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1 Introduction (see [7])

Dido’s problem is a variant of the isoperimetric problem. It was formulated in the

Aeneid, Virgil’s epic poem glorifying the beginnings of Rome.

Queen Dido had to flee across the Mediterranean in a ship with friends and servants.

She had what we would nowadays call a dysfunctional family. Her brother, Pygmalion,

had just murdered her husband and taken most of her possessions. Dido landed, nearly

penniless, on a part of the African coast ruled by King Jarbas. After dickering and

begging, Dido persuaded Jarbas to give her as much land as she could enclose with an

ox hide. Dido told her servants to cut an ox hide into a single long, narrow strip. They

turned the ox hide into a single leather string.

Dido had in this way reformulated her difficult situation into the following geometric

problem. Given a string of fixed length ` and a fixed line L (the Mediterranean coastline),

place the ends of the string on L and determine the shape of the curve c for which the

figure enclosed by c together with L has the maximum possible area. This is Dido’s

problem. It is also sometimes referred to as the problem of Pappus. Dido found the

solution - a half-circle - and thus founded the semicircular city of Carthage.

Take the one-form α = 1
2
(xdy− ydx) which satisfies dα = dx∧ dy and α|L = 0 for any

ray L through the origin.
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According to Stokes’ theorem, the area Φ enclosed by a closed planar curve c is

Φ(c) =

∫
c

α. (1)

As α|L = 0, if c is a non-closed curve beginning at the origin, Φ(c) represents the area

enclosed by the closed curve obtained by traversing c and then returning to the origin

along the ray that connects the endpoint of c to the origin.

The length ` of c = (x(t), y(t)) is

`(c) =

∫
c

ds, (2)

where ds =
√

dx2 + dy2 = ||c′||dt is the usual element of arc length. In this manner

Dido’s problem, and the (dual) isoperimetric problem, becomes the following constrained

variational problem:

Problem 1. Minimize the length `(c) of a closed rectifiable curve c, subject to the

constraint that the signed area Φ(c) of the curve be a fixed constant.

The introduction of α lets us extend the problem to non-closed curves. The ray used

to close up c corresponds to the coastline L in Dido’s problem.

Now Montgomery constructs the three-dimensional geometry whose geodesics corres-

pond to the solutions to the isoperimetric problem. Add a third direction z whose motion
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is linked to that of x and y according to

dz =
1

2
(xdy − ydx) (3)

In this way we associate a family of curves γ(t) = (x(t), y(t), z(t)) to a single planar curve

c(t) = (x(t), y(t)), the family being parameterized by the initial value z0 of the height z.

We will call any one of these paths a horizontal lift of c, and more generally, any path γ

in R3 that satisfies the differential constraint (3) a horizontal path. Set

ds2 = dx2 + dy2

and define the length of any horizontal path in R3 to be
∫

γ
ds. In other words, we have

defined the length of γ to be equal to the usual length of its planar projection c.

Problem 2. Minimize the length
∫

γ
ds over all horizontal paths γ that join two fixed

points in three-space.

To see that this is a reformulation of the dual to Dido’s problem, or the isoperimetric

problem, observe that

z(1)− z(0) =

∫
c

1

2
(xdy − ydx),

where c(t) = (x(t), y(t)) is the projection of the curve γ(t) = (x(t), y(t), z(t)) to the plane.

Observe that, according to Stokes’ theorem, if c joins the origin to (x1, y1) and if we take

z(0) = 0, then the endpoints of γ are (0, 0, 0) and (x1, y1, Φ(c)), where Φ(c) denotes the
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signed area defined by the closed curve given by traversing c and then returning to the

origin along a line segment.

Defining the differential 1-form ω = dz − 1
2
(xdy − ydx) we can write

H = Ker ω = {ω(x, y, z) = 0}

= {(v1, v2, v3) : v3 −
1

2
(xv2 − yv1) = 0} ⊂ R3.

This H is a field of two-planes in three-space, or what it is called a distribution: a linear

subbundle of the tangent bundle. The restriction of ds2 to these two-planes defines a

smoothly varying family of inner products 〈· , ·〉 on the planes H. Thus if v, w ∈ H(x,y,z),

then 〈v, w〉 = v1w1 + v2w2.

Definition 1 R3 endowed with the structure of this distribution H and this family of

inner products ds2 on H is called the Heisenberg group (complex contact group), which is

the first nontrivial example of subriemannian geometry [9].
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The Bianchi-Cartan-Vranceanu (BCV) spaces (see [4])

For real numbers l and m, with l ≥ 0, consider the set

BCV (l,m) = {(x, y, z) ∈ R3 : 1 + m(x2 + y2) > 0}

equipped with the metric

ds2
l,m =

dx2 + dy2

(1 + m(x2 + y2))2
+

(
dr +

l

2

xdy − ydx

1 + m(x2 + y2

)2

.

Observe that this metric is obtained as a conformal deformation of the planar Eucli-

dean metric by adding the imaginary part of zdz̄, for a complex number z.

Take the vector fields Ei and its corresponding dual 1-forms ωj

E1 = (1 + m(x2 + y2)) ∂x − l
2
y∂z ω1 =

dx

1 + m(x2 + y2)

E2 = (1 + m(x2 + y2)) ∂y + l
2
x∂z ω2 =

dy

1 + m(x2 + y2)

E3 = ∂z ω3 = dz +
l

2

ydx− xdy

(1 + m(x2 + y2)

Let D be the distribution generated by {E1, E2}. The manifold
(
BCV (l,m),D, ds2

l,m

)
is called a Bianchi-Cartan-Vranceanu (BCV for short) space ([1, 2, 3, 11]), which is an
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example of sub-riemannian geometry (see [4, 9]) and the horizontal distribution is a 2-step

breaking-generating distribution everywhere.

2 Extended Bianchi-Cartan-Vranceanu spaces

Observe that letting z = x + iy, we see that Im(z dz̄) = ydx − xdy, which reminds

us the map C × C → R × C given by (z1, z2) 7→ (|z1|2 − |z2|2, 2(z1z̄2)), that easily leads

to the classical Hopf fibration S1 ↪→ S3 → S2, where coordinates in S2 are given by

(|z1|2 − |z2|2, 2Re(z1z2), 2Im(z1z2)).

In the same line we get the fibration S3 ↪→ S7 → S4, but using quaternions H instead of

complex numbers. Quaternions are usually presented with the imaginary units i, j, k in the

form q = x0 + x1i + x2j + x3k, x0, x1, x2, x3 ∈ R with i2 = j2 = k2 = ijk = −1. They can

also be defined equivalently, using the complex numbers c1 = x0 + x1i and c2 = x2 + x3i,

in the form q = c1 + c2j. Then for a point (q1 = α + βj, q2 = γ + δj) ∈ S7, we get

the following coordinate expressions (|q1|2 − |q2|2, 2Re(ᾱγ + β̄δ), 2Im(ᾱγ + β̄δ), 2Re(αδ −
βγ), 2Im(αδ − βγ)).

For any q = w +xi+yj + zk ∈ H we find that qdq̄ = wdw +xdx+ydy + zdz +(xdw−
wdx + zdy − ydz)i + (ydw − wdy + xdz − zdx)j + (zdw − wdz + ydx − xdy)k. As the

quaternionic contact group H× ImH, with coordinates (w, x, y, z, r, s, t) can be equipped
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with the metric

ds2 = (dw2 + dx2 + dy2 + dz2) +

(
dr +

1

2
(xdw − wdx + zdy − ydz)

)2

+

(
ds +

1

2
(ydw − wdy + xdz − zdx)

)2

+

(
dt +

1

2
(zdw − wdz + ydx− xdy)

)2

.

Then, by extending this metric, it seems natural to find a 7-dimensional generalization

of the 3-dimensional BCV spaces endowed with the two-parameter family of metrics

ds2
l,m =

dw2 + dx2 + dy2 + dz2

K2
+

(
dr +

l

2

wdx− xdw + ydz − zdy

K

)2

+

(
ds +

l

2

wdy − ydw + zdx− xdz

K

)2

+

(
dt +

l

2

wdz − zdw + xdy − ydx

K

)2

,

where l,m are real numbers and K = 1 + m(w2 + x2 + y2 + z2).

Then (EBCV, ds2
l,m) will be called extended BCV spaces (EBCV for short).

That metric is obtained as a conformal deformation of the Euclidean metric of R4 by

adding three suitable terms which depend on l and m concerning the imaginary part of qq̄,

for a quaternion q. When m = 0 we get a one-parameter of Riemannian metrics depending

on l. Furthermore, if l = 1, we find the 7-dimensional quaternionic Heisenberg group (see
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[6] and [12]). The manifold EBCV provides another example of sub-riemannian geometry

and the horizontal distribution is a 2-step breaking-generating distribution everywhere.

That metric can also be written as

ds2
l,m =

7∑
i=1

ωi ⊗ ωi

where

ω1 = dr + l
2K

(wdx− xdw + ydz − zdy), ω4 = dw/K,

ω2 = ds + l
2K

(wdy − ydw + zdx− xdz), ω5 = dx/K,

ω3 = dt + l
2K

(wdz − zdw + xdy − ydx), ω6 = dy/K,

ω7 = dz/K,

X1 = ∂r, X2 = ∂s, X3 = ∂t,

X4 = K∂w +
lx

2
∂r +

ly

2
∂s +

lz

2
∂t, X5 = K∂x −

lw

2
∂r −

lz

2
∂s +

ly

2
∂t,

X6 = K∂y +
lz

2
∂r −

lw

2
∂s −

lx

2
∂t, X7 = K∂z −

ly

2
∂r +

lx

2
∂s −

lw

2
∂t.
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Then we find that

Lemma 2 {X1, X2, · · · , X7} is an orthonormal basis of vector fields whit respect to the

given metric ds2
l,m := 〈 , 〉.

Writing 1 ≤ a, b ≤ 3; 4 ≤ u, v ≤ 7, we find that

[Xa, Xb] = 0; [Xa, Xu] = 0

as well as
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[ , ] X4 X5 X6 X7

X4 0 −lm(x2 +y2 + 1
m

)X1 +

lm(wz + xy)X2 −
lm(wy − xz)X3 −
2mxX4 + 2mwX5

−lm(wz − xy)X1 −
lm(x2 + z2 + 1

m
)X2 +

lm(wx + yz)X3 −
2myX4 + 2mwX6

lm(wy + xz)X1 −
lm(wx − yz)X2 −
lm(x2 + y2 + 1

m
)X3 −

2mzX4 + 2mwX7

X5 0 −lm(wy + xz)X1 +

lm(wx − yz)X2 −
lm( 1

m
+ w2 + z2)X3 −

2myX5 + 2mxX6

lm(xy − wz)X1 +

lm(w2 + y2 + 1
m

)X2 +

lm(wx + yz)X3 −
2mzX5 + 2mxX7

X6 0 −lm(w2+x2+ 1
m

)X1−
lm(wz + xy)X2 +

lm(wy − xz)X3 −
2mzX6 + 2myX7

X7 0

For later use, when m = 0 brackets reduce to
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[ , ] X4 X5 X6 X7

X4 0 −lX1 −lX2 −lX3

X5 0 −lX3 lX2

X6 0 −lX1

X7 0

Remark 3 When l = 1, we have the brackets of the quaternionic contact manifold.

As for the Levi-Civita connection in a Riemannian manifold ([5], p. 160) we find

∇XaXb = 0; ∇XaXu = ∇XuXa

and
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∇Xi
Xj X4 X5 X6 X7

X1
lm
2

(y2 + z2 +
1
m

)X5 + lm
2

(wz−
xy)X6− lm

2
(wy+

xz)X7

− lm
2

(y2 + z2 +
1
m

)X4 + lm
2

(wy +

xz)X6+ lm
2

(wz−
xy)X7

− lm
2

(wz −
xy)X4− lm

2
(wy+

xz)X5 + lm
2

(w2 +

x2 + 1
m

)X7

lm
2

(wy+xz)X4−
lm
2

(wz−xy)X5−
lm
2

(w2 + x2 +
1
m

)X6

...
...

...
...

...

X7 − lm
2

(wy +

xz)X1+ lm
2

(wx−
yz)X2 + lm

2
(x2 +

y2 + 1
m

)X3 −
2mwX7

lm
2

(wz−xy)X1−
lm
2

(w2 + y2 +
1
m

)X2− lm
2

(wx+

yz)X3 − 2mxX7

lm
2

(w2 + x2 +
1
m

)X1 + lm
2

(wz +

xy)X2− lm
2

(wy−
xz)X3 − 2myX7

2m(wX4+xX5+

yX6)
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When m = 0, the Levi-Civita connection reduces to

∇Xi
Xj X4 X5 X6 X7

X1
l
2
X5 − l

2
X4

l
2
X7 − l

2
X6

X2
l
2
X6 − l

2
X7 − l

2
X4

l
2
X5

X3
l
2
X7

l
2
X6 − l

2
X5 − l

2
X4

X4 0 − l
2
X1 − l

2
X2 − l

2
X3

X5
l
2
X1 0 − l

2
X3

l
2
X2

X6
l
2
X2

l
2
X3 0 − l

2
X1

X7
l
2
X3 − l

2
X2

l
2
X1 0

Remark 4 When l = 1, we find the Levi-Civita connection of the quaternionic contact

manifold.
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If R denotes the curvature tensor we can prove that

4
l2 R (X1, X4)

... (X6, X7)

(X1, X4) m2[(y2 + z2 + 1/m)2 +
(wz − xy)2 + (wy + xz)2]

...
...

...
...

...
...

(X6, X7)
...

... 16m
l2 − 3m2[(w2 + x2 +

1/m)2+(wz+xy)2+(wy−
xz)2]

Remark 5 When m = 0, the curvature of the quaternionic contact manifold reduces to

R (X1, X4)
... (X6, X7)

(X1, X4) l2

4

...
...

...
...

...
...

(X6, X7)
...

... − 3l2

4
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3 The Ricci tensor

Proposition 6 The matrix representing the Ricci tensor is given by



l2/2(K2 + 1) 0 0
...

0 l2/2(K2 + 1) 0
...

0 0 l2/2(K2 + 1)
...

−lmx(K + 2) −lmy(K + 2) −lmz(K + 2)
...

lmw(K + 2) lmz(K + 2) −lmy(K + 2)
...

−lmz(K + 2) lmw(K + 2) lmx(K + 2)
...

lmy(K + 2) −lmx(K + 2) lmw(K + 2)
...

... −lmx(K + 2) lmw(K + 2) −lmz(K + 2) lmy(K + 2)

... −lmy(K + 2) lmz(K + 2) lmw(K + 2) −lmx(K + 2)

... −lmz(K + 2) −lmy(K + 2) lmx(K + 2) lmw(K + 2)

... A(K − 1−mw2) + B l2m(K + 1)wx l2m(K + 1)wy l2m(K + 1)wz

... l2m(K + 1)wx A(K − 1−mx2) + B l2m(K + 1)xy l2m(K + 1)xz

... l2m(K + 1)wy l2m(K + 1)xy A(K − 1−my2) + B l2m(K + 1)yz

... l2m(K + 1)wz l2m(K + 1)xz l2m(K + 1)yz A(K − 1−mz2) + B


.
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where A = −l2(K + 1) and B = 12m− 3/2l2.

Some particular cases could be interesting, for instance we get the following Ricci

matrix when K = 1 (or m = 0)

Ric1 =



l2 0 0 0 0 0 0

0 l2 0 0 0 0 0

0 0 l2 0 0 0 0

0 0 0 −3/2l2 0 0 0

0 0 0 0 −3/2l2 0 0

0 0 0 0 0 −3/2l2 0

0 0 0 0 0 0 −3/2l2


Remark 7 When l = 1, we find the Ricci curvature of the quaternionic contact manifold.

An easy computation leads to

Corollary 8 The EBCV manifold has constant scalar curvature S = 48m.
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4 Killing vector fields in EBCV

Remember that a Killing vector field is a vector field on a Riemannian manifold that

preserves the metric. Killing vector fields are the infinitesimal generators of isometries,

that is, flows generated by Killing fields are continuous isometries of the manifold. Spe-

cifically, a vector field X is a Killing vector field if the Lie derivative with respect to X of

the metric g vanishes: LXg = 0 or equivalently

LXds2
l,m = (LXωi)⊗ ωi = 0, (4)

where

LXωi = ιXdωi + d(ιXωi).

In terms of the Levi-Civita connection, Killing’s condition is equivalent to

g(∇Y X, Z) + g(Y,∇ZX) = 0. (5)

It is easy to prove that

Proposition 9 LXg(Y, Z) = 0 if and only if LXg(Xi, Xj) = 0 for basic vector fields

Xi, Xj.
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We know that the dimension of the Lie algebra of the Killing vector fields is

m ≤ n(n + 1)/2,

and the maximum is reached on constant curvature manifolds ([5], p. 238, Vol. II) , then

for our manifold m < 28. Then obviously

Proposition 10 The basic vertical vector fields X1, X2, X3 are Killing fields.

From (5) it is easy to prove that the horizontal basic vector fields X4, · · · , X7 are not

Killing vector fields.

In her thesis, Profir [8] proved that the Lie algebra of Killing vector fields is 4-

dimensional. Our problem now is to determine the space of Killing vector fields in EBCV .

By using (4) and the values of ωi and dωi we obtain that the Killing vector fields are cha-

racterized by the following system of partial differential equations (28 equations).
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The Killing equations

In the usual coordinate system (r, s, t, w, x, y, z) on EBCV , a vector field X =
∑7

i=1 fiXi

will be a Killing field if and only if the real functions fi satisfy the following system of

28-partial differential equations:

01 ∂r(f1) = 0
...

...

04 ∂r(f2) + ∂s(f1) = 0
...

...

07 ∂r(f4) + K∂w(f1) + ly
2 ∂s(f1) + lz

2 ∂t(f1)− lm{ 1
m + (y2 + z2)}f5 − lm(wz − xy)f6 + lm(wy + xz)f7 = 0

...
...

19 K∂w(f4) + lx
2
∂r(f4) + ly

2
∂s(f4) + lz

2
∂t(f4)− 2mxf5 − 2myf6 − 2mzf7 = 0

...
...

28 ∂z(f7)− ly
2
∂r(f7) + lx

2
∂s(f7)− lw

2
∂t(f7) = 0

It seems that the solution of the system is very difficult, so that we focus on solving

the system for m = 0, that is:

20



01 ∂r(f1) = 0
...

...

04 ∂r(f2) + ∂s(f1) = 0
...

...

07 ∂r(f4) + ∂w(f1) + ly
2
∂s(f1) + lz

2
∂t(f1)− lf5 = 0

...
...

19 ∂w(f4) + lx
2
∂r(f4) + ly

2
∂s(f4) + lz

2
∂t(f4) = 0

...
...

28 ∂z(f7)− ly
2
∂r(f7) + lx

2
∂s(f7)− lw

2
∂t(f7) = 0

Proceeding as in [8], Profir considered a harder condition LXωi = 0, then we find the

following result
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Proposition 11 When m = 0, the following vector fields

K1 = X1

K2 = X2

K3 = X3

K4 = −lxX1 − lyX2 − lzX3 + X4

K5 = lwX1 + lzX2 − lyX3 + X5

K6 = −lzX1 + lwX2 + lxX3 + X6

K7 = lyX1 − lxX2 + lwX3 + X7

are Killing ones.

Remark 12 (1) If l = 1, we obtain Killing fields for the quaternionic Heisenberg group.

(2) We have just known that Ki = Xi, i = 1, 2, 3 were Killing vector fields, however

the Lie brackets of Ki do not produce new Killing fields.
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5 BCV as a submanifold of EBCV

We define a basis of vector fields in BCV , seen as a submanifold of EBCV , adapted

to the coordinates (r, s, t, w, x, y, z) as follows:

M1 = ∂r, M2 = L∂w +
lx

2
∂r, M3 = L∂x −

lw

2
∂r,

where L = 1 + m(w2 + x2)

We complete this basis to obtain a new one B = {M1, M2, M3, M4, M5, M6, M7} for

EBCV , given by:

M1 = ∂r,

M2 = L∂w + lx
2
∂r,

M3 = L∂x − lw
2
∂r,

M4 = ∂s,

M5 = ∂t,

M6 = K∂y + lz
2
∂r − lw

2
∂s − lx

2
∂t,

M7 = K∂z − ly
2
∂r + lx

2
∂s − lw

2
∂t.

This basis is well defined and {Ma, a = 1, 2, 3} span the tangent space of the subma-

nifold and {Mu, u = 4, 5, 6, 7} span an orthonormal basis of the normal space.
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We define the metric

ds2
l,m|BCV

=
dw2 + dx2

L2
+

(
dr +

l

2L
(wdx− xdw)

)2

.

We can also consider B as an orthonormal basis of EBCV . Then we are going to get

the induced Levi-Civita connection to study the geometry of BCV as a submanifold of

EBCV .

The only non null brackets are

[M2, M3] = −lM1 − 2mxM2 + 2mwM3,

[M2, M6] = − L
2K
{2lmwzM1 + (Kl − 2lmw2)M4 − 2lmwxM5 − 4mwM6},

[M2, M7] = L
2K
{2lmwyM1 − 2lmwxM4 − (Kl − 2lmw2)M5 + 4mwM7},

[M3, M6] = − L
2K
{2lmxzM1 − 2lmwxM4 + (Kl − 2lmx2)M5 − 4mxM6},

[M3, M7] = L
2K
{2lmxyM1 + (Kl − 2lmx2)M4 + 2lmwxM5 + 4mxM7},

[M6, M7] = −LlM1 − lm(xy + wz)M4 + lm(wy − xz)M5 − 2mzM6 + 2myM7.
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Gauss and Weingarten formulas

Let us write the Gauss and Weingarten formulas (see [5])

∇′
XY = ∇XY + α(X, Y ),

∇′
Xξ = −AξX + DXξ,

where X, Y ∈ X(BCV ), ξ ∈ X⊥(BCV ), ∇′,∇ are the Levi-Civita connections on EBCV

and BCV , respectively, and D is the normal connection. Then, for instance, we find that

∇′
M1

M1 = 0 ∇′
M1

M2 = l
2
M3 + Llmw

2K
(zM6 − yM7)

∇′
M1

M3 = − l
2
M2 + Llmx

2K
(zM6 − yM7) ∇′

M2
M1 = l

2
M3 + Llmw

2K
(zM6 − yM7)

∇′
M3

M1 = − l
2
M2 + Llmx

2K
(zM6 − yM7) ∇′

M2
M3 = − l

2
M1 − 2mxM2

∇′
M2

M2 = 2mxM3 ∇′
M3

M2 = l
2
M1 − 2mwM3

∇′
M3

M3 = 2mwM2

so that
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∇M1M1 = 0, α(M1, M1) = 0,

∇M1M2 = l
2
M3, α(M1, M2) = Llmw

2K
(zM6 − yM7),

∇M1M3 = − l
2
M2, α(M1, M3) = Llmx

2K
(zM6 − yM7),

∇M2M3 = − l
2
M1 −mxM2, α(M2, M3) = 0

...
...

Therefore we get

Corollary 13 Only when m = 0, BCV is a totally geodesic submanifold of EBCV .

Using the theory of submanifolds of a Riemannian manifold, we can now study a lot

of problems such that the equations of Gauss, Codazzi and Ricci and their consequences.
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6 Talking about geodesics (see [7])

In [7] it is shown that

Theorem 14 The geodesics for the Heisenberg group are exactly the horizontal lifts of

arcs of circles, including line segments as a degenerate case.

A Riemannian metric on a manifold M is defined by a covariant two-tensor, which

is to say, a section of the bundle S2(T ∗M). There is no such object in subriemannian

geometry. Instead, a subriemannian metric can be encoded as a contravariant symmetric

two-tensor, which is a section of S2(TM). This two-tensor has rank k < n, where k is the

rank of the distribution, so it cannot be inverted to obtain a Riemannian metric. We call

this contravariant tensor the cometric.

Definition 15 A cometric is a section of the bundle S2(TM) ⊂ TM⊗TM of symmetric

bilinear forms on the cotangent bundle of M .

Since TM and T ∗M are dual, any cometric defines a fiber-bilinear form ((· , ·)) :

T ∗M ⊗ T ∗M → R, i.e. a kind of inner product on covectors. This form in turn defines

a symmetric bundle map β : T ∗M → TM by p(βq(µ)) = ((p, µ))q, for p, µ ∈ T ∗
q M and

q ∈ M . Thus βq(µ) ∈ TqM . The adjective symmetric means that β equals its adjoint

β∗ : T ∗M → T ∗∗M = TM .
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The cometric β for a subriemannian geometry is uniquely defined by the following

conditions:

(1) im(βq) = Hq;

(2) p(v) = 〈βq(p), v〉, for v ∈ Hq, p ∈ TqM ,

where 〈βq(p), v〉q is the subriemannian inner product on Hq· Conversely, any cometric of

constant rank defines a subriemannian geometry whose underlying distribution has that

rank.

Definition 16 The fiber-quadratic function H(q, p) = 1
2
(p, p)q, where (· , ·)q is the come-

tric on the fiber T ∗
q M , is called the subriemannian Hamiltonian, or the kinetic energy.

The Hamiltonian H is related to length and energy as follows. Suppose that γ is a

horizontal curve. Then, γ̇(t) = βγ(t)(p), for same covector p ∈ T ∗
γ(t)M , and

1

2
||γ̇||2 = H(q, p).

H uniquely determines β by polarization, and β uniquely determines the subriemannian

structure. This proves the following proposition:
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Proposition 17 The subriemannian structure is uniquely determined by its Hamiltonian.

Conversely, any nonnegative fiber-quadratic Hamiltonian of constant fiber rank k gives rise

to a subriemannian structure whose underlying distribution has rank k .

To compute the subriemannian Hamiltonian we can start with a local frame {Xa}, a =

1, . . . , k, of vector fields for H. We think of the Xa as fiber-linear functions on the

cotangent bundle. In so doing, we rename them Pa. Thus

Pa(q, p) = p(Xa(q)), q ∈ M, p ∈ T ∗
q M.

Definition 18 Let X be a vector field on the manifold M . The fiber-linear function

on the cotangent bundle PX : T ∗M → R, defined by PX(q, p) = p(X(q)) is called the

momentum function for X.

Thus the Pa = PXa are the momemtum functions for our horizontal frame. If Xa =∑
X i

a(x) ∂
∂xi is the expression for Xa relative to coordinates xi, then PXa(x, p) =

∑
X i

a(x)pi,

where pi = P ∂

∂xi
are the momentum functions for the coordinate vector fields. The xi and

pi together form a coordinate system on T ∗M . They are called canonical coordinates.

Let gab(q) = 〈Xa(q), Xb(q)〉q be the matrix of inner products defined by our horizontal

frame. Let gab(q) be its inverse matrix. Then gab is a k×k matrix-valued function defined

in some open set of M .
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Proposition 19 Let Pa and gab be the functions on T ∗M that are induced by a local

horizontal frame Xa as just described. Then

H(q, p) =
1

2

∑
gab(q)Pa(q, p)Pb(q, p). (6)

Indeed,

H(q, p) =
1

2
(p, p)q =

1

2
(
∑

padxa,
∑

pbdxb) =
1

2

∑
gab(q)(pa, pb)

=
1

2

∑
gab(q)(p(Xa)(q), p(Xb)(q)) =

1

2

∑
gab(q)Pa(q, p)Pb(q, p).

Note, in particular, that if the Xa are an orthonormal frame for H relative to the

subriemannian inner product, then H = 1
2
P 2

a .

Normal geodesics. Like any smooth function on the cotangent bundle, our func-

tion H generates a system of Hamiltonian differential equations. In terms of canonical

coordinates (xi, pi), these differential equations are

ẋi =
∂H

∂pi

, ṗi = −∂H

∂xi
. (7)

Definition 20 The Hamiltonian differential equations (7) are called the normal geodesic

equations.
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Riemannian geometry can be viewed as a special case of subriemannian geometry, one

in which the distribution is the entire tangent bundle. The cometric is the usual inverse

metric, written gij in coordinates. The normal geodesic equations in the Riemannian case

are simply the standard geodesic equations, rewritten on the cotangent bundle.

Geodesics of the complex contact manifold C× ImC (see [7])

Going back to the complex contact manifold C× ImC, we know that vector fields

X =
∂

∂x
− 1

2
y

∂

∂z
, Y =

∂

∂y
+

1

2
x

∂

∂z
,

form an orthonormal frame. This means that they frame the two plane H and that they

are orthonormal with respect to the inner product ds2 = (dx2+dy2)|H on the distribution.

According to the above discussion, the subriemannian Hamiltonian is given by

H =
1

2
(P 2

X + P 2
Y ), (8)

PX , PY standing for the momentum functions of X and Y , respectively. Thus

PX = px −
1

2
ypz, PY = py +

1

2
xpz,

where px, py, pz are the fiber coordinates on the cotangent bundle of R3 corresponding

to the Cartesian coordinates (x, y, z) on R3. Again, these fiber coordinates are defined
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by writing a covector as p = pxdx + pydy + pzdz. Together, (x, y, z, px, py, pz) are global

coordinates on the cotangent bundle T ∗R3 = R3 ⊕ R3.

Hamilton’s equations can be written

df

dt
= {f, H}, f ∈ C∞(T ∗M), (9)

which holds for any smooth function f . The function H defines a vector field XH ,

called the Hamiltonian vector field, which has a flow Φt : T ∗M → T ∗M . Let f :

T ∗R3 = T ∗M → R be any smooth function on the cotangent bundle. Form the time-

dependent function ft = Φ∗
t f by pulling f back via the flow. Thus ft(x, y, z, px, py, pz) =

f(Φt(x, y, z, px, py, pz)). In other words, df
dt

= XH [ft], which gives meaning to the left-hand

side of Hamilton’s equations.

To define the right hand side, which is to say the vector field XH , we will need the

Poisson bracket. The Poisson bracket on the cotangent bundle T ∗M of a manifold M

is a canonical Lie algebra structure defined on the vector space C∞(T ∗M) of smooth

functions on T ∗M . The Poisson bracket is denoted {· , ·} : C∞ × C∞ → C∞, where

C∞ = C∞(T ∗M), and can be defined by the coordinate formula

{f, g} =
∑ ∂f

∂xi

∂g

∂pi

− ∂g

∂xi

∂f

∂pi

.

This formula is valid in any canonical coordinate system, and can be shown to be coordi-

nate independent. The Poisson bracket satisfies the Leibniz identity

{f, gh} = g{f, h}+ h{f, g},
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which means that the operation {· , H} defines a vector field XH , called the Hamiltonian

vector field.

By letting the functions f vary over the collection of coordinate functions xi and pi

we get the more common form of Hamilton’s equations

ẋi =
∂H

∂pi

, ṗi = −∂H

∂xi
.

Indeed, for the first one we take f = x and g = H. Then

{x, H} =
∂x

∂xi

∂H

∂pi

− ∂H

∂xi

∂x

∂pi

if and only if

ẋ =
∂H

∂px

.

Similarly, ẏ = ∂H
∂py

. (These equations are in turn equivalent to the above formulation (9).

It is more convenient to use la formulation (9), because the momentum function X → PX

is a Lie algebra anti-homomorphism from the Lie algebra of all smooth vector fields on

M to C∞(T ∗M) with its Poisson bracket:

{PX , PY } = −P[X,Y ]. (10)

Proof of (10). With the above notations

{PX , PY } = {px −
1

2
ypz, py +

1

2
xpz} = −1

2
pz −

1

2
pz = −pz := PZ ,
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because [X, Y ] = Z. For the complex contact group, with our choose of X and Y as a

frame for H, we compute

[X, Y ] = Z :=
∂

∂z
, [X, Z] = [Y, Z] = 0.

Thus

{PX , PY } = −pz := PZ , {PX , PZ} = {PY , PZ} = 0.

Let me prove that

{PX , PZ} = {px −
1

2
ypz, pz} = 0.

These relations can also easily be computed by hand, from our formulae for PX , PY and

the bracket in terms of {x, y, z, px, py, pz}. By letting f vary over the collection of func-

tions {x, y, z, PX , PY , PZ}, using the bracket relations and (10), we find that Hamilton’s

equations are equivalent to the system ẋ = PX .

Indeed, remember that H = 1
2
(P 2

X +P 2
Y ). Then ẋ = {x, H} = PX

∂PX

∂px
= PX . Similarly,

ẏ = PY . As for ż = 1
2
PX + 1

2
PY , we have that ż = {z, H} = PX

∂PX

∂pz
+ PY

∂PY

∂pz
= −1

2
yPX +

1
2
xPY . Finally, ṖX = −PZPX . In fact, ṖX = {PX , H} = {px − 1

2
ypz,

1
2
(P 2

X + P 2
Y )} =

(
∂(px− 1

2
ypz)

∂y
)PX

∂Py

∂y
= −PZPX .

In a similar way we obtain ṖY = PZPY .
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ṖZ = 0 is a consequence of the fact ṖZ = {PZ , H} = {pz,
1
2
(P 2

X + P 2
Y )} = 0.

Summing up, the equations are:

ẋ = PX

ẏ = PY

ż =
1

2
(PX + PY )

ṖX = −PZPX

ṖY = PZPY

ṖZ = 0

The last equation asserts that PZ = pz is constant. The variable z appears nowhere

in the right-hand sides of these equations. It follows that the variables x, y, PX , PY evolve

independently of z, and so we can view the system as defining a one-parameter family of

dynamical systems on R4 parameterized by the constant value of PZ . Combine x and y

into a single complex variable ω = x + iy.

Note that the first two equations say that dω
dt

= PX + iPY . The fourth and fifth

equations say that the time derivative of PX + iPY is PX + iPY . All together, then, we

have d2ω
dt2

= ipzω, pz constant. These are the famed Lorentz equations for the motion of

a particle in a constant magnetic field. To convert the electromagnetic notation, we set

the parameter pz to Be
m

, where e is the particle’s charge, B is the magnetic field strength,

and m is the mass of the particle.
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Finally note that the third of our Hamilton’s equations, the z equation, is just the

differential constraint ż = 1
2
(xẏ − yẋ). A first integration of the Lorentz equations yields

the evolution of the planar velocity: PX + iPY = P (0)exp(ipzt), where the complex vector

P (0) = PX(0) + iPY (0) describes the initial velocity.

A second integration yields the general form of the geodesics on the complex contact

group:

x(t) + iy(t) = w(t) =
P (0)

ipz

(exp(ipzt)− 1) + (x(0) + iy(0)),

z(t) = z(0) +
1

2

∫ t

0

Im(w̄dw).
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Geodesic equations of the quaternionic contact manifold H× ImH

The following vector fields, which are the old X4, · · · , X7 ones provided m = 0,

W = ∂w +
1

2
(x∂r + y∂s + z∂t),

X = ∂x −
1

2
(w∂r + z∂s − y∂t),

Y = ∂y +
1

2
(z∂r − w∂s − x∂t),

Z = ∂z −
1

2
(y∂r − x∂s − w∂t),

along with {∂r, ∂s, ∂t} form an orthonormal frame for the quaternionic contac manifold

H×ImH. This means that {W, X, Y Z} frame the fourth planeH and they are orthonormal

with respect to the inner product ds2 = (dw2 + dx2 + dy2 + dz2)|H on the distribution.

According to the above discussion, the subriemannian Hamiltonian is

H =
1

2
(P 2

W + P 2
X + P 2

Y + P 2
Z), (11)
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where PW , PX , PY , PZ are the momentum functions of the vector fields W, X, Y, Z, res-

pectively. Thus

PW = pw +
1

2
(xpr + yps + zpt),

PX = px −
1

2
(wpr + zps − ypt),

PY = py +
1

2
(zpr − wps − xpt),

PZ = pz −
1

2
(ypr − xps + wpt),

where pw, px, py, pz, pr, ps, pt are the fiber coordinates on the cotangent bundle of R7 corres-

ponding to the Cartesian coordinates w, x, y, z, r, s, t on R7. Again, these fiber coordinates

are defined by writing a covector as p = pwdw + pxdx + pydy + pzdz + prdr + psds + ptdt.

Together, (w, x, y, z, r, s, t, pw, px, py, pz, pr, ps, pt) are global coordinates on the cotangent

bundle T ∗R7 = R7 ⊕ R7. Hamilton’s equations can be written

df

dt
= {f, H}, f ∈ C∞(T ∗R7), (12)

which holds for any smooth function f . The function H defines a vector field XH , called

the Hamiltonian vector field, which has a flow Φt : T ∗R7 → T ∗R7. Let f : T ∗R7 → R
be any smooth function on the cotangent bundle. Form the time-dependent function

ft = Φ∗
t f by pulling f back via the flow. Thus ft(w, x, y, z, r, s, t, pw, px, py, pz, pr, ps, pt) =
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f(Φt(w, x, y, z, r, s, t, pw, px, py, pz, pr, ps, pt)). In other words df
dt

= XH [ft], which gives

meaning to the left-hand side of Hamilton’s equations.

To define the right hand side, which to say the vector field XH , we will need the

Poisson bracket. The Poisson bracket on the cotangent bundle T ∗R7 of a manifold R7

is a canonical Lie algebra structure defined on the vector space C∞(T ∗R7) of smooth

functions on T ∗R7. The Poisson bracket is denoted {· , ·} : C∞ × C∞ → C∞, where

C∞ = C∞(T ∗R7), and can be defined by the coordinate formula

{f, g} =
∂f

∂xi

∂g

∂pi

− ∂g

∂xi

∂f

∂pi

.

This formula is valid in any canonical coordinate system, and can be shown to be coordi-

nate independent. The Poisson bracket satisfies the Leibniz identity

{f, gh} = g{f, h}+ h{f, g},

which means that the operation {., H} defines a vector field XH , called the Hamiltonian

vector field. By letting the functions f vary over the collection of coordinate functions xi

and we get the more common form of Hamilton’s equations

ẋi =
∂H

∂pi

, ṗi = −∂H

∂xi
.
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Indeed, for the first one we take f = w and g = H. Then {w, H} = ∂w
∂xi

∂H
∂pi
− ∂H

∂xi
∂w
∂pi

if and

only if ẇ = ∂H
∂pw

. Also we have

ẋ =
∂H

∂px

, ẏ =
∂H

∂py

, ż =
∂H

∂pz

.

These equations are in turn equivalent to the above formulation (13). It is more

convenient to use la formulation (13), because the momentum function W → PW is a

Lie algebra anti-homomorphism from the Lie algebra of all smooth vector fields on R7 to

C(T ∗R7) with the Poisson brackets:

{PW , PX} = −P[W,X], {PW , PY } = −P[W,Y ], {PW , PZ} = −P[W,Z],

{PX , PY } = −P[X,Y ], {PX , PZ} = −P[X,Z], {PY , PZ} = −P[Y,Z]. (13)

Since all calculations are similar, we only prove the first one:

{PW , PX} = {pw + x
2
pr + y

2
ps + z

2
pt, px − w

2
pr − z

2
ps + y

2
pt} = pr = −P[W,X].

For the quaternionic contact group, with our choose of W, X, Y, Z as a frame for H,

we compute

[W, X] = −∂r, [W, Y ] = −∂s, [W, Z] = −∂t,

[X, Y ] = −∂t, [X, Z] = ∂s, [Y, Z] = −∂t,
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[W, ∂r] = [W, ∂rs] = [W, ∂t] = [X, ∂r] = [X, ∂s] = [X, ∂t] = 0,

[Y, ∂r] = [Y, ∂s] = [Y, ∂t] = [Z, ∂r] = [Z, ∂s] = [Z, ∂t] = 0.

Thus

{PW , PX} = ∂r := Pr, {PW , PY } = ∂s := Ps, {PW , PZ} = ∂t := Pt,

{PX , PY } = Pt, {PX , PZ} = −ps = −Ps, {PY , PZ} = pr = Pr

We can prove that

{PW , Pr} = {PW , Ps} = {PW , Pt} = {PX , Pr} = {PX , Ps} = {PX , Pt} = 0,

{PY , Pr} = {PY , Ps} = {PY , Pt} = {PZ , Pr} = {PZ , Ps} = {PZ , Pt} = 0.

These relations can also easily be computed by hand, from our formulae for PW , PX , PY , PZ

and the bracket in terms of w, x, y, z, r, s, r, pw, px, py, pz, pr, ps, pt.
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Lemma 21 By letting f vary over the functions w, x, y, z, r, s, r, PW , PX , PY , PZ , Pr, Ps, Pt,

using the bracket relations and equation (13), we find that Hamilton’s equations are equi-

valent to the system

ẇ = PW ,

ẋ = PX ,

ẏ = PY ,

ż = PZ ,

ṙ =
1

2
(xPW − wPX + zPY − yPZ),

ṡ =
1

2
(yPW − zPX + xPY − wPZ),

ṫ =
1

2
(zPW + yPX − xPY − wPZ),

ṖW = prPX + psPY + ptPZ ,

ṖX = −prPW − psPZ + ptPY ,

ṖY = prPZ − psPW − ptPX ,

ṖZ = −prPY + psPX − ptPW ,

Ṗr = 0,

Ṗs = 0,

Ṗt = 0.
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To see it, remember that H = 1
2
(P 2

W + P 2
X + P 2

Y + P 2
z ). Then

ẇ = {w,H} = Pw
∂PW

∂pw

= PW ,

ẋ = {x, H} = PX
∂PX

∂px

= PX ,

ẏ = PY ,

ż = PZ .

Also, considering that:

∂PW

∂pr

=
x

2
,

∂PW

∂ps

=
y

2
,

∂PW

∂pt

=
z

2
,

∂PX

∂pr

= −w

2
,

∂PX

∂ps

= −z

2
,

∂PX

∂pt

=
y

2
,

∂PY

∂pr

=
z

2
,

∂PY

∂ps

= −w

2
,

∂PY

∂pt

= −x

2
,

∂PZ

∂pr

= −y

2
,

∂PZ

∂ps

=
x

2
,

∂PZ

∂pt

= −w

2
,
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we have

ṙ =
1

2
(xPW − wPX + zPY − yPZ).

Indeed,

ṙ = {r, H} = PW
∂PW

∂pr

+ PX
∂PX

∂pr

+ PY
∂PY

∂pr

+ PZ
∂PZ

∂pr

=
1

2
(xPW − wPX + zPY − yPZ)

ṡ = {s, H} = PW
∂PW

∂ps

+ PX
∂PX

∂ps

+ PY
∂PY

∂ps

+ PZ
∂PZ

∂ps

=
1

2
(yPW − zPX + xPY − wPZ)

ṫ = {t,H} = PW
∂PW

∂pt

+ PX
∂PX

∂pt

+ PY
∂PY

∂pt

+ PZ
∂PZ

∂pt

=
1

2
(zPW + yPX − xPY − wPZ).

Working as above we obtain

ṖW = {PW , H} = prPX + psPY + ptPZ ,

ṖX = {PX , H} = −prPW − psPZ + ptPY ,

ṖY = {PY , H} = prPZ − psPW − ptPX ,

ṖZ = {PZ , H} = −prPY + psPX − ptPW .
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Finally, it is not difficult to see that Ṗr = Ṗs = Ṗt = 0.

The last three equations assert that Pr = pr, Ps = ps and Pt = pt are constant. The

variables r, s, t appears nowhere in the right-hand sides of these equations. It follows that

the variables w, x, y, z, PW , PX , PY , PZ evolve independently of r, s, t, and so we can view

the system as defining a one-parameter family of dynamical systems on R8 parameterized

by the constant value of Pr, Ps, Pt.

Combine w, x, y, z into a single quaternionic variable ω = w + ix + jy + kz and taking

into account the fourteen equations one has

dω

dt
= PW + iPX + jPY + kPZ

The time derivative of PW +iPX +jPY +kPZ is −(ipr +jps +kpt)(PW +iPX +jPY +kPZ).

Then we have d2ω
dt2

= −(ipr + jps + kpt)
dω
dt

, where pr, ps and pt are constant.

By integrating the above expression we get

PW + iPX + jPY + kPZ = P (0)exp(−(ipr + jps + kpt)t),

where P (0) = PW (0) + iPX(0) + jPY (0) + kPZ(0) .
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A second integration yields the general form of the geodesics on the quaternionic

contact group:

ω(t) = w(t) + ix(t) + jy(t) + kz(t) =

P (0)

ipr + jps + kpt

(exp(−(ipr + jps + kpt)t− 1) + w(0) + ix(0) + jy(0) + kz(0)) ,

r(t) = r(0) +
1

2

∫ t

0

ImI(ω̄ dω),

s(t) = s(0) +
1

2

∫ t

0

ImJ(ω̄ dω),

r(t) = t(0) +
1

2

∫ t

0

ImK(ω̄ dω).
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11. G. Vranceanu, Leçons de Géometrie Différentielle I, Editions de l’Academie de la

Republique Populaire Roumaine, Bucarest, 1947.

12. J. Wang, Sub-Riemannian heat kernels on model spaces and curvature-dimension

inequalities on contact manifolds, PhD thesis Purdue University, 2014.

48


