
On the energy density of helical proteins

Manuel Barros1 and Angel Ferrández2∗
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Abstract

We solve the problem of determining the energy actions whose moduli space
of extremals contains the class of Lancret helices with a prescribed slope. We
first see that the energy density should be linear both in the total bending and
in the total twisting, such that the ratio between the weights of them is the
prescribed slope. This will give an affirmative answer to the conjecture stated
in [2]. Then, we normalize to get the best choice for the helical energy. It allows
us to show that the energy, for instance of a protein chain, does not depend on
the slope and is invariant under homotopic changes of the cross section which
determines the cylinder where the helix is lying. In particular, the energy of a
helix is not arbitrary, but it is given as natural multiples of some basic quantity
of energy.

PACS: 04.20.-q, 02.40.-k
MSC: 53C40; 53C50
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1 Motivation

The least action principle (also known as the Maupertuis principle) states that when
a change occurs in Nature, the quantity of action necessary for the change is the
least possible. It is certainly one of the fundamental props of the modern science, so
the shapes in Nature must be stable, and so extremals, for a suitable action. Often

(*) Corresponding author A. Ferrández.
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it turns out to be complicated to choose the action, a typical example to illustrate
this claim is provided by the string theory. On the other hand, the choice of the
action is not arbitrary, it involves some requirements. The first obvious one is that
it must be invariant under rigid motions. Since we are interested in one-dimensional
configurations (see [6]), the action must be also invariant under reparameterizations.
Consequently, admissible Lagrangian densities must be functions of the following
three geometrical invariants: length, bending (curvature) and twisting (torsion).

In [7] the authors proposed a model to describe protein chains which is governed
by an energy action whose density does not depend on the torsion and is linear in
the curvature. The motivation of that choice was based on the following main facts:

(1) The helical structure of proteins implies the choice of an energy action whose
only extremals would be helices.

(2) The main result of [7], which was stated as follows: If the extremals of F(γ) =∫
γ
F (κ(s)) ds are circular helices, then F (κ) = m+ nκ, with mn 6= 0.

Nevertheless, these arguments seem to provide a certain incoherence regarding the
concept of helix. While the former concerns the helical nature of the protein chains,
the latter asks for the extremals which are circular helices. However, it is obvious that
helical structures appearing in nature are far from being circular helices. Therefore,
the model proposed in [7], a priori, is not suited to describe other helical structures
as important as elliptical, conical and spherical helices that might be of remarkable
interest not only in proteins folding, but also in other contexts such as antennas or
nanotechnology.

On the other hand, several strong arguments could be given in order for the torsion
to be included in the energy density governing the protein model. Let us mention a
few of them:

(i) It is well known that the length, the curvature and the torsion are the natural
geometric invariants which allow us to characterize the congruence class of
curves (center lines of protein chains), that is, the corresponding moduli space.
Then, there is no reason to exclude the torsion from the energy density.

(ii) It is worth pointing out that the torsion is an essential ingredient in the equa-
tion of Calugareanu [5] and White [19], which becomes quite important when
studying the theory of DNA supercoiling.

(iii) Circular helices geometrically appear as geodesics in right cylinders shaped on
circles. An obvious extension of this picture is provided when changing the
circle by another plane curve. The geodesics of a right cylinder, with arbitrary
cross section, are called general or Lancret helices. They can be viewed as
curves making a constant angle with a fixed direction, the axis, and they are
well known in the literature as curves with constant slope, or Böschungslinien
(see for instance [1] and references therein). From now on, we will denote by
Lω the class of Lancret helices with slope ω. It is clear that in this family we
can find, among others, spherical, conical and elliptical helices.

2



(iv) Helices appear at every level across the different orders of magnitude that span
the range of side between molecules and galaxies. Therefore, if we wish to
construct a geometrical model to describe helices in nature, it seems natural
to explore the relationship between both the helix as an abstract mathematical
idea, with its elegance and simplicity, and the real helical configurations that
contributes to the richness and complexity of nature. In this respect, it is
important to consider the history of what helix means along the biological
literature (see for example [9] and references therein).

As far as we know, the starting point in this study is the work of Pauling,
[15, 16, 17], where the importance and ubiquity of helices, in particular in
biology, is due to the fact that identical objects, regularly assembled, form a
helix. This is a simple and elegant theorem which is well known in the biolog-
ical community. However, it is less familiar to mathematicians and physicists.
Throughout the biological literature, this theorem is often motivated by dif-
ferent pictures, though its first proof was provided by K. Cahill, [4], using the
differential geometry of Lancret. There, that theorem is illustrated by and ap-
plied to nucleic acids, protein secondary structures, protein folding and viral
capsids, which are regarded as Lancret helices. Certainly any structure that
is straight or rod like (including fibres when length greatly exceeds diameter)
is one having repetition along a screw axis, that is, a helix (see [6]). So helix
means a coiled form that advances around a central axis. This history takes us
to the idea of general helix or Lancret helix. Therefore many of the helices in
nature are Lancret ones (see [12, 13], where general (or Lancret) helices were
used in connection with proteins).

On the other hand, from a generic and geometrical point of view, to study
helices in R3, we can proceed as follows. Start from a vector field, say X, in
R3; integrate it to obtain the corresponding flow and then look at those curves
that evolve making a constant angle with that flow. Thus, we obtain the idea
of helix with axis X. In particular, those general helices in nature correspond
to the case where the axis, X, is an infinitesimal translation. Of course, this is
only the first step of a series of problems which arise when relaxing the rigidity
of the axis X.

Now it seems natural to study the following problem which was first stated in [2]:
Determine the energy density F (κ, τ) in order for the class of extremals of the action
F(γ) =

∫
γ
F (κ(s), τ(s)) ds to be precisely Lω, for a prescribed ω.

2 The uniqueness of the energy action

A curve of constant slope or general helix in Euclidean space R3 is defined by the
property that the tangent makes a constant angle with a fixed straight line (the axis
of the general helix). A classical result stated by M. A. Lancret in 1802 and first
proved by B. de Saint Venant in 1845 is: A necessary and sufficient condition that
a curve be a general helix is that the ratio of curvature to torsion be constant. To
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highlight the importance of this result, throughout this paper, those curves will be
called Lancret helices.

The family Lω of Lancret helices with slope ω is nicely characterized by the
condition

τ

κ
= ω, (1)

where the slope is ω = cot θ and θ is the angle that the curve makes with its axis.
Geometrically, these curves are viewed as geodesics on right cylinders whose cross
sections are curves lying in planes orthogonal to the axis. Then a Lancret curve is
completely determined, up to motions in R3, by either

(i) A pair of functions κ (curvature) and τ (torsion) satisfying (1) for some constant
ω; or

(ii) A function ρ > 0 (standing for the curvature of its plane cross section of the
right cylinder where the helix is a geodesic) and the slope ω = cot θ.

Both moduli are related by

κ = ρ sin2 θ, τ = ρ sin θ cos θ. (2)

Therefore, once the slope ω is fixed, the moduli space Lω of Lancret helices with that
slope is identified with the space of differentiable functions of a real variable. Certainly
Lω admits a notable subspace, Cω ⊂ Lω, made up of circular helices. Geometrically
circular helices correspond to geodesics of circular right cylinders, those whose cross
sections are circles. On the other hand, Lω=0, the Lancret curves with slope zero,
correspond to plane curves. In this case helix and cross section agree. Cω=0 is of
course the class of circles.

Admissible helical structures in nature, in particular helical proteins, should be ex-
tremals of a reasonable elastic energy action. The choice of that energy action involves
some requirements. Thus, it must be invariant not only by reparameterizations, but
also by motions in the Euclidean space. Then the energy density should be a certain
function of the geometrical invariants of curves: the arc length, the curvature and the
torsion

F(γ) =

∫
γ

F (κ(s), τ(s)) ds, (3)

F standing for any differentiable function. The Euler-Lagrange equations, acting on
a suitable space of curves, can be obtained by using standard arguments that involve
several integrations by parts. For fixed points p and q, and frames fp and fq at these
points, let Ω be the space of Frenet curves connecting them with Frenet frames fp
and fq at those points. The extremals of F on Ω, in a general background, were
computed in [8] (see equations (4) and (5)) which now yields

−κF + (κ2 − τ 2)Fκ + +2κτFτ + F ′′κ +
(τ
κ
F ′τ

)′
+ τ

(
F ′τ
κ

)′
= 0, (4)

τF ′κ +
τ 2

κ
F ′τ + (τFκ − κFτ )′ −

(
F ′τ
κ

)′′
= 0, (5)
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where Fκ = ∂F/∂κ, Fτ = ∂F/∂τ and prime means differentiation with respect to
the arc length parameter. These equations were obtained later in [14] and then
manipulated in [14, 18], but no significant progress was achieved, even in special
cases.

The key assumption is that F(γ) =
∫
γ
F (κ(s), τ(s)) ds admits an extremal which

is a Lancret helix with slope ω. Then, from (5) we obtain

ω(κF ′κ + τF ′τ ) + (τFκ − κFτ )′ −
(
F ′τ
κ

)′′
= 0.

However

κF ′κ + τF ′τ = (κFκ + τFτ )
′ − (κ′Fκ + τ ′Fτ ) = (κFκ + τFτ )

′ − F ′,

and then we obtain(
F ′τ
κ

)′
= −ωF + (ωκ+ τ)Fκ + (ωτ − κ)Fτ +K, (6)

K being a constant.

We combine (6) with (5) to obtain

(1 + ω2)κF = (1 + ω2)κ2Fκ + (1 + ω2)κτFτ + ωKκ+ F ′′κ + ωF ′′τ .

Now define the function h(κ) = F (κ, ωκ) along the Lancret helix. As hκ = Fκ + ωFτ
we obtain

(1 + ω2)κF = (1 + ω2)κ2Fκ + (1 + ω2)κτFτ + ωKκ+ h′′κ. (7)

We assume that the extremal is chosen to be a solution of h′′κ = 0 (see the remark
below). Then we get

F (κ, τ) = κFκ + τFτ + A1, A1 =
ωK

1 + ω2
. (8)

Remark 1 It is worth noting that the energy density should be of the form (8) pro-
vided the action F(γ) =

∫
γ
F (κ(s), τ(s)) ds admits an extremal being a Lancret helix

which solves the equation h′′κ = 0. Using (2), that equation, for Lancret helices, can be
viewed as a differential equation in the curvature function ρ(s) of the corresponding
cross section of the cylinder. Therefore, when choosing a solution we get the cross
section as well as the Lancret helix with slope ω. Alternatively, circular helices always
solve the equation h′′κ = 0. In particular, equation (8) holds if there exists an extremal
which is a circular helix with slope ω. In particular, that holds provided the space of
extremals is Lω.

Now, from (8), we directly obtain

κFκκ + τFκτ = κFκτ + τFττ = 0,
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and use again the existence of a Lancret helix, with slope ω, as an extremal to
conclude that

Fκ + ωFτ = A2, (9)

A2 being a certain constant. On the other hand, from (4), the existence of an extremal
satisfying h′′κ = 0 yields the following energy density

F (κ, τ) = (1− ω2)κFκ + 2τFτ , (10)

which we compare with (8) to deduce

−ω2κFκ + τFτ = A1,

A1 being a constant. Finally, we can solve this equation using (9) to obtain

κFκ =
A2

1 + ω2
κ− A1

1 + ω2
, τFτ =

A2ω

1 + ω2
τ +

A1

1 + ω2
,

which shows that the energy density

F (κ, τ) =
A2

1 + ω2
κ+

A2ω

1 + ω2
τ + A1

is affine in κ and τ .

Summarizing, we have shown the following

Proposition 2 If the extremals of F(γ) =
∫
γ
F (κ(s), τ(s)) ds are Lancret helices,

then F (κ) = a+ bκ+ cτ .

3 The extremals of the linear energy action

For any real numbers m,n, p ∈ R, we consider the action

Fmnp : Ω→ R, Fmnp (γ) =

∫
γ

(m+ nκ+ p τ)ds.

The field equations (4) and (5) become

mκ+ (nτ − p κ)τ = 0, nτ ′ − p κ′ = 0,

which can be easily solved. In particular, if m 6= 0, the solutions are circular helices
as stated in [18]. However, when m = 0 and n 6= 0, then the space of extremals is Lω
with ω = p/n.

The solutions of the Euler-Lagrange equations of Fmnp are summarized in the
following table. For simplicity of interpretation, we show different cases according to
the values of the three coupling parameters specifying the energy of the model.
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m n p Moduli space of trajectories
6= 0 = 0 = 0 (i) Straightlines, κ = 0
= 0 = 0 6= 0 (ii) Cω=0, κ constant
= 0 6= 0 = 0 (iii) Lω=0, τ = 0

6= 0 6= 0 = 0 (iv) Circular helices with κ = −nτ2
m

6= 0 = 0 6= 0 (v) Circular helices with arbitrary κ and τ = m
p

= 0 6= 0 6= 0 (vi) Lω, with ω = p/n

6= 0 6= 0 6= 0 (vii) Circular helices with κ = −na2
m+ap

, τ = ma
m+ap

, a ∈ R−{−m
p
}

It should be noted that, regardless of the values of the coupling parameters, the
space of extremals is always a space of Lancret helices. However, except in cases (iii)
and (vi), the solutions are circular helices, and they reduce to one, just because the
former is a special case of the latter. Thus, case (vi) turns into the best choice of the
energy action to model helical protein chains as well as other helical configurations
in nature. Therefore, given a helical structure viewed as a Lancret helix with slope
ω, its energy is a linear combination of both the bending and the twisting, and the
ratio between their weights is given by ω.

For a better understanding of the uniqueness of the helical energy, we start from
an arbitrary energy action F(γ) =

∫
γ
F (κ(s), τ(s)) ds, and a real number ω. Let

Hω ⊂ Lω be the space of helices which are solutions of h′′κ = 0, where h(κ) = F (κ, ωκ).
Obviously Hω contains the space of circular helices with slope ω. On the other hand,
let EF be the space of extremals of F(γ) =

∫
γ
F (κ(s), τ(s)) ds. Then we have

(1) If there exists γ ∈ Hω with γ ∈ EF , then the energy density must be F (κ, τ) =
m+ nκ+ pτ , with ω = p

n
.

(2) Lω ⊂ EF if and only if F (κ, τ) = nκ + pτ , with ω = p
n

. Moreover, in this case
Lω = EF .

It is worth noting that the above result reduces the choice of the energy action
for helical structures to the space of linear combinations of both the total bending
and the total twisting. Then Lω is the space of extremals of the following series of
energy actions

Fnp(γ) = n

∫
γ

κ(s) ds+ p

∫
γ

τ(s) ds, p/n = ω.

We can normalize the helices in Lω to have unit speed, and then determine uniquely
its energy action by choosing

Fθ : Ω→ R, Fθ(γ) = sin θ

∫
γ

κ(s) ds+ cos θ

∫
γ

τ(s) ds, cot θ = ω.

Thus, that energy is encoded in the map E : S1 × Ω→ R defined by

E(eiθ, γ) = Fθ(γ) = sin θ

∫
γ

κ(s) ds+ cos θ

∫
γ

τ(s) ds,

where θ is the angle that the helix makes with the axis.

Now, the space of extremals can be geometrically built according to the following
algorithm:
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(1) Choose any unit speed plane curve α : [0, L] → R2 and construct the right

cylinder X(t, v) = α(t) + v ~ξ, where t ∈ [0, L] and v ∈ R.

(2) Take in that cylinder the geodesic with slope ω = cot θ, that is αθ(s) =

α(sin θ s) + cos θ s ~ξ, with s ∈ [0, L
sin θ

].

(3) Then αθ ∈ Lω is an extremal of Fθ : Ω → R and all of that extremals can be
constructed in this way.

Even more, an easy computation allows us to obtain the energy of a helical protein
as well as any other helical structure. To do it, we first observe that the unit normal
of a Lancret helix is defined independently of the acceleration vector field. This is
because it coincides with the normal of the corresponding plane cross section. It
allows us (see (2)) to define the curvature and the torsion functions of a Lancret helix
with the same meaning as the curvature function of a plane curve, where the sign is
important. However, that can not be done for general curves in Ω, where the unit
normal is defined after differentiating twice to get the acceleration. This implies that
the curvature function should be signed, usually taken nonnegative. Therefore, the
critical values (or the energy of helices) of Fθ are given by

Fθ(αθ) = sin θ

∫ L/ sin θ

0

κ(s) ds+ cos θ

∫ L/ sin θ

0

τ(s) ds = sin θ

∫ L/ sin θ

0

|ρ(s)| ds,

which yields

Fθ(αθ) =

∫ L

0

|ρ(t)| dt =

∫
α

|ρ(t)| dt.

Therefore, the critical values of the energy, which are reached on helical structures,
are provided by the total absolute curvature of the corresponding cross section.

This result has important consequences, among which we will mention the follow-
ing:

(1) The energy of a helical structure does not depend on its slope. All helices lying
in the same right cylinder provide the same critical value of the energy.

(2) The energy of a helical structure only depends on the corresponding cross sec-
tion, and is just computed as the total absolute curvature of that plane curve.
To evaluate it, we consider the convex envelope α̃ of the cross section. This curve
is geometrically obtained from α by symmetrization, namely reflecting concave
parts by using straight lines at the inflection points of α. In other words, α̃
is the arclength parameterized curve with curvature function ρα̃ = |ρα|. Now,
Fθ(αθ) is nothing but the total curvature of the convex envelope of the cross
section.

(3) As a consequence, the energy of a helical structure is given by

Fθ(αθ) = 2π i(α̃) + φo,

where i(α̃) is the rotation number of α̃ and φo is a constant which measures the
angle between the tangent vectors α′θ(0) and α′θ(L) of αθ at the ending points.
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Thus, we get the following Dirac quantization principle for extremals: The energy
of a helical configuration is not arbitrary, but it is given, up to a constant, as natural
multiples of a basic energy value. In particular it only depends on the homotopy class
of the corresponding cross section.

4 Some examples

As an illustration, in this section we give some examples of usual helical structures,
which are often found in nature and are described as solutions of the above variational
model. Besides circular helices, there are many different shapes of helical configura-
tions in nature that might be of considerable interest. Let us focus on the following
examples:

(1) Conical helices. Nature is plenty of coiled forms on cones. The so called
concho-spirals, which describes the shape of gastropod shells; sheep, goat and ante-
lope horns; bacterial filamentous viruses and the cochlea of the ear (see [9]). These
helical shapes appear as solutions of our model because they are Lancret helices built
as geodesics of right cylinders whose transversal section is either a logarithmic or an
Archimedean spiral. For example, the former one can be explicitly parameterized by

α(u) = (r u cos(c lnu), r u sin(c lnu)) , u > 0,

u standing for the arc length parameter. Now, on the cylinder φ(u, v) = α(u) + v ~∂z,
consider the geodesic with slope h = cot θ = p/n to find the curve

γh(t) = (r nt cos(c ln(nt)), r nt sin(c ln(nt)), p t) ,

which is a conical helix lying on a cone of equation x2 + y2 = r2n2

p2
z2. The same can

be done starting from an Archimedean spiral.

Fig. 1: Lancret over a logarithmic spiral Fig. 2: Lancret over an Archimedean spiral

(2) Elliptical helices. These helices are mainly used in technology, from building
antennas, [20], to nanotechnology, [11]. They appear in our model as solutions as-
sociated with Lancret helices constructed as geodesics of cylinders with cross section
being an ellipse.

(3) Spherical helices. They are Lancret helices lying on two spheres. A direct
computation yields that the cross section must be an epicycloid, a planar curve traced
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out by a point on a circle rolling outside another circle. These solutions model helices
which have been widely used in a range of applications running from technology to
the gyroscopic force theory (see [3], and references therein, for details).

(4) Helices over a Poleni’s syntractrix. In 1729 Giovanni Poleni studied a family
of curves related to the tractrix which are known as syntractrices. A syntractrix is
the locus of a point on the tangent to a tractrix at a constant distance, L, from its
intersection with the axis. When L is twice the constant length of the segment that
generates the tractrix, one obtains the Poleni’s syntractrix (also called la courbe des
forçats or galley slaves). The Poleni’s curve can be viewed in many ways, perhaps
the most usual is that related to the elastica of James Bernoulli. This variational
problem was proposed by Daniel Bernoulli in 1742 as follows: find those plane curves
which are extremals of the following elastic action

Fλ(α) =

∫
α

(κ2(s) + λ) ds, λ ∈ R.

This problem was solved by L. Euler in 1744 (see [10] and references therein). In
particular the only non-periodic solution is given by the function

κ(s) = 2
√

2r sech(
√

2 rs),

which is the curvature of the Poleni’s syntractrix. Now, the natural equations can
be solved to obtain the following unit speed parametrization of the Poleni’s curve,
α : R→ R2,

α(s) =

(
s−
√

2

r
tanh(

√
2 rs),

√
2

r
sech(

√
2 rs)

)
.

To compute the critical values of the energy corresponding to pieces of helices
built on this curve, we only need to measure the angle between the tangent at the
ending points. Therefore, in [s1, s2], the energy is just the angle φ(s1, s2) between
α′(s1) and α′(s2) (see Fig. 3). It is not difficult to see that

0 < φ(s1, s2) < 2π, lim
(s1,s2)→(−∞,∞)

φ(s1, s2) = 2π.

(5) Helices over a Cornu spiral. The Cornu spiral (also known as Euler spiral,
clothoid, or simply spiros) has many applications in engineering. Clothoids are widely
used in transition curve design in railroad and highway engineering for connecting and
transiting the geometry between a tangent and a circular curve. Design standards
for modern highways and railways require a smooth transition between straight line
segments and circles. In fact, the curvature of a Cornu spiral changes linearly with
its arclength. Therefore, for simplicity we may assume that κ(s) = s. Now, we can
use the Fresnel integrals to solve the natural equations of a Cornu spiral and get the
unit speed parametrization

α(s) =

(∫ s

0

cos
u2

2
du,

∫ s

0

sin
u2

2
du

)
, s ∈ R.

It should be noted that it presents an inflection point at the origin, where the tangent
is horizontal. Moreover, the curvature is positive when s > 0, while it is negative
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when s < 0. To compute the critical values of the energy functional for pieces of
helices shaped on a Cornu spiral, we only need to compute the number of loops as
well as the angles at the ending points. For example, the energy of α([0, L]) is given
by 2πr + φo, where r is the number of times that the tangent becomes horizontal in
[0, L] and φo is the angle that α′(L) makes with the horizontal axis (see Fig. 4).

Fig. 3: Lancret over a Poleni’s curve Fig. 4: Lancret over a Cornu spiral
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