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1 Introduction (see [14])

Dido’s problem is a variant of the isoperimetric problem. It was formulated in the

Aeneid, Virgil’s epic poem glorifying the beginnings of Rome.

Queen Dido had to flee across the Mediterranean in a ship with friends and servants.

She had what we would nowadays call a dysfunctional family. Her brother, Pygmalion,

had just murdered her husband and taken most of her possessions. Dido landed, nearly

penniless, on a part of the African coast ruled by King Jarbas. After dickering and

begging, Dido persuaded Jarbas to give her as much land as she could enclose with an

ox hide. Dido told her servants to cut an ox hide into a single long, narrow strip. They

turned the ox hide into a single leather string.

Dido had in this way reformulated her difficult situation into the following geometric

problem. Given a string of fixed length ` and a fixed line L (the Mediterranean coastline),

place the ends of the string on L and determine the shape of the curve c for which the

figure enclosed by c together with L has the maximum possible area. This is Dido’s

problem. It is also sometimes referred to as the problem of Pappus. Dido found the

solution - a half-circle - and thus founded the semicircular city of Carthage.

Take the one-form α = 1
2
(xdy− ydx) which satisfies dα = dx∧ dy and α|L = 0 for any

ray L through the origin.
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According to Stokes’ theorem, the area Φ enclosed by a closed planar curve c is

Φ(c) =

∫
c

α. (1)

As α|L = 0, if c is a non-closed curve beginning at the origin, Φ(c) represents the area

enclosed by the closed curve obtained by traversing c and then returning to the origin

along the ray that connects the endpoint of c to the origin.

The length ` of c = (x(t), y(t)) is

`(c) =

∫
c

ds, (2)

where ds =
√

dx2 + dy2 = ||c′||dt is the usual element of arc length. In this manner

Dido’s problem, and the (dual) isoperimetric problem, becomes the following constrained

variational problem:

Problem 1. Minimize the length `(c) of a closed rectifiable curve c, subject to the

constraint that the signed area Φ(c) of the curve be a fixed constant.

The introduction of α lets us extend the problem to non-closed curves. The ray used

to close up c corresponds to the coastline L in Dido’s problem.

Now Montgomery constructs the three-dimensional geometry whose geodesics corres-

pond to the solutions to the isoperimetric problem. Add a third direction z whose motion
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is linked to that of x and y according to

dz =
1

2
(xdy − ydx) (3)

In this way we associate a family of curves γ(t) = (x(t), y(t), z(t)) to a single planar curve

c(t) = (x(t), y(t)), the family being parameterized by the initial value z0 of the height z.

We will call any one of these paths a horizontal lift of c, and more generally, any path γ

in R3 that satisfies the differential constraint (3) a horizontal path. Set

ds2 = dx2 + dy2

and define the length of any horizontal path in R3 to be
∫

γ
ds. In other words, we have

defined the length of γ to be equal to the usual length of its planar projection c.

Problem 2. Minimize the length
∫

γ
ds over all horizontal paths γ that join two fixed

points in three-space.

To see that this is a reformulation of the dual to Dido’s problem, or the isoperimetric

problem, observe that

z(1)− z(0) =

∫
c

1

2
(xdy − ydx),

where c(t) = (x(t), y(t)) is the projection of the curve γ(t) = (x(t), y(t), z(t)) to the plane.

Observe that, according to Stokes’ theorem, if c joins the origin to (x1, y1) and if we take

z(0) = 0, then the endpoints of γ are (0, 0, 0) and (x1, y1, Φ(c)), where Φ(c) denotes the
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signed area defined by the closed curve given by traversing c and then returning to the

origin along a line segment.

Defining the differential 1-form ω = dz − 1
2
(xdy − ydx) we can write

H = Ker ω = {ω(x, y, z) = 0}

= {(v1, v2, v3) : v3 −
1

2
(xv2 − yv1) = 0} ⊂ R3.

This H is a field of two-planes in three-space, or what it is called a distribution: a linear

subbundle of the tangent bundle. The restriction of ds2 to these two-planes defines a

smoothly varying family of inner products 〈· , ·〉 on the planes H. Thus if v, w ∈ H(x,y,z),

then 〈v, w〉 = v1w1 + v2w2.

Definition 1 R3 endowed with the structure of this distribution H and this family of

inner products ds2 on H is called the Heisenberg group (complex contact group), which is

the first nontrivial example of subriemannian geometry [2, 6, 18].
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2 Extended Bianchi-Cartan-Vranceanu spaces

We can see in ([3, 4, 5, 6, 21])the Bianchi-Cartan-Vranceanu (BCV for short)

space, which is an example of sub-riemannian geometry (see [6, 16]) and the horizontal

distribution is a 2-step breaking-generating distribution everywhere.

We generalize these manifolds in the following way

Observe that letting z = x + iy, we see that Im(z dz̄) = ydx − xdy, which reminds

us the map C × C → R × C given by (z1, z2) 7→ (|z1|2 − |z2|2, 2(z1z̄2)), that easily leads

to the classical Hopf fibration S1 ↪→ S3 → S2, where coordinates in S2 are given by

(|z1|2 − |z2|2, 2Re(z1z2), 2Im(z1z2)).

In the same line we get the fibration S3 ↪→ S7 → S4, but using quaternions H instead

of complex numbers. For a point (q1 = α + βj, q2 = γ + δj) ∈ S7, we get the following

coordinate expressions (|q1|2−|q2|2, 2Re(ᾱγ + β̄δ), 2Im(ᾱγ + β̄δ), 2Re(αδ−βγ), 2Im(αδ−
βγ)).

For any q = w +xi+yj + zk ∈ H we find that qdq̄ = wdw +xdx+ydy + zdz +(xdw−
wdx + zdy − ydz)i + (ydw − wdy + xdz − zdx)j + (zdw − wdz + ydx − xdy)k. As the

quaternionic contact group H× ImH, with coordinates (w, x, y, z, r, s, t) can be equipped
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with the metric

ds2 = (dw2 + dx2 + dy2 + dz2) +

(
dr +

1

2
(xdw − wdx + zdy − ydz)

)2

+

(
ds +

1

2
(ydw − wdy + xdz − zdx)

)2

+

(
dt +

1

2
(zdw − wdz + ydx− xdy)

)2

.

Then, by extending this metric, it seems natural to find a 7-dimensional generalization

of the 3-dimensional BCV spaces endowed with the two-parameter family of metrics

ds2
l,m =

dw2 + dx2 + dy2 + dz2

K2
+

(
dr +

l

2

wdx− xdw + ydz − zdy

K

)2

+

(
ds +

l

2

wdy − ydw + zdx− xdz

K

)2

+

(
dt +

l

2

wdz − zdw + xdy − ydx

K

)2

,

where l,m are real numbers and K = 1 + m(w2 + x2 + y2 + z2).

Then (EBCV, ds2
l,m) will be called extended BCV spaces (EBCV for short).

That metric is obtained as a conformal deformation of the Euclidean metric of R4 by

adding three suitable terms which depend on l and m concerning the imaginary part of qq̄,

for a quaternion q. When m = 0 we get a one-parameter of Riemannian metrics depending

on l. Furthermore, if l = 1, we find the 7-dimensional quaternionic Heisenberg group (see
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[8] and [23]). The manifold EBCV provides another example of sub-riemannian geometry

and the horizontal distribution is a 2-step breaking-generating distribution everywhere.

That metric can also be written as

ds2
l,m =

7∑
i=1

ωi ⊗ ωi

where

ω1 = dr + l
2K

(wdx− xdw + ydz − zdy), ω4 = dw/K,

ω2 = ds + l
2K

(wdy − ydw + zdx− xdz), ω5 = dx/K,

ω3 = dt + l
2K

(wdz − zdw + xdy − ydx), ω6 = dy/K,

ω7 = dz/K,

X1 = ∂r, X2 = ∂s, X3 = ∂t,

X4 = K∂w +
lx

2
∂r +

ly

2
∂s +

lz

2
∂t, X5 = K∂x −

lw

2
∂r −

lz

2
∂s +

ly

2
∂t,

X6 = K∂y +
lz

2
∂r −

lw

2
∂s −

lx

2
∂t, X7 = K∂z −

ly

2
∂r +

lx

2
∂s −

lw

2
∂t.
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Then we find that

Lemma 2 {X1, X2, · · · , X7} is an orthonormal basis of vector fields whit respect to the

given metric ds2
l,m := 〈 , 〉.

Observe that

when m = l = 0, EBCV is nothing but R7,

when m > 0, l = 0, EBCV ∼= S4(4m)× R3, and

when m < 0, l = 0, EBCV ∼= H4(4m)× R3.

3 The Levi-Civita connection and curvature tensor

Writing 1 ≤ a, b ≤ 3, 4 ≤ u, v ≤ 7, we find that

[Xa, Xb] = 0; [Xa, Xu] = 0

We have obtained the values of all the Lie brackets non null (see [8]), for example

[X4, X5] = −lm(x2 + y2 +
1

m
)X1 + lm(wz + xy)X2− lm(wy− xz)X3− 2mxX4 + 2mwX5

For later use, when m = 0 brackets reduce to
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[ , ] X4 X5 X6 X7

X4 0 −lX1 −lX2 −lX3

X5 0 −lX3 lX2

X6 0 −lX1

X7 0

Remark 3 When l = 1, we have the brackets of the quaternionic contact manifold.

As for the Levi-Civita connection in a Riemannian manifold ([12], p. 160) we find

∇XaXb = 0; ∇XaXu = ∇XuXa,

and for the other nonvanishing ones we get, for instance,

∇X1X4 =
lm

2
(y2 + z2 +

1

m
)X5 +

lm

2
(wz − xy)X6 −

lm

2
(wy + xz)X7,

∇X4X4 = 2m(xX5 + yX6 + zX7),

∇X4X5 = − l

2
(1 + m(y2 + z2))X1 +

lm

2
(wz + xy)X2 −

lm

2
(wy − xz)X3 − 2mxX4.

When m = 0, the Levi-Civita connection reduces to
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∇Xi
Xj X4 X5 X6 X7

X1
l
2
X5 − l

2
X4

l
2
X7 − l

2
X6

X2
l
2
X6 − l

2
X7 − l

2
X4

l
2
X5

X3
l
2
X7

l
2
X6 − l

2
X5 − l

2
X4

X4 0 − l
2
X1 − l

2
X2 − l

2
X3

X5
l
2
X1 0 − l

2
X3

l
2
X2

X6
l
2
X2

l
2
X3 0 − l

2
X1

X7
l
2
X3 − l

2
X2

l
2
X1 0

Remark 4 When l = 1, we find the Levi-Civita connection of the quaternionic contact

manifold.
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If R denotes the curvature tensor we can prove that

4
l2 R (X1, X4)

... (X6, X7)

(X1, X4) m2[(y2 + z2 + 1/m)2 +
(wz − xy)2 + (wy + xz)2]

...
...

...
...

...
...

(X6, X7)
...

... 16m
l2 − 3m2[(w2 + x2 +

1/m)2+(wz+xy)2+(wy−
xz)2]

Remark 5 When m = 0, the curvature of the quaternionic contact manifold reduces to

R (X1, X4)
... (X6, X7)

(X1, X4) l2

4

...
...

...
...

...
...

(X6, X7)
...

... − 3l2

4
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4 The Ricci tensor

Proposition 6 The matrix representing the Ricci tensor is given by



l2/2(K2 + 1) 0 0
...

0 l2/2(K2 + 1) 0
...

0 0 l2/2(K2 + 1)
...

−lmx(K + 2) −lmy(K + 2) −lmz(K + 2)
...

lmw(K + 2) lmz(K + 2) −lmy(K + 2)
...

−lmz(K + 2) lmw(K + 2) lmx(K + 2)
...

lmy(K + 2) −lmx(K + 2) lmw(K + 2)
...

... −lmx(K + 2) lmw(K + 2) −lmz(K + 2) lmy(K + 2)

... −lmy(K + 2) lmz(K + 2) lmw(K + 2) −lmx(K + 2)

... −lmz(K + 2) −lmy(K + 2) lmx(K + 2) lmw(K + 2)

... A(K − 1−mw2) + B l2m(K + 1)wx l2m(K + 1)wy l2m(K + 1)wz

... l2m(K + 1)wx A(K − 1−mx2) + B l2m(K + 1)xy l2m(K + 1)xz

... l2m(K + 1)wy l2m(K + 1)xy A(K − 1−my2) + B l2m(K + 1)yz

... l2m(K + 1)wz l2m(K + 1)xz l2m(K + 1)yz A(K − 1−mz2) + B


.
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where A = −l2(K + 1) and B = 12m− 3/2l2.

Using Mathematica we can obtain the eigenvalues of this matrix.

Proposition 7 The eigenvalues for the matrix of Ricci tensor λ1, λ2, λ3 whit multiplicity

1, 3 and 3 respectively are given by:

λ1 = 12m− 3l2/2

λ2 = −
√

576m2 + (16K3 − 96K2 − 160)l2m + (9K4 + 12K2 + 4)l4 − 24m + K2l2

4

λ3 =

√
576m2 + (16K3 − 96K2 − 160)l2m + (9K4 + 12K2 + 4)l4 + 24m−K2l2

4

Open question: We are interested in computing the corresponding eigenvectors.
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Remark: For arbitrary m and l these eingenvalues are different, but in some special

cases they can coincide, for example

a) If m = 0 , λ1 = λ2 = −(3l2)/2 , λ3 = l2 and then we obtain the Ricci curvature of

the quaternionic contact manifold.

b) If l = 0, λ1 = 12m, λ2 = 6m− 6|m| and λ3 = 6|m|+ m.

c) If l = 0 and m = 0 we have the trivial case: EBCV is nothing but R7.

Corollary 8 The EBCV manifold has constant scalar curvature S = 48m.
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5 Killing vector fields in EBCV

Remember that a Killing vector field is a vector field on a Riemannian manifold that

preserves the metric. Killing vector fields are the infinitesimal generators of isometries,

that is, flows generated by Killing fields are continuous isometries of the manifold. Specifi-

cally, a vector field X is a Killing vector field if the Lie derivative with respect to X of the

metric g vanishes: LXg = 0 In terms of the Levi-Civita connection, Killing’s condition is

equivalent to

g(∇Y X, Z) + g(Y,∇ZX) = 0. (4)

It is easy to see that LXg(Y, Z) = 0 if and only if LXg(Xi, Xj) = 0 for basic vector

fields Xi, Xj. Furthermore, the vertical vector fields X1, X2, X3 are Killing ones, while

horizontal vector fields X4, X5, X6, X7 are not Killing vector fields.

It is well known (see [12], vol. I, p. 238) that an upper bound for the dimension m of

the Lie algebra of the Killing vector fields is

m ≤ n(n + 1)

2
,

and the maximum is reached on constant curvature manifolds. Then for our manifold

m < 28.
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Using results of Wang, [22], Kobayashi proved the following result ([11], p. 47): Let

M be an n-dimensional Riemannian manifold with n 6= 4. Then the group of isometries

contains no closed subgroup of dimension r for 1
2
n(n − 1) + 1 < r < 1

2
n(n + 1). Since

in our case n = 7, then between the dimensions 22 and 28 do not exist closed subgroup

of isometries. Just in her thesis Profir [16] proved that the Lie algebra of Killing vector

fields is 4-dimensional.

Problem: Determine the space of Killing vector fields in EBCV .

By using Killing condition and the values of ωi and dωi we obtain that the Killing

vector fields are characterized by a system of partial differential equations (28 equations).

We think that it is a difficult problem.

5.1 The Killing vector fields for m = 0

In the usual coordinate system (r, s, t, w, x, y, z) on EBCV , a vector field X =
∑7

i=1 fiXi

will be a Killing field if and only if the real functions fi satisfy a difficult system of 28-

partial differential equations. It seems that the solution of the system is very difficult, so

that we focus on solving the system for m = 0, in such case the solution is given by

17



f1(r, s, t, w, x, y, z) = (P + R)s + (S −N)t +
l

2
{−M(w2 + x2)− U(y2 + z2) + (R− P )(wy + xz)

+ (N + S)(wz − xy) + 2Tw − 2Qx + 2Wy − 2V z}+ C1,

f2(r, s, t, w, x, y, z) = −(P + R)r + (M + U)t− l

2
{N(w2 + y2)− S(x2 + z2) + (R− P )(wx− yz)

+ (M − U)(wz + xy)− 2V w + 2Wx + 2Qy − 2Tz}+ C2,

f3(r, s, t, w, x, y, z) = −(S −N)r − (M + U)s− l

2
{P (w2 + z2) + R(x2 + y2) + (N + S)(wx + yz)

+ (U −M)(wy − xz)− 2Ww − 2V x + 2Ty + 2Qz}+ C3,

f4(r, s, t, w, x, y, z) = Mx + Ny + Pz + Q,

f5(r, s, t, w, x, y, z) = −Mw + Ry + Sz + T,

f6(r, s, t, w, x, y, z) = −Nw −Rx + Uz + V,

f7(r, s, t, w, x, y, z) = −Pw − Sx− Uy + W,

where M, N, P, Q, R, S, T, U, V,W, C1, C2, C3 ∈ R.

As a consequence, when m = 0, we obtain

Proposition 9 The Lie algebra of Killing vector fields is 13-dimensional.
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6 The characteristic connection in the EBV C mani-

fold

We now consider in EBCV the characteristic connection D. It is well known in the

literature and has been extensively used by different authors (see for example [10], [17]):

DLM = ∇LM + A(L, M),

where A(L, M) = P
2
(∇LP )M , for any vector fields L, M , and P stands for the natu-

ral almost product structure. Remember that P = V − H, Id = V + H, V and H
being the natural vertical and horizontal projections, respectively. Observe that the ver-

tical distribution in EBCV is spanned by X1, X2, X3 and the horizontal distribution by

X4, X5, X6, X7. Then we have

DXaXb = V(∇Xi
Xj) = 0, a, b = 1, 2, 3,

DXuXa = V(∇XaXa) = 0, u = 4, . . . , 7; a = 1, 2, 3,

DXaXu = H(∇XaXu) = ∇XaXu, a = 1, 2, 3; u = 4, . . . , 7,

DXuXv = H(∇XuXv), u, v = 4, . . . , 7.
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Proposition 10 The almost product structure verifies several interesting properties (see

for instance [7], [10], [15] among others)

a) 〈(∇LP )PM, PN〉 = −〈(∇LP )M, N〉,

b) 〈PM, PN〉 = 〈M, N〉,

c) O〈(∇LP )M, PN〉 = 〈(∇2
OLP )M, PN〉+ 〈(∇∇OLP )M, PN〉

+〈(∇LP )∇OM, PN〉+ 〈(∇LP )M,∇O(PN)〉,

d) 〈(∇LP )M, N〉 = 〈(∇LP )N, M〉,

e) 〈(∇LP )A, B〉 = 0; 〈(∇LP )X, Y 〉 = 0,

f) 〈(∇LP )A, PB〉 = 0; 〈(∇LP )X, PY 〉 = 0,

L, M, N, O being arbitrary vector fields, A, B vertical vector fields and X, Y horizontal

vector fields.

Following the classification given by A.M. Naveira for almost product structures, [15],

we have:

Proposition 11 (EBCV, P ) is in (TGF, AF ) class.

We have to prove that ∇L(P )M = 0 when L, M are vertical and ∇X(P )X = 0 if X is

horizontal. The result follows using the tables giving in [8] for the Levi-Civita connection.
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Proposition 12 D is a metric connection.

Proof D is a metric connection if and only if for any basic vector fields L, M, N in EBCV

we have

〈DLM, N〉+ 〈DLN, M〉 = 0.

Since ∇ is a metric connection, that condition is equivalent to

〈A(L, M), N〉+ 〈A(L, N), M〉 = 0.

The result follows by we using the results for the Levi-Civita connection.

Proposition 13 The tensor field A satisfies that

A(Xi, Xi) = 0, i = 1, . . . , 7,

A(Xa, Xi) = 0, a = 1, 2, 3, i = 1, . . . , 7,

A(X4, X1) = − l

2
{1 + m(y2 + z2)}X5 −

ml

2
(wz − xy)X6 +

ml

2
(wy + xz)X7,

. . . . . . . . .

A(X7, X6) = − l

2
{(1 + m(w2 + x2))X1 + m(wz + xy)X2 −m(wy − xz)X3}.
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Let TD denote the torsion tensor of D, that is,

TD
L M ≡ TD(L, M) = DLM −DML− [L, M ],

or even

TD(L, M) =
P

2
((∇LP )M − (∇MP )L) = A(L, M)− A(M, L).

By using the previous results we find

Corollary 14 The torsion tensor TD satisfies:

TD(Xi, Xi) = 0, i = 1, . . . , 7,

TD(Xa, Xb) = 0, a, b = 1, 2, 3,

TD(Xa, Xu) = −TD(Xu, Xa), a = 1, 2, 3, u = 4, . . . , 7,

TD(Xu, Xv) = 2A(Xu, Xv), u, v = 4, . . . , 7.

Now from [1] and [20] we obtain

Corollary 15 The tensor field A is in the class T2 ⊕ T3.

Proof: It is enough to realize that

c12(A) =
∑

AXi
Xi = 0, i = 1, . . . , 7.
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Proposition 16 The connection D does not parallelize A.

It is sufficient to prove that (DLA)(M, N) does not vanish for a particular choice of the

vector fields L, M, N . Then, for example, we see that

(DX6A)(X4, X5) =

= (Klmy − lm2w2y − lm2x2y)X1 + (− lmx

2
+ lm2w(wx− yz) + lmx(1 + m(x2 + z2))X2

+(
lmw

2
− lmw(1 + m(w2 + z2))− lm2x(wx + yz))X3 6= 0.

As for the curvature tensor of D we have

Proposition 17 The curvature RD of the connection D is given by

RD(X1, X2, X1, X2) = 0, RD(X1, X2, X3, X4) = 0,

. . . . . . . . .

RD(X1, X2, X4, X5) = −ml2

4
(K − 1)(wy − xz),

. . . . . . . . .

RD(X1, X4, X4, X5) = −lmw, RD(X1, X4, X5, X6) =
Klm

2
y,

. . . . . . . . .

RD(X4, X5, X4, X5) = 4m, RD(X4, X5, X6, X7) = 0.
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Proposition 18 The connection D does not parallelize RD.

It is enough to show that for a particular choice of vector fields DRD 6= 0. Indeed,

(DX4R
D)(X1, X4, X5, X6) = −lm[m(Kxz − y2 + 2(K + 3)wy)− K

2
] 6= 0.

OPEN QUESTION: We are interested in proving that EBCV is a homo-

geneous manifold. To do that using the results of Tricerri-Vanhecke (see [20],

[21]) we have to find a tensor A such that D = ∇+A must satisfy the following

three conditions

Dg = 0, DA = 0, DRD = 0.

In [20] Tricerri and Vanhecke solve this question for the 3-dimensional Heisenberg

space through the existence of an antisymmetric tensor T of type (1, 2). In our case we

have tried to generalize this method by using different tensors, such as the antisymmetric

tensor A, but we still have not succeeded. However, an affirmative answer is obtained for

the 7-dimensional Heisenberg group which corresponds to m = 0.

It seems that this is a difficult problem. The given natural tensor A =
P
2
(∇LP )M does not verify these conditions.
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As for the geodesics we obtain

Proposition 19 The connections ∇ and D have not the same geodesics.

Proof: Having the same geodesics is equivalent to say that A is antisymmetric, but

does not hold, since A(X2, X6) 6= A(X6, X2).

Remark By considering just either the vertical distribution or the horizontal distri-

bution we obtain:

(i) If M is vertical then (∇MP )M = 0.

(ii) If M is horizontal, since ∇MM is also horizontal, we have

(∇MP )M = −∇MM +∇MM = 0.

(iii) However, for mixed vector fields M = A + X, where A is vertical and X is

horizontal, then above result does not hold. Indeed, taking M = X2 + X5 we get

〈(DX2+X5P )(X2 + X5), X1 + X4〉 6= 0.

Remark: In [9] the authors have calculated the horizontal geodesic equations and the

corresponding solutions for the quaternionic contact manifold in dimension 7.
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7 Curvature in sub-Riemannian geometry

Let ∇H denote the horizontal connection, the restriction of the Levi-Civita connection ∇
to the horizontal distribution generated by {X4, X5, X6, X7}, which is metric. After some

easy calculations we obtain

∇H
X4

X4 = 2mxX5 + 2myX6 + 2mzX7,

∇H
X4

X5 = −2mxX4,

∇H
X4

X6 = −2myX4,

∇H
X4

X7 = −2mzX4,

and so on.

We also have

[X4, X5]
H = −2mxX4 + 2mwX5, [X4, X6]

H = −2myX4 + 2mwX6,

[X4, X7]
H = −2mzX4 + 2mwX7, [X5, X6]

H = −2myX5 + 2mxX6,

and so on.
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It is easy to see that the torsion of the horizontal connection ∇H satisfies

TH(Xu, Xv) = 0, u, v = 4, . . . , 7.

As for the curvature of the horizontal connection ∇H we remember that

RH(A, B, C,D) = −A〈∇H
BC, D〉+ B〈∇H

AC, D〉
+ 〈∇H

BC,∇H
AD〉 − 〈∇H

AC,∇H
BD〉+ 〈∇[A,B]HC, D〉.

Proposition 20 The only non-zero components of the curvature of the horizontal con-

nection are

RH(Xu, Xv, Xu, Xv) = −RH(Xu, Xv, Xv, Xu) = 4m, u, v = 4, . . . , 7, u < v.

Corollary 21 The curvature RH is parallel whit respect to ∇H.

Remark: ∇Hg = 0, ∇HTH = 0, ∇HRH = 0.
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Following [2], we denote by H and V the projection morphisms of T (EBCV ) on

H(EBCV ) and V(EBCV ), respectively, and define the mapping

F : Γ(H(EBCV )2 × Γ(V(EBCV ) → F(EBCV )

F (HL,HM,VN) = VN(g(HL,HM))− g(H[VN,HL],HM)− g(H[VN,HM ],HL)

for all L, M, N ∈ T (EBCV ). Then, it is easy to check that F is an adapted tensor field

on EBCV .

Definition 22 We say that the sub-Riemannian manifold (M,HM, g,VM) is a nearly

Riemannian manifold if the adapted tensor field F vanishes identically on M.

Corollary 23 The subriemannian manifold (EBCV,H(EBCV ), g,V(EBCV ) is a nearly

Riemannian manifold.

Indeed, for our manifold, F (HL,HM,VN) = 0, for all L, M, N ∈ T (EBCV ).
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