be formidably complicated. For the

subclass of stationary surfaces, that is, for those extrinsic string solutions that in addition

are classical ones, we can do it easily. In fact, for these solutions the angular function ϕ(s)

defining the ruling flow, B(s), is a constant, say ϕo, and so B(s) = r(s)
(

eiϕo , 1
)

= r(s)~vo.

Said otherwise, the rulings of a classical string solution are parallel. This is the key to

define the following parametrization

X(s, t) = γ(s) + t~vo,

which certainly provides a pair of lightlike parametric curves, and so the Virasoro con-

straints hold.

Next, we start with a conformal stationary extrinsic string solution, say S(γ,B), in

L
3, which we parametrize by two families of lightlike curves to include the Virasoro con-

straints. Then, it provides a classical string solution in the anti de Sitter target which is

parametrized in the same way and so the Virasoro constraints hold. Denote by X(z, z̄)

such a parametrization. In this setting, the induced metric on the null scroll is given by

2µ(z, z̄) dz dz̄, where µ is a certain function which can be computed in terms of null scroll

data, γ and B. Now, the function defined by

β(z, z̄) =
4µ(z, z̄)

1− F (ζ(z, z̄), k(z, z̄))
,

provides a solution of the following generalized sinh-Gordon equation, (see [14] for details)

∂∂̄ β − eβ − h e−β = 0,

where h stands for a certain function which can be tediously computed in terms of null

scroll data.
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The stationary surfaces in AdS3, or equivalently the conformal stationary surfaces

in L
3, define, in the boundary of the anti de Sitter space, the so called Wilson loops.

However, any extrinsic string solution, even not being stationary, defines certain curves in

the boundary which could be called generalized Wilson loops. For example, these curves

can be easily obtained for stationary surfaces in L
3. In fact, we only need to compute the

conformal factor, providing the anti de Sitter space (Σ, ḡ), restricted to the null scroll as

F (s, t) =

∣

∣

∣

∣

t eiϕo +

∫

c(s) eiω(s) ds

∣

∣

∣

∣

2

−
(

t+

∫

c(s) ds

)2

,

and then solve the equation

F (s, t) =

∣

∣

∣

∣

t eiϕo +

∫

c(s) eiω(s) ds

∣

∣

∣

∣

2

−
(

t+

∫

c(s) ds

)2

= 1.

Let us exhibit the following example. Consider the lightlike helix given by

γ(s) =
(

−ieis, s
)

, s ∈ R,

so that γ′(s) =
(

eis, 1
)

. We now choose the lightlike vector ~vo =
(

eiϕo , 1
)

and build the

associated stationary null scroll, which we parametrize by two families of lightlike curves

to get the Virasoro constraints,

X(s, t) =
(

−ieis + teiϕo , s+ t
)

.

For simplicity, we choose ϕo = 0 to get

F (s, t) = F (ζ(s, t), k(s, t)) = 1− s2 + 2t(sin s− s).

Consequently, this extrinsic string solution provides the following generalized Wilson loop

in the conformal boundary of the anti de Sitter 3-space

w(s) = γ(s) +
s2

2(sin s− s)
~vo =

(

sin s+
s2

2(sin s− s)
,− cos s, s+

s2

2(sin s− s)

)

.

Finally, we wish to remark that any curve, say α(s), no matter its causal character,

in the conformal boundary ∂Σ of the anti de Sitter 3-space, can be viewed as, at least, a

piece of the generalized Wilson loops of an extrinsic string solution. Furthermore, if α(s)

is null-homotopic, the null scrolls materializing the above property determine a dual curve

in the opposite size of the conformal boundary.

To check this fact, we can do the following simple argument. We take any lightlike

vector field, say B(s), along the given curve. Then, we construct in L
3 the corresponding

null scroll S(α,B). Now, we can obtain (solving a Ricatti equation) a lightlike curve,

say γ(s), in the open solid hyperboloid Σ which generates the above null scroll, i. e.,

S(α,B) = S(γ,B). This null scroll provides an extrinsic string solution not only in L
3,

but also in the anti de Sitter 3-space (Σ, ḡ). Obviously this solution is reflected in the

conformal boundary through a set of curves including the previous one.

The study of the role that these generalized Wilson loops would play in the AdS/CFT

correspondence could be an interesting and however complicated problem that needs fur-

ther research.
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Spain, by Fundación Séneca, Regional Agency for Science and Technology (Regional Plan

for Science and Technology 2007-2010).

References
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