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Abstract

The space of curves which are extremal for the total curvature energy is well
understood in isotropic homogeneous 3-spaces, said otherwise, spaces of constant
curvature. In this paper we obtain that space of extremals in homogeneous 3-spaces
whose isometry group has dimension four, that is, rotationally symmetric homoge-
neous 3-spaces. Most of the geometry in these spaces is governed by the existence
of a unit Killing vector field, ξ, sometimes called the Reeb vector field, which turns
the homogeneous 3-space into the source of a Riemannian submersion whose target
space is a surface with constant curvature. Here, we show that a curve is an extremal
of the total curvature energy if and only if ξ lies into either the rectifying plane or
the osculating plane along that curve. Then, we prove that every rotationally sym-
metric homogeneous 3-space, except H2 × R, admits a real one-parameter class of
extremals with horizontal normal (Lancret helices). The whole family of extremals
is completed with a second class made up of those curves with horizontal binormal.
In contrast with the first class, it appears in any rotationally symmetric space, with
no exception, and it can be modulated in the space of real valued functions. We
also work out geometric algorithms to solve the so called solving natural equations
for extremals problem, allowing us to determine them explicitly in many cases. In
addition, we solve the closed curve problem by showing the existence of two families
of closed extremals. Namely, a rational one-parameter class of closed Lancret helices
that appears at any rotationally symmetric homogeneous 3-space, except in H2×S1,
and a second class of extremals with horizontal binormal, which can be identified
with the class of convex closed curves in the Euclidean plane. We also present a
quantization principle, à la Dirac, for extremal values of the total curvature energy
acting on closed curves in any rotationally symmetric homogeneous 3-space.
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1 Introduction

According to a classical result of Whitney and Grauestein, the total curvature of plane

curves is, under suitable boundary conditions, an invariant in the homotopy class of the

curve. Even more, each homotopy class of curves, satisfying suitable boundary conditions,

is completely characterized by the common total curvature. As an obvious consequence,

if fluctuations do not change the topology of curves, then a variational approach to the

total curvature action of curves in the Euclidean plane turns out to be trivial.

On the other hand, another classical and well known result, due to Fenchel, assures

that the total curvature of any simple closed curve in the Euclidean 3-space satisfies∫
γ

κ(s) ds ≥ 2π,

with equality if and only if γ is a convex plane curve. Therefore, the minimum of the

total curvature action over simple closed curves in the Euclidean space is 2π and it is

reached just on the convex plane curves. Hence, an obvious and naive question is to

decide whether, besides those minima, there is any other extremal (critical) of the total

curvature functional acting on closed curves in the Euclidean space.

More precisely, it seems natural to consider the total curvature functional acting on

a suitable space of curves in a certain surface, or more generally in a Riemannian space,

and then to study the associated variational problem. Although the study of the total

curvature of curves in Riemannian spaces has been intensively considered along the lite-

rature (see [8] and references therein), the systematic study of the associated variational

approach was initiated in [1, 2]. However, we have to point out that M. S. Plyushchay,

[13], proposed it as a model to study massless particles with rigidity.

Some progress has been made in this direction which, as far as we know, can be briefly

summarized as follows. The variational approach for the total curvature in surfaces was

first considered in [2], where it was shown that extremals of the total curvature are reached

by curves consisting of parabolic points. Stability of extremals was also holographically

characterized there. Then, the problem in spaces with the highest rigidity (constant

curvature) was considered in [1], where it was shown that the dynamics associated with

the total curvature action is consistent only in round 3-spheres. More precisely, when

studying the total curvature dynamics of curves in an n-dimensional Riemannian space,

Mn(k), with constant curvature k, we have:

- The dynamics is reduced to dimension n ≤ 3.

- The curvature must be non negative, k ≥ 0, so it does not make sense in, for

example, the hyperbolic space.

- For k = 0 and up to topology, the dynamics actually occurs over arbitrary plane

curves in R3. This, in particular, gives the answer to the above stated naive question.
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- For k > 0, up to topology, the extremals over a round 3-sphere are just the so called

Legendrian curves, that is, curves which are horizontal lifts, via the Hopf map, of

curves in the 2-sphere.

Other partial results, providing examples and families of extremals in Berger spheres

and in the complex projective plane, can be found in [1] (see also [4, 6, 7] for extremals

in warped product spaces).

In this paper we will focus on this variational approach for curves in homogeneous

3-spaces whose isometry group has dimension four (sometimes called rotationally sym-

metric homogeneous 3-spaces [11]). In particular, we obtain the complete classification of

extremals for the total curvature action in these backgrounds. The main tool to determine

the extremals is the existence of an infinitesimal translation, ξ, which allows us to see each

homogeneous 3-space with rigidity of order four as a fibration over a surface with constant

curvature, which works, in turn, as the space of ξ-orbits. As a consequence, a congruence

class of these homogeneous 3-spaces is determined, up to topology, by a pair of constants:

the curvature of the base, c, and the so called bundle curvature, r. Then, following [9], we

will use the popular notation E(c, r),with c 6= 4r2, to denote those homogeneous 3-spaces

having four dimensional isometry group (if c = 4r2 the space has constant curvature,

said otherwise, highest rigidity, and six dimensional isometry group). Furthermore, we

provide algorithms to explicitly construct the extremals, which can be regarded as the

solution of the so called solving natural equations for extremals problem. The results of

this paper provide progress in the knowledge of the dynamics associated with the total

curvature action of curves in 3-dimensional homogeneous geometries (including Thurston

ones [15, 16]), or, said otherwise using the Plyushchay terminology ([13]), of the dynamics

of a massless boson in those backgrounds. The current status of this variational approach

can be now described as follows:

1. In the hyperbolic space, H3, there is no dynamics of curves associated with the total

curvature action, because it does not provide any extremal.

2. If c = 4r2, then E(c, r) has constant curvature, r2, and, up to topology, it should be

either

2.1 R3, when r = 0, and the dynamics works through curves with vanishing torsion,

i. e., plane curves; or

2.2 S3(r2), the round sphere with curvature r2, when r 6= 0. Now, the dynamics

works through curves with torsion ±r. In other words, horizontal lifts via the

Hopf map of curves in the corresponding round two-sphere.

3. If c 6= 4r2 and r = 0, then the homogeneous 3-space is a Riemannian product and

there are two possibilities:

3.1 If c > 0, then E(c, 0) = S2(c) × R and there are two families of extremals for

the total curvature action, namely,
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3.1.1 The class of curves with horizontal Frenet normal. It forms a real one-

parameter class {γm,m ∈ R − {0}} of Lancret helices, that is, curves

making a constant angle with ξ. More precisely, this family can be descri-

bed as follows: for any m ∈ R − {0}, choose in S2(c) the circle βm with

geodesic curvature

κg =

√
c(m2 + 1)

m
,

and then take γm as the geodesic with slope m in the Hopf cylinder shaped

on βm.

3.1.2 The class of curves with horizontal binormal, which automatically have

torsion zero. Up to rigid motions, this family is formed by curves lying in

Hopf cylinders built over great circles in S2(c) (see Corollary 4.12).

3.2 If c < 0, then E(c, 0) = H2(c) × R. Now the space of extremals is made up

of curves with horizontal binormal. Up to rigid motions, they are the curves

lying in Hopf cylinders built over geodesics in the hyperbolic plane H2(c) (see

Corollary 4.12).

4. If c 6= 4r2 and r 6= 0, the space of extremals consists of two families of curves:

4.1 A real one-parameter class of Lancret helices (see Proposition 4.3).

4.2 The class of curves with horizontal binormal, which automatically has constant

torsion τ = ±r. This class can be parameterized by the space of differentiable

real functions. They are summarized as well as explicitly and geometrically

described after Proposition 4.8.

Besides the isotropic and the rotationally symmetric homogeneous spaces, whose iso-

metry groups have, respectively, dimension six and four, a third class completes the list

of 3-dimensional homogeneous spaces [14, 15, 16]. Homogeneous spaces in this class

have an isometry group of dimension three, the corresponding geometries are called solv-

geometries or Bianchi geometries and they are associated with the group Sol3. Therefore,

a natural open problem, which will not be addressed here, is to study the dynamics

associated with the total curvature of curves in Sol3.

Our interest, then, is directed towards the closed curve problem. In other words,

we wonder about the existence of closed extremals, that is, critical points of the total

curvature energy acting on closed curves in E(c, r). We completely solve this question

showing two big families of closed solutions:

(i) A first class, FN , found in any E(c, r) other than H2(c)×S1, is formed by a rational

one-parameter family of closed Lancret helices, equivalently, curves with horizontal

normal.

(ii) A second class, FB, which can be found in any E(c, r), is formed by closed solutions

with horizontal binormal. This family is identified with the set of convex closed

curves in the Euclidean plane.
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Moreover, we give a quantization principle, in the sense of Dirac, which assures that

the critical levels of the total curvature energy acting on closed curves in E(c, r) are not

arbitrary, but rational multiples of a certain fixed quantity of energy.

2 The total curvature action

Troughout this paper we will consider clamped curves, with a finite number of inflection

points, in an n-dimensional Riemannian space (M, 〈 , 〉). More precisely, for any pair of

points, p1, p2 ∈ M and tangent vectors xi ∈ Tpi
M , we consider the space, Ω, of smooth

immersed curves with a finite number of points where the curvature vanishes (inflection

points) that are clamped to those points, that is,

δ : [a1, a2] →M δ(ai) = pi, δ
′(ai) = xi, 1 ≤ i ≤ 2.

Note that this space includes, in particular, the space of closed curves when p1 = p2 and

x1 = x2. Now, in Ω we consider the action that measures the total curvature of curves,

that is,

F : Ω → R, F(δ) =

∫
δ

κ(s) ds,

where κ denotes the curvature function of curves in Ω. A natural problem is the study

of the variational problem associated with this functional and specially to determine the

curves which are extremals of this action.

Given δ ∈ Ω, the tangent space, Tδ Ω, of Ω at δ is identified with the space of vector

fields along δ which vanish at the end points. If W ∈ Tδ Ω, then one can define a curve

in Ω passing through δ in the direction of W , say for instance

Γ : (−ε, ε) → Ω, Γ(t) = expδ(s) tW (s) ,

and, the first variation formula is defined by DF(δ) : Tδ Ω → R

DF(δ)[W ] =
∂

∂t
(F(Γ(t)))

∣∣∣∣
t=0

.

It can be computed, using a standard argument which involves some integration by parts,

and was set down in [1]

DF(δ)[W ] =

∫
δ

< E(δ),W > ds+ B(δ,W ),

where E(δ) and B(δ,W ) denote the so called Euler-Lagrange and boundary operators,

respectively. The Frenet equations yield (see [1] for details)

E(δ) = τ 2N − τsB − τη −R(N, T )T,

B(δ,W ) =
m∑
i=1

< ∇TW (si), N(s+
i )−N(s−i ) > +

m∑
i=1

< W (si),∇T N(s+
i )−∇T N(s−i ) >,
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where ∇ and R are, respectively, the Levi-Civita connection and the Riemannian curva-

ture of the metric 〈 , 〉 on M . Moreover, T and N stand for the unit tangent and the unit

normal (which is well defined if n = 2, while perhaps it is not defined in the inflections

points δ(si), 1 ≤ i ≤ m, when n ≥ 3). Also B is the unit binormal and in this case

τ ≥ 0 denotes the torsion and τs its derivative with respect to the arc-length parameter.

Finally, η belongs to the subbundle normal to the one spanned by {T,N,B}(s) along δ(s),

except at most at the inflection points. Now, the last formulas allow us to characterize

the extremals for F in Ω. In fact, δ is a critical point of F in Ω if and only if the following

conditions hold (see [1])

(1) N , B and τ are well defined at the inflection points of δ, and

(2) the following Euler-Lagrange equation is satisfied

R(N, T )T = τ 2N − τsB − τη. (1)

It seems clear that the degree of integrability we have, on the above stated field equation,

strongly depends on the control we get on the curvature of the target space. Note that

the influence of this space on the equation is exerted through the sectional curvature of

the osculating plane of the trajectories and along them.

Let us briefly survey what is known on this equation and so on the critical points of the

total curvature action. If M is the Euclidean plane, R2, then equation (1) becomes into

an identity and this is so because, if fluctuations do not change the topology of curves,

then the action F is constant on each homotopy class of curves in Ω. For example, if Ω

consists of closed curves, the action F provides an integer multiple (the rotation index)

of 2π. In the general case that value must be corrected by the angle between x1 and x2.

More generally, if M has dimension two, then (1) can be written as K(δ(s)) = 0,

where K stands for the Gaussian curvature of the surface. Therefore, extremal curves

are made up of parabolic points. This case, including the stability of extremals, has been

amply considered in [2].

On the other hand, the dynamics associated with F in a space of constant curvature

c, say Mn(c), for any dimension n, was completely solved in [1]. Let us briefly summarize

it. First of all, note that in this case, the Euler-Lagrange equation (1) turns out to be

τ 2 = c, τs = 0, τ η = 0,

and the third equation implies that the dynamics evolves in backgrounds with dimension

n ≤ 3. Moreover, the trajectories have constant torsion and c ≥ 0. Next, it is clear that

there are, up to topology, two possibilities to get extremals: the Euclidean plane, where

the dynamics is trivial, and a round 3-sphere. This reduces the problem to determine

those curves in a 3-sphere, say with radius one, whose torsion is, up to orientation, one.

These curves were geometrically obtained in [1]: They are congruent to a horizontal lift

(also called a Legendrian curve), via the Hopf map, of a curve in the round two sphere

with radius 1/2.
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Since the round 3-sphere is, essentially, the only constant curvature Riemannian space

where the variational problem makes sense and, on the other hand, it is also a homoge-

neous 3-space, it seems natural to study the existence of extremals for the total curvature

of curves in homogeneous 3-spaces M3. It is known that the isometry group, I(M3), of M3

is a Lie group whose dimension is 6, 4 or 3. From now on, we will say that it has rigidity

of order 6, 4 or 3, respectively. In the first case, the space has constant curvature and so

it is covered by either S3 (positive curvature), R3 (vanishing curvature) or H3 (negative

curvature). So a natural breeding ground to study our variational problem is provided

by the homogeneous 3-spaces in the second rigidity level, that is, when dim(I(M3)) = 4.

This is certainly the widest and most interesting family of homogeneous 3-spaces, which

sometimes are called rotationally symmetric homogeneous 3-spaces. Among its simply

connected members, one can find, besides the Riemannian products S2 × R and H2 × R,

the Berger spheres, the Heisenberg group, Nil3, and the universal covering of the special

lineal group SL(2,R). Obviously, the family also includes quotient of these spaces by

suitable isometry subgroups, namely,

- Lens spaces, Ln = S3/Zn, n ≥ 2, including the projective space, RP3 = L2, with the

corresponding induced Berger metrics;

- Heisenberg bundles, including those over flat tori; and

- The projective special linear group PSL(2,R) = P̃SL(2,R)/Z2 and other quotients

of P̃SL(2,R).

Any homogeneous 3-space M3 with rigidity of order four can be viewed as a bundle

over a surface with constant curvature. To exploit this approach, we will follow the

notation of [9]. This fibration provides a Riemannian submersion, p : M3 → B2(c), with

geodesic fibers (vanishing first O’Neill invariant) over a constant curvature (say c) surface.

In addition, the vertical flow is generated by a unit Killing vector field ξ which allows one

to give the following expression for the second O’Neill invariant, A,

AXξ = ∇X ξ = r (X × ξ),

where X is a horizontal vector field and r, the bundle curvature [9], is a constant. The-

refore, p : M3 → B2(c) is a Killing submersion in the sense of [10, 12]. Throughout this

paper, we will denote by ∇ and ∇ the Levi-Civita connections on M3 and B2(c), respec-

tively. Both constants, c (curvature of the base) and r (bundle curvature), classify the

homogeneous 3-spaces up to isometries and topology. In other words, each pair of real

numbers, (c, r), determines, up to topology, a congruence class E(c, r) of homogeneous 3-

spaces whose isometry group has either dimension 4, if c 6= 4r2, or dimension 6 (constant

curvature), if c = 4r2. From now on we will focus on homogeneous three spaces, E(c, r),

whose isometry group has dimension 4 and consequently c 6= 4r2. Furthermore, we will

consider oriented homogeneous three spaces and, in particular, we will use orientation to

define the cross product.
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3 Lancret helices in homogeneous 3-spaces

In a Riemannian space endowed with a unit Killing vector field ξ (also called an infini-

tesimal translation), curves making a constant angle with ξ are known as Lancret helices

with axis ξ (see [3] for details on Lancret helices in the 3-sphere). As every homogeneous

3-space admits a unit Killing vector field, it seems natural to study the following:

Problem 1: Are there Lancret helices being extremal of the total curvature action in

rotationally symmetric homogeneous spaces?

This problem will be answered in the next section (see Proposition 4.2). To this

end, it will be useful to characterize, geometrically, Lancret helices in homogeneous 3-

spaces. Let M3 = E(c, r) be a homogeneous 3-space, p : M3 → B2(c) the corresponding

Riemannian submersion, and let ξ be the associated unit vertical Killing vector field. To

study Lancret helices with axis ξ, it is useful to consider the so called equivariant surfaces.

For any profile curve, β(s), in B2(c), choose a horizontal lift, say β̄(s). Both curves have

the same speed, so we will assume that both are parameterized by the arc-length. Now,

consider the surface Sβ = p−1(β) in M3, which can be nicely parameterized by horizontal

lifts of β and ξ-orbits (from now on, simply orbits) via the following map

X(s, t) = φt(β̄(s)),

where {φ t : t ∈ R} is the one-parameter group generated by ξ. It is clear that Sβ is an

oriented flat surface, with the obvious induced orientation Xs×Xt, which we will call the

Hopf cylinder with profile curve β(s). Now, it is easy to compute (see [10]) the second

fundamental form of a Hopf cylinder, whose matrix in the above parameterization is given

by (
κg −r
−r 0

)
where κg stands for the geodesic curvature of the profile curve in the base B2(c).

Let ∇′ be the Levi-Civita connection of the induced metric on Sβ and let γ(s) be a

unit speed geodesic in a certain Hopf cylinder, Sβ. Then ∇′
γ′γ′(s) = 0 and so we have

d

ds
〈γ′(s), ξ(γ(s))〉 = 〈∇γ′γ′(s), ξ(γ(s))〉+ r〈γ′(s), γ′(s)× ξ(γ(s))〉 = 0,

which shows that the angle that γ(s) makes with ξ is constant. In other words, the

geodesics of the Hopf cylinders are Lancret helices.

To show the converse, let γ(s) be a unit speed Lancret helix, so there exists ϕ ∈
R, which we may suppose different from zero (otherwise the result is trivial) such that

〈γ′, ξ〉(s) = cosϕ. Now, define the curve β(s) = p(γ(s)) in B2(c) and use it as a profile

curve to get the Hopf cylinder Sβ = p−1(β). It is clear that the original Lancret helix lies

in Sβ, and, moreover, we have

0 =
d

ds
〈γ′, ξ〉(s) = 〈∇γ′γ′, ξ〉(s) + r〈γ′, γ′ × ξ〉(s) = 〈∇′

γ′γ′, ξ〉(s),
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which proves that ∇′
γ′ γ′(s) = 0, and so γ(s) is a geodesic in Sβ = p−1(β). Therefore we

have the following

Proposition 3.1 The Lancret helices in any homogeneous 3-space with rigidity of order

four are just the geodesics of Hopf cylinders.

Next, we wish to compute the Frenet apparatus, {Tγ, Nγ, B, κ, τ}(s) of a Lancret

helix γ(s) in M3. Let β(u) be the unit speed profile curve such that γ(s) is a geodesic in

Sβ = p−1(β). Furthermore, {T = β′, N = JT, κg} will be the Frenet apparatus of β(u) in

B2(c). We also have the above standard parametrization X(u, t) = φt(β̄(u)) on the Hopf

cylinder, so that T̄ (u, t) = Xu(u, t) = dφt(β̄
′(u)) is a horizontal lift of T along the Hopf

cylinder. In this context, since γ(s) is a geodesic in the flat surface Sβ = p−1(β), it must

be the image under X of a certain straight line in the (u, t)-plane. Therefore, there exists

ϕ ∈ (0, 2π) such that γ(s) = X((sinϕ) s, (cosϕ) s). Then we have Tγ = sinϕ T̄ + cosϕ ξ.

We also know that Nγ = T̄ × ξ, because it must agree with the unit normal to the Hopf

cylinder, and therefore B = cosϕ T̄ − sinϕ ξ. To compute the curvature function, κ(s),

we use that it should be the normal curvature of γ in Sβ and then

κ =
(

sinϕ cosϕ
) (

κg −r
−r 0

) (
sinϕ

cosϕ

)
=
κg − 2rm

m2 + 1
, (2)

where m = cotϕ. Finally, a direct computation allows us to obtain

∇Tγ B = [κg cosϕ sinϕ− r(cos2 ϕ− sin2 ϕ)]Nγ,

which gives

τ =
1

2
κg sin 2ϕ− r cos 2ϕ =

κgm− r(m2 − 1)

m2 + 1
. (3)

It is worth pointing out that, from (2) and (3), the curvature and torsion functions of

Lancret helices in homogeneous 3-spaces are nicely related by

τ = (cotϕ)κ+ r. (4)

Moreover, (2) and (3) allow us to compute the curvature, κg, of the profile curve and the

slope, m = cotϕ, of a Lancret helix in terms of both its curvature function, κ, and its

torsion τ . In fact, we get

κg = κ+
τ 2 − r2

κ
, m =

τ − r

κ
.

As a consequence, we have the following

Proposition 3.2 A Lancret helix in a homogeneous 3-space M3 = E(c, r) is unique and

equivalently determined by either

(i) Its curvature and torsion functions (κ, τ); or
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(ii) The curvature, κg, of the profile curve in the space of orbits and the slope of the

helix, m = cotϕ, as a geodesic in the corresponding equivariant surface.

The classical theorem of Lancret ensures that formula (4) with r = 0 provides a

simple characterization of Lancret helices in the Euclidean space. This classical theorem

of Lancret was discovered to be true in the 3-sphere (see [3]), where it was also observed

that the only Lancret helices in the hyperbolic 3-space are those with curvature an torsion

being both constant (in some sense they are like circular helices). Thus, it seems natural

to ask for a Lancret-type theorem in homogeneous 3-spaces with rigidity of order four.

Said otherwise

Problem 2: Does equation (4) characterize Lancret helices in such homogeneous 3-

spaces?

However, a rotationally symmetric homogeneous space does not have enough isome-

tries to guarantee the converse and so the theorem of Lancret. More precisely, we are

going to show the existence of a curve, in a homogeneous 3-space with rigidity of order

four, with the same curvature and the same torsion of a Lancret helix, but they are not

congruent.

Proposition 3.3 Let M3 = E(c, r) be an homogeneous 3-space with c 6= 4r2, and let γ(s)

be a Lancret helix in M3 with curvature κ(s) and torsion τ(s). Then there exists a curve

δ(s) in M3 with curvature function κδ = κ and torsion τδ = τ which is not congruent to

any Lancret curve in M3.

Proof. The Frenet frame {T (s), N(s), B(s)} of a curve parameterized by the arc-length,

in M3, with curvature κ(s) and torsion τ(s) comes as a solution of the Frenet equations

∇s

 T (s)

N(s)

B(s)

 =

 0 κ(s) 0

−κ(s) 0 τ(s)

0 −τ(s) 0

  T (s)

N(s)

B(s)


which is a first order linear system of differential equations. For any p ∈ M3 and an

orthonormal frame {~t, ~n,~b} in the tangent space Tp(M
3), there exists a unique solution,

{Tδ(s), Nδ(s), Bδ(s)}, of the above system and then a unique arc-length parameterized

curve, δ(s), such that δ(0) = p and {Tδ(0), Nδ(0), Bδ(0)} = {~t, ~n,~b}. Now, suppose that

γ(s) is a Lancret helix in M3 with curvature κ(s) and torsion τ(s) and let m = cotϕ be

its slope as a geodesic in a suitable Hopf cylinder. Now, by choosing an initial condition

such that the angle between ~t and ξ(p) is different from ϕ, then the corresponding solution

δ(s) is not congruent to any Lancret helix. In fact, note that the slope of a Lancret helix

is completely determined by

m = cotϕ =
τ − r

κ
.

�
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4 Extremals of the total curvature in homogeneous

3-spaces

The Riemannian curvature operator of a homogeneous 3-space M3 = E(c, r) was compu-

ted in [9] to be

R(X, Y )Z = (c− 3r2)(〈Y, Z〉X − 〈X,Z〉Y )

+ (−c+ 4r2)[〈Y, ξ〉〈Z, ξ〉X − 〈X, ξ〉〈Z, ξ〉Y + 〈X, ξ〉〈Y, Z〉ξ − 〈Y, ξ〉〈X,Z〉ξ].

In particular, along a curve γ(s) with Frenet frame {T,N,B}(s), we have

R(N, T )T = (c− 3r2)N + (−c+ 4r2)[〈T, ξ〉2N − 〈T, ξ〉〈N, ξ〉T + 〈N, ξ〉ξ],

which can be combined with (1) to obtain the following equation whose solutions provide

the extremals of the total curvature action on M3 in E(c, r)

τ 2 = r2 + (c− 4r2)〈B, ξ〉2, τs = (c− 4r2)〈N, ξ〉〈B, ξ〉.

We can manipulate these equations to see that those extremals are just the solutions of

the following field equations

τ 2 = r2 + (c− 4r2)〈B, ξ〉2, (r − 2τ)〈N, ξ〉〈B, ξ〉 = 0. (5)

The following result reduces the integration of the above equations to three fundamental

cases.

Lemma 4.1 Let γ(s) be an extremal of the total curvature functional in E(c, r), then

either

(E1) ξ lies in its rectifying plane along γ(s), or

(E2) ξ lies in its osculating plane along γ(s).

Proof. According to the second equation in (5), we only need to study the case r−2τ = 0.

Then the first equation of (5) shows that

〈B, ξ〉2 = − 3τ 2

c− 4r2
,

and so 〈B, ξ〉 is a constant. However d
ds
〈B, ξ〉 = (r − τ)〈N, ξ〉 and consequently the

extremals in this class have either horizontal normal or torsion τ = r. However in the last

case τ = 0 and so the binormal is horizontal. �
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4.1 Extremals with horizontal normal

First of all, observe that a curve in E(c, r) has horizontal normal if and only if it is a

Lancret helix. That follows from

d

ds
〈T, ξ〉 = κ〈N, ξ〉+ r〈T, T × ξ〉 = κ〈N, ξ〉,

where geodesics can be considered trivial Lancret helices, as well as trivial extremals of

the total curvature. In fact, they are minima, because the curvature function of a curve

in dimension three does not change sign.

Consequently, the class of extremals with horizontal normal is a subclass of the family

of Lancret helices. To determine those Lancret helices providing extremals, we only need

to check the first equation of (5) because the second equation automatically holds for

Lancret helices. Now, for a Lancret helix we see that 〈B, ξ〉 = sinϕ = 1√
m2+1

is constant

and therefore the curvature and torsion of extremal Lancret helices are both constant

functions. Therefore, we obtain the following characterization of extremal Lancret helices

Proposition 4.2 A Lancret helix in E(c, r) is an extremal of the total curvature if and

only if it has constant torsion satisfying that

τ 2 =
c+ r2(m2 − 3)

m2 + 1
. (6)

Remark 4.3 Since the only obstruction to the existence of extremal Lancret helices in

E(c, r) is provided, according to the above proposition, by the positivity of c+r2(m2−3),

we have the following

Corollary 4.4 Every homogeneous 3-space E(c, r), except H2 × R, admits a real one-

parameter class of Lancret helices which are extremal of the total curvature action.

Proof. Homogeneous 3-spaces which are Riemannian products correspond to r = 0.

Then for H2 × R, as c < 0, the above proposition shows the non existence of extremal

Lancret helices. Otherwise, we have the real one-parameter class of extremal Lancret

helices with slope satisfying

m2 >
3r2 − c

r2
.

�

Now, helices in this class can be geometrically obtained as follows. The constancy

of both torsion and curvature imply that they are geodesics in Hopf cylinders built over

curves with constant geodesic curvature (circles) in B2(c). According to (3) the torsion

of any Lancret helix can be expressed in terms of both the geodesic curvature, κg, of

the profile curve in B2(c) and the slope, m = cotϕ, of the helix as a geodesic in the

corresponding Hopf cylinder. Therefore, for any m satisfying the above inequality, just
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choose the geodesic with slope m = cotϕ in the Hopf cylinder Sβm , where βm is the circle

in B2(c) with geodesic curvature

κg =

√
(m2 + 1)(c+ r2(m2 − 3)) + r(m2 − 1)

m
, (7)

to get a Lancret helix which is an extremal of the total curvature in E(c, r). �

Example 4.5 In Riemannian product homogeneous 3-spaces, we have r = 0 and then we

observe that while H2(c)× R has no extremal Lancret helices, in S2(c)× R we can find a

one-parameter class of Lancret helices which are extremal of the total curvature energy.

In fact, for any m ∈ R− {0}, we choose in S2(c) the circle βm with geodesic curvature

κg =

√
c(m2 + 1)

m
,

and then take γm as the geodesic with slope m in the Hopf cylinder shaped on βm. Then

γm is an extremal of the total curvature in S2(c)× R.

Example 4.6 In nilmanifold geometries, which are associated to the Heisenberg group,

we have c = 0. Therefore, for any ϕ ∈ (0, π/6) there exists a Lancret helix which is

an extremal of the total curvature action. These extremals appear as geodesic in Hopf

cylinders built over circles in the Euclidean plane with curvature

κg =
r

m
(
√
m4 − 2m2 − 3 +m2 − 1), m = cotϕ.

4.2 Extremals with horizontal binormal

In a three dimensional oriented Riemannian space one can define the cross product. Ac-

tually we are considering E(c, r) as an oriented space and have used the cross product

to define the unit binormal of a curve, γ(s), as B(s) = T (s) × N(s). In particular, the

osculating planes along γ(s) admit the obvious induced orientation {T (s), N(s)}.
In this section we focus on the study of extremals with horizontal binormal, 〈B, ξ〉 = 0,

and observe that any curve in E(c, r) satisfying this condition is automatically an extremal

of the total curvature functional. Indeed, just note that

d

ds
〈B, ξ〉 = (r − τ)〈N, ξ〉 = 0,

and so τ = r. Otherwise, the curve is an orbit. Thus the first equation of (5) holds.

Consequently the whole family of curves with horizontal binormal in E(c, r) constitutes

a class of extremals of the total curvature energy. Now, our immediate purpose is to

understand this class of extremals.

Let γ(s) be a unit speed curve with horizontal binormal. Then ξ lies in the osculating

plane along γ(s) and it allows us to define a unit horizontal vector field, η, along the curve,
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which also lies in the osculating plane, and satisfies that η × ξ = B. We call {B, η, ξ}
a positive oriented orthonormal frame along γ(s) which is adapted to the horizontal-

vertical decomposition. Therefore, {T,N} and {η, ξ} provide the same orientation in the

osculating plane along γ(s). Let ψ(s), 0 < ψ(s) < 2π, be the angle between T (s) = γ′(s)

and ξ. Then it is a locally well defined differentiable function satisfying that(
η(s)

ξ(s)

)
=

(
sinψ(s) − cosψ(s)

cosψ(s) sinψ(s)

) (
T (s)

N(s)

)
(8)

Next we have the following characterization of the horizontality of the binormal:

Proposition 4.7 Given a curve γ(s) in E(c, r), the following statements are equivalent:

(a) It has horizontal binormal;

(b) Its curvature function κ(s), satisfies that κ(s) + ψ′(s) = 0;

(c) It is an extremal of the total curvature with τ = r.

Proof. From (8) we have 〈T (s), ξ〉 = cosψ(s) and then κ〈N(s), ξ〉 + ψ′(s) sinψ(s) = 0.

Moreover since ξ = cosψ T + sinψN , we obtain (κ+ ψ′) sinψ = 0.

Conversely, if κ(s) + ψ′(s) = 0, then κ(〈N(s), ξ〉 − sinψ) = 0, and 〈N(s), ξ〉 = sinψ(s),

which implies that 〈B, ξ〉 = 0. This shows the equivalence between (1) and (2).

The equivalence between (1) and (3) follows from (5). �

Remark 4.8 (1). It should be observed that, as a consequence of the above proposition,

curves in E(c, r) with curvature function satisfying κ(s) = −ψ′(s), automatically have

constant torsion τ = r.

(2). Note also the existence of curves in E(c, r) with τ = r whose binormal is not

horizontal. For example, the horizontal lifts of any curve in B2(c).

To describe this class of curves from a geometric point of view and how they can be

obtained, we proceed as follows. Let γ(s) be a curve in E(c, r) whose binormal is horizontal

and let γ1(s) = π(γ(s)) be its projection over B2(c), which, in general, need not be a unit

speed curve. However, B1 = dπ(B) defines a unit normal vector field along γ1 and so

JB1 = γ′1/|γ′1| is the unit tangent of that projection, where J denotes the usual complex

structure on B2(c). Let JB be the unit horizontal vector field along γ(s) satisfying that

dπ(JB) = JB1. Therefore, {B, JB, ξ} provides a positive oriented orthonormal frame

along γ(s) which is adapted to the horizontal-vertical decomposition. In this framework,

the unit tangent and the unit principal normal of γ(s) in E(c, r) are given by

T (s) = cosψ ξ + sinψJB, N(s) = sinψ ξ − cosψJB.

Now, we compute the curvature function, κg(s), of γ1(s) in B2(c), which will determine,

up to motions in B2(c), the profile curve in whose Hopf cylinder γ(s) lies. Then we have

∇T T = −ψ′ sinψ ξ + r cosψ sinψB + ψ′ cosψ JB + sinψ∇T JB,
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and

∇T JB = (r cosψ + κg sinψ)B.

Now, we use the first Frenet equation of γ(s) in E(c, r), with κ(s) = −ψ′(s), to see that

κg(s) = −2r cotψ(s).

At this point, the way to construct the class of extremals with horizontal binormal

works as follows:

(1) First, we choose an arbitrary positive function h(s), which will play the role of the

curvature function of the extremal, and define the function

ψ(s) = −
∫ s

0

h(v) dv.

(2) Next, we take the curve β(s) in B2(c) (it is unique up to rigid motions) which is

determined by its arc-length function u(s) and its curvature function κ(s) given,

respectively, by

u(s) =

∫ s

0

sinψ(v) dv, κg(s) = −2r cotψ(s).

(3) Then, we use β(s) as a profile curve to construct its Hopf cylinder Sβ in E(c, r)

and then choose in this flat surface the curve, γ(s), with slope function (measured

with respect to ξ) ψ(s). We conclude that γ(s) is an extremal of the total curvature

functional on E(c, r) with horizontal binormal (consequently τ = r) and curvature

function h(s). Moreover, all of extremals with horizontal binormal are obtained in

this way.

It is well known that the curvature function of a plane curve is just the variation of

an angle function measured with respect to a fixed direction and this is the key point

to recover the curve, through quadratures, from its curvature function. So the solving

natural equation works for plane curves. Now, the curvature function of a curve in E(c, r)

with horizontal binormal is the variation of the angle that it makes with the Reeb vector

field, ξ, and this is the main point to solve the so called solving natural equations problem

for this kind of curve in E(c, r). For a better understanding of this problem, recall that

for any curve β(s) in B2(c), we can choose a horizontal lift β̄(s) in E(c, r) and then

parameterize the corresponding Hopf cylinder Sβ by

X : R2 → Sβ ⊂ E(c, r), X(u, t) = φt(β̄(u)),

where {φt, : t ∈ R} is the one-parameter subgroup associated with ξ. Now, curves in R2

can be nicely obtained, using quadratures, from their curvature functions. In particular,

the unit speed curve with curvature function h(s) is given by

α(s) = (u(s), t(s)) =

(∫ s

0

sinψ(v) dv,

∫ s

0

cosψ(v) dv

)
,
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where ψ(s) = −
∫ s

0
h(v) dv is the angle that α(s) makes with the t-axis. Since X is an

isometry, ψ(s) is the angle that the curve

γ(s) = X(α(s)) = φ∫ s
0 cosψ(v) dv

(
β̄

(∫ s

0

sinψ(v) dv

))
,

makes with the orbits. The curvature κ(s) of γ(s) in E(c, r) does not necessarily satisfy

κ(s)+ψ′(s) = 0. However, it holds if and only if the curve β(s) is chosen to have arc-length

and curvature functions given, respectively, by

u(s) =

∫ s

0

sinψ(v) dv, κg(s) = −2r cotψ(s).

Remark 4.9 It should be noted that this argument can be viewed as the solution of the

so called solving natural equations for curves with horizontal binormal in E(c, r) problem.

In fact, we obtain explicitly the curve from its curvature function through quadratures.

Certainly, it is a surprising result keeping in mind that the spaces E(c, r) have not the

highest rigidity. Moreover, the next theorem measures the size of this class of curves.

Even more, we can exploit the above argument to exhibit a one-to-one correspondence

between the class of convex plane curves and the family of extremals with horizontal

binormal in E(c, r). It can be obtained from the following result

Theorem 4.10 For every convex curve α in the Euclidean plane, there exists a curve γ

in E(c, r) with the same curvature function as α and torsion τ = r, which is an extremal,

with horizontal binormal, of the total curvature action on E(c, r).

Proof. Let α(s) = (u(s), t(s)) be any convex curve in the plane and denote by κ(s) > 0

its curvature function. Now, consider in B2(c) a curve, β(s) (unique up to motions) whose

curvature function is κg(s) = −2r cotψ(s) where

ψ(s) = −
∫ s

0

κ(v) dv.

Then consider the map X : R2 → Sβ ⊂ E(c, r) defined by

X(u, t) = φt(β̄(s),

where β̄ is a horizontal lift of β. Finally the curve γ(s) = X(α(s)) has curvature function

κ(s), not only in Sβ but also in E(c, r), its torsion is τ = r and it is an extremal of the

total curvature in E(c, r) which certainly has horizontal binormal. �

A relevant special case appears when r = 0. In this case the homogeneous 3-space is

a Riemannian product E(c, 0) = B2(c)× R, where (up to topology) B2(c) is S2(c) if c > 0

while it is H2(c) when c < 0. Then, as a consequence of the above argument we have the

following characterization for extremals with horizontal binormal
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Corollary 4.11 Every curve, γ(s), with horizontal binormal in B2(c)× R lies in a Hopf

cylinder built on a geodesic of B2(c). More precisely these curves can be explicitly para-

meterized as follows

γ(s) =

(
β(u(s)),

∫ s

0

cosψ(v) dv

)
,

where β(u) is a unit speed geodesic in B2(c) with arc-length function given by

u(s) =

∫ s

0

sinψ(v) dv with ψ(s) = −
∫ s

0

κ(v) dv,

and where κ(s) is an arbitrary function making the role of curvature function of γ(s).

Observe that if β is a geodesic in B2(c), then Sβ is a totally geodesic surface in E(c, 0) =

B2(c) × R. On the other hand, extremals with horizontal binormal have torsion zero.

Therefore, the first claim of the above corollary can be viewed as a codimension reduction

result, which is the classical behavior in spaces with constant curvature. In contrast,

extremals in S2(c) × R with horizontal normal do not lie in any totally geodesic surface

(see Example 4.5).

5 Some examples and applications

In this section, we will show a few examples of curves which are extremal for the total

curvature energy in E(c, r). They are intended to clarify the results which have been

obtained in §4, however, we will not exhaust all possible cases, rather we will restrict our-

selves to the two simplest cases, Riemannian products and nilmanifolds, where examples

can be given explicitly and pictures can be exhibited. We follow the notation introduced

in §4.

5.1 Extremals in Riemannian products

Remember that, as we have shown previously, the whole class of extremals in H2(c)× R
is made up of curves with horizontal binormal (see Corollary 4.11). On the contrary,

in S2(c) × R, besides the class of curves with horizontal binormal (see Corollary 4.11),

another one-parameter class of extremals with horizontal unit normal also appears (see

Example 4.5). This additional class is formed by Lancret helices having both constant

curvature and torsion given, respectively, by

τ =

√
c

m2 + 1
, κ =

1

m

√
c

m2 + 1
.

We want to use Corollary 4.11 to provide some explicit examples of curves with hori-

zontal binormal, and so being extremal for the total curvature, in B2(c) × R with either

c = 1 or c = −1.
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Let us write S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1} and H2 = {(x, y, z) ∈ L3 :

x2 + y2 − z2 = −1, z > 0} and consider, without loss of generality, the geodesics β(u) =

(cosu, 0, sinu) ⊂ S2 and β(u) = (coshu, 0, sinhu) ⊂ H2. Now, the algorithm to construct

extremals with horizontal binormal in B2 × R, which is implicitly contained in Corollary

4.11, consists in building curves in the surface β × R starting from a prescribed function

that makes the role of curvature function. Applying this, one has, for instance

(1) Circles viewed as extremals. Consider a constant function κ(s) = −a, then

we have ψ(s) = as and therefore

γ(s) = (cos(−1

a
cos(as)), 0, sin(−1

a
cos(as)),

1

a
sin(as))

is an extremal of the total curvature energy of curves in S2 × R, while

γ(s) = (sinh(−1

a
cos(as)), 0, cosh(−1

a
cos(as)),

1

a
sin(as))

is an extremal in H2 × R.

(2) Clothoids regarded as extremals. Pick up the function κ(s) = −s, that

represents the curvature function of a clothoid or Cornu spiral. We can solve the natural

equations to obtain the clothoid in terms of the Fresnel integrals

α(s) = (u(s), t(s)) =

(∫ s

0

sin (v2/2) dv,

∫ s

0

cos (v2/2) dv

)
.

Since ψ(s) = s2

2
, we have that

γ(s) =

(
cos

(∫ s

0

sin (v2/2) dv

)
, 0, sin

(∫ s

0

sin (v2/2) dv

)
,

∫ s

0

cos (v2/2) dv

)
,

is an extremal of the total curvature in S2 × R ⊂ R4, while

γ(s) =

(
sinh

(∫ s

0

sin (v2/2) dv

)
, 0, cosh

(∫ s

0

sin (v2/2) dv

)
,

∫ s

0

cos (v2/2) dv

)
,

is an extremal of the total curvature in H2 × R ⊂ L3 × R.

(3) Catenaries as extremals. Now, take the function κ(s) = 1
1+s2

. The unit speed

curve having this curvature function is the catenary

α(s) = (u(s), t(s)) =
(√

1 + s2, lg(s+
√

1 + s2
)
.

In this case, ψ(s) = arctan s, and, consequently, we obtain that the following curves

γ(s) =
(
cos

√
1 + s2, 0, sin

√
1 + s2, lg(s+

√
1 + s2

)
,

γ(s) =
(
sinh

√
1 + s2, 0, cosh

√
1 + s2, lg(s+

√
1 + s2

)
.

are extremal for the total curvature in S2 × R and H2 × R, respectively,
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5.2 Extremals in nilmanifolds

Now, we wish to add a few examples describing extremals in nilmanifolds geometries which

are associated with the Heisenberg group. In dimension three they are one of the eight

canonical Thurston geometries. According to the usual terminology, they are identified

with E(0, r) and, consequently, appear as Riemannian submersions over a Euclidean plane.

The 3-dimensional Heisenberg group, N3
r, is nothing but R3 endowed with the metric

ds2 = dx2 + dy2 + θ2, where θ is the one-form defined by

θ = dz + r(y dx− x dy).

It is known that ξ = ∂z is an infinitesimal translation, which is, precisely, the Reeb vector

field when (N3
r, θ) is viewed as a contact manifold. The one-parameter subgroup associated

with ξ is

{φt : N3
r → N3

r : t ∈ R}, φt(x, y, z) = (x, y, z + t).

Every orbit is principal and all of them are geodesics of N3
r. The space of orbits is the

Euclidean plane and the projection π : N3
r → R2 is given by π(x, y, z) = (x, y).

We recall again that we have two classes of extremals for the total curvature action on

3-dimensional homogeneous 3-spaces and that, in addition, we have provided algorithms

and methods to construct extremals within both families. In particular, they can be

described as curves lying in Hopf cylinders. This key fact will be used to give explicit

extremals of the total curvature in the Heisenberg group.

Hopf cylinders shaped on a plane curve β(s), Sβ, are flat surfaces which can be obtained

by specifying a Legendrian curve. So, choose a profile curve, β(s) = (x(s), y(s)), in the

space of orbits, and assume that it is parameterized by the arc-length. Their horizontal

lifts (Legendrian curves) β̄(s) project down over β(s), and then β̄(s) = (x(s), y(s), z(s)),

where horizontality implies that the third coordinate must satisfy θ(β̄′(s)) = 0. Hence,

horizontal lifts turn out to be determined by the solutions of the differential equation

dz

ds
= r

(
x
dy

ds
− y

dx

ds

)
. (9)

Thus, a horizontal lift of the profile curve (which is obviously parameterized by the

arc-length too) provides the following natural parameterisation of the equivariant surface

Sβ
X(s, t) = φt(β̄(s)) = (x(s), y(s), z(s) + t).

Now, the first family of extremals of the total curvature action we alluded to before

(critical curves with horizontal unit normal) are Lancret helices. Then, we apply the

corresponding algorithm, given in §4, to obtain a real one-parameter family of extremals

in the 3-dimensional Heisenberg group, namely we have

Corollary 5.1 For any ϕ ∈ (0, π/6), there exists a Lancret helix in N3
r, with slope m =

cotϕ in a suitable Hopf cylinder, which is an extremal of the total curvature.
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Lancret helices in N3
r are curves, γ(s), forming a constant angle with ξ and they

coincide precisely with the set of geodesics of the Hopf cylinders of N3
r (Propositon 3.1).

In particular, those Lancret helices which provide extremals for the total curvature must

be geodesics of Hopf cylinders shaped on circles of the Euclidean plane. So, let β(s) =(
R cos s

R
, R sin s

R

)
be the unit speed circle with radius R and centered at the origin. In

this case, it is very easy to solve the equation (9) to see that horizontal lifts of the above

circles are just circular helices when they are viewed in the Euclidean 3-space, namely

β̄(s) =
(
R cos

s

R
,R sin

s

R
, rRs+ c

)
, ∀c ∈ R.

Remark 5.2 Notice that Euclidean horizontal lifts of β(s) are just circles, with radius

R and centers on the z-axis, located in planes parallel to z = 0.

The corresponding Hopf cylinders can be parameterized by

X : R2 → N3, X(s, t) =
(
R cos

s

R
,R sin

s

R
, rRs+ t

)
.

Now, we use Proposition 3.1 to see that extremal Lancret helices in the Heisenberg group

are those whose torsion satisfies

τ 2 = r2(4 cos2 ϕ− 3) =
r2(m2 − 3)

m2 + 1
,

and, according to (3), they are geodesics in Hopf cylinders over circles with radius

R =
1

κg
=

m

r (
√

(m2 + 1)(m2 − 3) +m2 − 1)
, m = cotϕ.

Then, for any ϕ ∈ (0, π/6) we obtain the extremal Lancret helices parameterized by

γm(s) = X

(
s√

1 +m2
,

ms√
1 +m2

)
=

(
R cos

s

R
√

1 +m2
, R sin

s

R
√

1 +m2
,
(rR +m)s√

1 +m2

)
.

Now, in order to provide examples of extremals in the second class, that is, extremals

with horizontal binormal, we can use the following alternative algorithm obviously derived

from the results in §4.2. It works on any E(c, r) and, in particular, on the Heisenberg

group:

(i) Consider any unit speed curve β(u) in B2(c) with curvature function κg(u).

(ii) Define functions ψ(u) = −arcotκg(u)

2r
and s(u) =

∫ u

0
cscψ(v) dv.

(iii) Now, in the Hopf cylinder Sβ = π−1(β(u(s))), choose the curve γ(s) with slope

ψ(u(s)) to obtain an extremal with horizontal binormal in E(c, r).
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Following this procedure we give a few more examples of critical curves belonging to

the second class.

(1) An extremal built on a catenary. By solving the natural equations one gets

a parameterization of the unit speed curve, unique up to motions in R2, determined by

the curvature function

κg(u) =
1

1 + u2
.

The trace of this curve is a catenary which, therefore, can be parameterized as

β(u) = (x(u), y(u)) = (arcsinh(u),
√

1 + u2).

Using this and integrating (9) one has

z(u) = r
(√

1 + u2 arcsinh(u)− u
)
,

which means that a horizontal lift, β̄, of β is given by

β̄(u) =
(
arcsinh(u),

√
1 + u2, r

(√
1 + u2 arcsinh(u)− u

))
.

Now, it is easy to write a parameterization X(u, t) for the Hopf cylinder shaped on β,

Sβ = π−1(β)

X(u, t) =
(
arcsinh(u),

√
1 + u2, r

(√
1 + u2 arcsinh(u)− u

)
+ t

)
.

Finally, in the flat surface Sβ we choose the curve γ(s) whose slope, measured with

respect to the vertical axis, is given by

ψ(u) = −arcot
1

2r(1 + u2)
.

A parameterization of γ(s) is

γ(s) = X(u(s), t(s)) ,

where

u(s) = −
∫ s

0

2r(1 + v2)√
1 + 4r2(1 + v2)2

dv, t(s) =

∫ s

0

1√
1 + 4r2(1 + v2)2

dv ,

which can be expressed in terms of Elliptic functions. Then, γ(s) provides an extremal

for the total curvature action (with horizontal binormal) on the Heisenberg group (Fig.

1.a).

(2) An extremal built on a logarithmic spiral. Proceeding analogously, we see

that a unit speed parameterization of the planar curve (unique up to motions in R2)

determined by the curvature function

κg(u) =
1

u
,
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is given by β(u) = (x(u), y(u)), where

x(u) =
1

2
u (cos(log(u)) + sin(log(u))) , y(u) =

1

2
u (sin(log(u))− cos(log(u))) . (10)

Moreover, solving (9) we obtain

z(u) =
ru2

4
. (11)

Hence, using (10) and (11) one sees that a horizontal lift of β, β̄(u), and the Hopf cylinder

shaped on β, Sβ = π−1(β), can be explicitly and respectively parameterized by

β̄(s) = (x(s), y(s), z(s)) , X(u, t) = (x(u), y(u), z(u) + t) .

Again, in Sβ we take the curve γ(s) whose slope, measured with respect to the vertical

axis, is given by

ψ(u) = −arcot
1

u
.

A parameterization of γ(s) is

γ(s) = X(u(s), t(s)) ,

where

u(s) = −
∫ s

0

2rv√
1 + 4r2v2

dv =
√

1 + s2 , t(s) =

∫ s

0

1√
1 + 4r2v2

dv = arcsinh(s) .

Then, γ(s) is also an extremal for the total curvature action (with horizontal binormal)

on the Heisenberg group (Fig. 1.b).

(a) β is a catenary. (b) β is a logarithmic spiral.

Figure 1. A critical curve γ (curve in red) for the total curvature in Nil3 with r = 1. Here, γ lies on a

Hopf cylinder shaped on a planar curve β (curve in green), whose horizontal lift β̄ is shown in black.
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(3) An extremal constructed out of an involute of a circle. As a final example,

let us consider the unit speed planar curve, β, determined by the curvature function

κg(u) =
1√
u
.

Solving the natural equation we obtain the following unit speed parameterization of

the involute of a circle β(u) = (x(u), y(u)), where

x(u) =
1

2

(
cos(2

√
u) +

√
u sin(2

√
u)

)
, y(u) =

1

2

(
−2
√
u cos(2

√
u) + sin(2

√
u)

)
. (12)

Using these values of x(u) and y(u) in (9) and solving, we have

z(u) = r
√
u . (13)

Formulae (12) and (13) allow us to obtain a parameterization of both, a horizontal lift

of β, β̄(u), and of the Hopf cylinder shaped on β, Sβ = π−1(β), which can be explicitly

given by

β̄(s) = (x(s), y(s), z(s)) , X(u, t) = (x(u), y(u), z(u) + t) .

Then, the curve γ(s) parameterized by γ(s) = X(u(s), t(s)), with

u(s) = −
∫ s

0

2r
√
v√

1 + 4r2v
dv = −1

4

(
2
√
s(1 + 4s)− arcsinh

(
2
√
s
))

,

t(s) =

∫ s

0

1√
1 + 4r2v

dv =
1

2

√
1 + 4s ,

lies in Sβ forming an angle ψ with respect to the vertical axis given by

ψ(u) = −arcot
1

2r
√
u
.

Therefore, γ(s) is another extremal for the total curvature action (with horizontal binor-

mal) on the Heisenberg group (Fig. 2).

Figure 2. A critical curve γ (curve in red) for the total curvature in Nil3 with r = 1. Here, γ lies on a Hopf

cylinder shaped on an involute of a circle β (curve in green), whose horizontal lift β̄ is shown in black.
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6 Closed extremals and critical levels

When one studies problems related with the differential geometry of curves, besides the

solving natural equations problem, a second fundamental and open problem appears. It

is called the closed curve problem. In this section we will focus on the solution to this

problem for extremals of the total curvature in rotationally symmetric homogeneous 3-

spaces. However, since, as we have shown, the space of extremals is made up of two

families whose members are quite different from a qualitative point of view, we will treat

the closed curve problem separately in both families.

Let us consider first the family of extremals which are Lancret helices, that is, those

with horizontal normal. According to Corollary 4.4, every E(c, r), except H2(c) × R,

admits a real one-parameter class of Lancret helices providing extremals. In addition,

we also know that these extremals are realized as geodesics of Hopf cylinders built over

circles in B2(c). Consequently, in order to get closed solutions, it is necessary that Hopf

cylinders become tori, which happens just when the orbits close up. Otherwise, we can

take a quotient of E(c, r) via a suitable vertical translation φt. In this context we have

the following quantization principle à la Dirac.

Theorem 6.1 Every E(c, r) with compact orbits, except H2(c) × S1, admits a rational

one-parameter class of closed Lancret helices which are extremals of the total curvature

energy.

Proof. Since π : E(c, r) → B2(c) is a circle bundle, then for every closed curve β in B2(c)

its Hopf cylinder, Sβ, is actually a torus, which is embedded when the curve has no self-

intersections. Moreover, it is a flat torus whose isometry type is known to be described

as follows (see [1, 5] for special cases).

First, note that if r = 0, then E(c, 0) is the Riemannian product S2(c) × S1, where

we have assumed, without loss of generality, that the orbits are unit circles. Since the

holonomy is trivial, if β is a simple closed curve in S2(c), with length L, then Sβ is a flat

torus generated by a rectangular lattice in the Euclidean plane, namely, it is R2/Γ, where

Γ is the lattice generated by {(0, 2π), (L, 0)}. Then a Lancret helix (a geodesic in Sβ)

closes up if and only if its slope is a rational multiple of 2π/L. Now the class of extremal

Lancret helices in S2(c) × S1 is the real one-parameter class of curves {γm : m 6= 0},
where γm is the geodesic with slope m in the Hopf torus built on the circle βm in S2(c),

whose curvature is given by (7) with r = 0. As a consequence, the class of closed Lancret

helices that are extremals of the total curvature in S2(c)×S1 is the rational one-parameter

family {
γm : m =

2π

L
q, q ∈ Q

}
.

If r 6= 0, then the holonomy is not trivial, which implies that the lattice describing the

isometry type of Sβ is not rectangular. In fact, it is generated by {(0, 2π), (L, 2A)}, where

A is the area enclosed by β in B2(c). Now a straight line α(s) with slope m provides a
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closed geodesic in the Hopf torus if and only if there exists so > 0 such that α(so) ∈ Γ,

which is equivalent to the following quantization formula

m =
2

L
(A+ π r q), q ∈ Q.

As above, let γm be the geodesic (Lancret helix) in the Hopf torus constructed on the

circle, in B2(c), with curvature given by (7). Then γm is an extremal of the total curvature

energy if and only if

m2 > 3− c

r2
.

Consequently, the class of closed Lancret helices which are extremals coincides with the

following rational one-parameter family{
γm : m2 > 3− c

r2
, m =

2

L
(A+ π r q), q ∈ Q

}
.

�

Finally, we turn our attention to the case of extremals with horizontal binormal.

Theorem 6.2 For every convex closed curve α in the Euclidean plane, there exists a

closed curve γ in E(c, r) with the same curvature function as α and torsion τ = r, which

is an extremal, with horizontal binormal, of the total curvature action on E(c, r).

Proof. It follows from the proof of Theorem 4.10 for closed curves in the Euclidean plane.

�

Remark 6.3 (1). The above theorem provides, up to congruences, a map from the space

of convex closed curves in the Euclidean plane in the space of closed extremals with

horizontal binormal in E(c, r). Even more, it is a one-to-one correspondence between

both spaces of curves. In fact, if the Euclidean curve α is not closed then its image γ also

is not, because Sβ is not a torus. Observe that the profile curve has curvature function

κg(s) = −2r cotψ(s).

(2). If we consider the total curvature energy on closed curves in E(c, r), then, except

in H2(c) × S1, we obtain two families of extremals. On the one hand, a rational one-

parameter class, FN , of Lancret helices (equivalently, curves with horizontal normal). On

the other hand, the family of extremals, FB, with horizontal binormal, which has been

identified with the class of convex closed curves in the Euclidean plane. The first family is

discrete and consequently the critical values in FN are quantized à la Dirac. The second

family is certainly far from being discrete. However, it should be noted that according

to the above one-to-one correspondence, a curve in FB and its partner in the Euclidean

plane have the same curvature function in the corresponding spaces. Consequently the

critical values of the total curvature energy on closed extremals with horizontal binormal
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are not arbitrary, but they are integer multiples of a fixed value. Namely, the critical

levels are

F(γ) =

∫
γ

κ(s) ds = 2π i(α),

i(α) standing for the rotation index of the corresponding closed curve in the Euclidean

plane. This proves an interesting principle of quantization for the total curvature energy

acting on closed curves in E(c, r).
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of curves in Riemannian manifolds, Diff. Geom. Appl. 28 (2010), 140-147.

[9] B. Daniel, Isometric immersions into 3-dimensional homogeneous manifolds, Com-

mentarii Math. Helv. 82 (2007), 87-131.

26



[10] J. M. Espinar and I. S. de Oliveira, Locally convex surfaces immersed in a Killing

submersion, Bull. Braz. Math. Soc. New Series, 44 (2013), 155-171.

[11] P. Konstantis, Three-dimensional homogeneous spaces and their application in Ge-

neral Relativity, PhD Tübingen, 2013.
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