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1 Introduction (see [8])

A subriemannian geometry is a manifold endowed with a distribution and a fiber inner

product on that distribution.

A distribution here means a family of k-planes, that is, a linear sub-bundle of the

tangent bundle of the manifold. We refer to the distribution as the horizontal space, and

the objects tangent to it as “horizontal”.

Given such geometry we can define the distance between two points just as in Rieman-

nian geometry, except that we are only allowed to travel about horizontal curves when

we joining two points.

The simplest non trivial subriemannian geometry is called Heisenberg group [10].

It is very interesting to study the relation between this subriemannian geometry and

the classical isoperimetric problem, where the following 1-form has a important rolle:

ω = dz − 1

2
(xdy − ydx)

we can write
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H = Ker ω = {ω(x, y, z) = 0}

= {(v1, v2, v3) : v3 −
1

2
(xv2 − yv1) = 0} ⊂ R3.

This H is a field of two-planes in three-space.

The restriction of the usual metric to these two-planes defines a smoothly varying

family of inner products

Definition 1 R3 endowed with the structure of this distribution H and this family of

inner products ds2 on H is called the Heisenberg group (complex contact group).
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The Bianchi-Cartan-Vranceanu (BCV) spaces (see [4])

For real numbers l and m, with l ≥ 0, consider the set

BCV (l,m) = {(x, y, z) ∈ R3 : 1 + m(x2 + y2) > 0}

equipped with the metric

ds2
l,m =

dx2 + dy2

(1 + m(x2 + y2))2
+

(
dz +

l

2

xdy − ydx

1 + m(x2 + y2

)2

.

Observe that this metric is obtained as a conformal deformation of the planar Eucli-

dean metric by adding the imaginary part of zdz̄, for a complex number z.

Take the vector fields Ei and its corresponding dual 1-forms ωj

E1 = (1 + m(x2 + y2)) ∂x − l
2
y∂z ω1 =

dx

1 + m(x2 + y2)

E2 = (1 + m(x2 + y2)) ∂y + l
2
x∂z ω2 =

dy

1 + m(x2 + y2)

E3 = ∂z ω3 = dz +
l

2

ydx− xdy

(1 + m(x2 + y2)
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Let D be the distribution generated by {E1, E2}. The manifold
(
BCV (l,m),D, ds2

l,m

)
is called a Bianchi-Cartan-Vranceanu (BCV for short) space ([1, 2, 3, 12]), which is an

example of sub-riemannian geometry (see [4, 10]) and the horizontal distribution is a

2-step breaking-generating distribution everywhere.

2 Extended Bianchi-Cartan-Vranceanu spaces

Observe that letting z = x + iy, we see that Im(z dz̄) = ydx − xdy, which reminds

us the map C × C → R × C given by (z1, z2) 7→ (|z1|2 − |z2|2, 2(z1z̄2)), that easily leads

to the classical Hopf fibration S1 ↪→ S3 → S2, where coordinates in S2 are given by

(|z1|2 − |z2|2, 2Re(z1z2), 2Im(z1z2)).

In the same line we get the fibration S3 ↪→ S7 → S4, but using quaternions H instead of

complex numbers. Quaternions are usually presented with the imaginary units i, j, k in the

form q = x0 + x1i + x2j + x3k, x0, x1, x2, x3 ∈ R with i2 = j2 = k2 = ijk = −1. They can

also be defined equivalently, using the complex numbers c1 = x0 + x1i and c2 = x2 + x3i,

in the form q = c1 + c2j. Then for a point (q1 = α + βj, q2 = γ + δj) ∈ S7, we get

the following coordinate expressions (|q1|2 − |q2|2, 2Re(ᾱγ + β̄δ), 2Im(ᾱγ + β̄δ), 2Re(αδ −
βγ), 2Im(αδ − βγ)).

For any q = w +xi+yj + zk ∈ H we find that qdq̄ = wdw +xdx+ydy + zdz +(xdw−
wdx + zdy − ydz)i + (ydw − wdy + xdz − zdx)j + (zdw − wdz + ydx − xdy)k. As the
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quaternionic contact group H× ImH, with coordinates (w, x, y, z, r, s, t) can be equipped

with the metric

ds2 = (dw2 + dx2 + dy2 + dz2) +

(
dr +

1

2
(xdw − wdx + zdy − ydz)

)2

+

(
ds +

1

2
(ydw − wdy + xdz − zdx)

)2

+

(
dt +

1

2
(zdw − wdz + ydx− xdy)

)2

.

Then, by extending this metric, it seems natural to find a 7-dimensional generalization

of the 3-dimensional BCV spaces endowed with the two-parameter family of metrics

ds2
l,m =

dw2 + dx2 + dy2 + dz2

K2
+

(
dr +

l

2

wdx− xdw + ydz − zdy

K

)2

+

(
ds +

l

2

wdy − ydw + zdx− xdz

K

)2

+

(
dt +

l

2

wdz − zdw + xdy − ydx

K

)2

,

where l,m are real numbers and K = 1 + m(w2 + x2 + y2 + z2).

That metric is obtained as a conformal deformation of the Euclidean metric of R4 by

adding three suitable terms which depend on l and m concerning the imaginary part of

qdq̄, for a quaternion q. When m = 0 we get a one-parameter of Riemannian metrics

depending on l. Furthermore, if l = 1, we find the 7-dimensional quaternionic Heisenberg

group (see [7] and [13]).
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That metric can also be written as

ds2
l,m =

7∑
i=1

ωi ⊗ ωi

where

ω1 = dr + l
2K

(wdx− xdw + ydz − zdy), ω4 = dw/K,

ω2 = ds + l
2K

(wdy − ydw + zdx− xdz), ω5 = dx/K,

ω3 = dt + l
2K

(wdz − zdw + xdy − ydx), ω6 = dy/K,

ω7 = dz/K,

X1 = ∂r, X2 = ∂s, X3 = ∂t,

X4 = K∂w +
lx

2
∂r +

ly

2
∂s +

lz

2
∂t, X5 = K∂x −

lw

2
∂r −

lz

2
∂s +

ly

2
∂t,

X6 = K∂y +
lz

2
∂r −

lw

2
∂s −

lx

2
∂t, X7 = K∂z −

ly

2
∂r +

lx

2
∂s −

lw

2
∂t.

Then we find that
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Lemma 2 {X1, X2, · · · , X7} is an orthonormal basis of vector fields whit respect to the

given metric ds2
l,m := 〈 , 〉.

Let D be the distribution generated by {X4, X5, X6, X7}.

The manifold
(
EBCV (l,m),D, ds2

l,m

)
will be called Extended Bianchi-Cartan-Vranceanu

space (EBCV for short) and provides a new example of sub-riemannian geometry, D, the

horizontal distribution, is a 2-step breaking-generating distribution everywhere.
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For the Lie brackets writing 1 ≤ a, b ≤ 3; 4 ≤ u, v ≤ 7, we find that

[Xa, Xb] = 0; [Xa, Xu] = 0

as well as

[ , ] X4 X5 X6 X7

X4 0 −lm(x2 +y2 + 1
m

)X1 +

lm(wz + xy)X2 −
lm(wy − xz)X3 −
2mxX4 + 2mwX5

−lm(wz − xy)X1 −
lm(x2 + z2 + 1

m
)X2 +

lm(wx + yz)X3 −
2myX4 + 2mwX6

lm(wy + xz)X1 −
lm(wx − yz)X2 −
lm(x2 + y2 + 1

m
)X3 −

2mzX4 + 2mwX7

X5 0 −lm(wy + xz)X1 +

lm(wx − yz)X2 −
lm( 1

m
+ w2 + z2)X3 −

2myX5 + 2mxX6

lm(xy − wz)X1 +

lm(w2 + y2 + 1
m

)X2 +

lm(wx + yz)X3 −
2mzX5 + 2mxX7

X6 0 −lm(w2+x2+ 1
m

)X1−
lm(wz + xy)X2 +

lm(wy − xz)X3 −
2mzX6 + 2myX7

X7 0

For later use, when m = 0 brackets reduce to
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[ , ] X4 X5 X6 X7

X4 0 −lX1 −lX2 −lX3

X5 0 −lX3 lX2

X6 0 −lX1

X7 0

Remark 3 When l = 1, we have the brackets of the quaternionic Heisenberg group.

Definition 4 ([4])Let M be a differentiable manifold of dimension m + p. A subrieman-

nian manifold (M,F , g) is called Heisenberg manifold if

0. It is step 2 everywhere

1. There are m locally defined vector fields X1, · · · , Xm on M such that

F = span{X1, · · · , Xm}

2. The vector fields of F are orthonormal.

3. There are p locally defined one-forms ωα whit ωα(Xi) = 0 which satisfies the

nonvanishing conditions

det(ωα[Xi, Xj]) 6= 0; 1 ≤ i, j ≤ m; 1 ≤ α ≤ p
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4. If the vector fields {Xi}, {Yj}, 1 ≤ i, j ≤ m are defined in the local charts U and

U ′ respectively, then the distributions match on the overlap

span{X1, · · · , Xm}q = span{Y1, · · · , Ym}q, for q ∈ U ∩ U ′

Corollary 5
(
EBCV (l,m),D, ds2

l,m

)
is a Heisenberg manifold whit p = 3 and {ωα} =

{ω1, ω2, ω3}.

Let’s note that condition 3 is satisfied using previous table of Lie brackets and the defi-

nition of ω1, ω2, ω3, that is

det(ωα[Xi, Xj]) = l2K4 6= 0, 1 ≤ i, j ≤ m, = 1, 1 ≤ α ≤ 3;

In [4] we can see more examples of Heisenberg manifolds and interesting properties that

our manifold satisfies, particularly we can define the volume element dv for a Heisenberg

manifold.

For the EBCV manifold it has:

dv = fdω1 ∧ · · · ∧ dω7
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For the Levi-Civita connection in a Riemannian manifold ([6], p. 160) we find

∇XaXb = 0; ∇XaXu = ∇XuXa

and

∇Xi
Xj X4 X5 X6 X7

X1
lm
2

(y2 + z2 +
1
m

)X5 + lm
2

(wz−
xy)X6− lm

2
(wy+

xz)X7

− lm
2

(y2 + z2 +
1
m

)X4 + lm
2

(wy +

xz)X6+ lm
2

(wz−
xy)X7

− lm
2

(wz −
xy)X4− lm

2
(wy+

xz)X5 + lm
2

(w2 +

x2 + 1
m

)X7

lm
2

(wy+xz)X4−
lm
2

(wz−xy)X5−
lm
2

(w2 + x2 +
1
m

)X6

...
...

...
...

...

X7 − lm
2

(wy +

xz)X1+ lm
2

(wx−
yz)X2 + lm

2
(x2 +

y2 + 1
m

)X3 −
2mwX7

lm
2

(wz−xy)X1−
lm
2

(w2 + y2 +
1
m

)X2− lm
2

(wx+

yz)X3 − 2mxX7

lm
2

(w2 + x2 +
1
m

)X1 + lm
2

(wz +

xy)X2− lm
2

(wy−
xz)X3 − 2myX7

2m(wX4+xX5+

yX6)
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When m = 0, the Levi-Civita connection reduces to

∇Xi
Xj X4 X5 X6 X7

X1
l
2
X5 − l

2
X4

l
2
X7 − l

2
X6

X2
l
2
X6 − l

2
X7 − l

2
X4

l
2
X5

X3
l
2
X7

l
2
X6 − l

2
X5 − l

2
X4

X4 0 − l
2
X1 − l

2
X2 − l

2
X3

X5
l
2
X1 0 − l

2
X3

l
2
X2

X6
l
2
X2

l
2
X3 0 − l

2
X1

X7
l
2
X3 − l

2
X2

l
2
X1 0

Remark 6 When l = 1, we find the Levi-Civita connection of the quaternionic Heisenberg

group.
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If R denotes the curvature tensor we can prove that

4
l2 R (X1, X4)

... (X6, X7)

(X1, X4) m2[(y2 + z2 + 1/m)2 +
(wz − xy)2 + (wy + xz)2]

...
...

...
...

...
...

(X6, X7)
...

... 16m
l2 − 3m2[(w2 + x2 +

1/m)2+(wz+xy)2+(wy−
xz)2]

Remark 7 When m = 0, the curvature of the quaternionic Heisenberg group reduces to

R (X1, X4)
... (X6, X7)

(X1, X4) l2

4

...
...

...
...

...
...

(X6, X7)
...

... − 3l2

4
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3 The curvature of the horizontal distribution in EBCV

(see [8])

The Riemannian curvature tensor dominates discussions of Riemannian geometry. It

is the local invariant of a Riemannian metric. What is the analogue of the Riemannian

curvature tensor for subriemannian geometry? There is no good analogue. What we will

call the curvature depends only on the distribution, and not at all on the metric.

Definition 8 The curvature of a distribution H is the linear bundle map

F : ∧2H → TQ/H

defined by F (X,Y ) = −[X,Y ] modH, X,Y ∈ H.

This map is tensorial, that is, F (X, Y )(q) depends only on the vectors X(q), Y (q) ∈ H
and not on how they are extended to form horizontal vector fields X, Y .

Thurston [11] calls the curvature “twistedness” of the distribution. Other authors call

it the “nonintegrability” tensor. We call F the curvature of the distribution H.
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We can see ([8]) what is the value of F in some interesting examples such as:

-Principal bundle connections

- Involutive distributions

- Contact distributions

Remark 9 Let H be the distribution spanned by {X4, X5, X6, X7} in EBCV . Then it

is of codimension 3, that is, T (EBCV )/H is a real rank 3 bundle.

Remark 10 Using Lema 2, the curvature of the distribution H = {X4, X5, X6, X7} in

the EBCV manifold is given by
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F (Xu, Xv) X4 X5 X6 X7

X4 0 lm(x2+y2+ 1
m

)X1−
lm(wz + xy)X2 +

lm(wy − xz)X3

lm(wz − xy)X1 +

lm(x2+z2+ 1
m

)X2−
lm(wx + yz)X3

−lm(wy + xz)X1 +

lm(wx − yz)X2 +

lm(x2 + y2 + 1
m

)X3

X5 0 lm(wy + xz)X1 −
lm(wx − yz)X2 +

lm( 1
m

+ w2 + z2)X3

−lm(xy−wz)X1−
lm(w2 + y2 +
1
m

)X2 − lm(wx +

yz)X3

X6 0 lm(w2 + x2 +
1
m

)X1 + lm(wz +

xy)X2 − lm(wy −
xz)X3

X7 0
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For later use, when m = 0 the curvature of the distribution H reduces to

F (, ) X4 X5 X6 X7

X4 0 lX1 lX2 lX3

X5 0 lX3 −lX2

X6 0 lX1

X7 0
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4 The Ricci tensor in EBCV

Proposition 11 The matrix representing the Ricci tensor is given by



l2/2(K2 + 1) 0 0
...

0 l2/2(K2 + 1) 0
...

0 0 l2/2(K2 + 1)
...

−lmx(K + 2) −lmy(K + 2) −lmz(K + 2)
...

lmw(K + 2) lmz(K + 2) −lmy(K + 2)
...

−lmz(K + 2) lmw(K + 2) lmx(K + 2)
...

lmy(K + 2) −lmx(K + 2) lmw(K + 2)
...

... −lmx(K + 2) lmw(K + 2) −lmz(K + 2) lmy(K + 2)

... −lmy(K + 2) lmz(K + 2) lmw(K + 2) −lmx(K + 2)

... −lmz(K + 2) −lmy(K + 2) lmx(K + 2) lmw(K + 2)

... A(K − 1−mw2) + B l2m(K + 1)wx l2m(K + 1)wy l2m(K + 1)wz

... l2m(K + 1)wx A(K − 1−mx2) + B l2m(K + 1)xy l2m(K + 1)xz

... l2m(K + 1)wy l2m(K + 1)xy A(K − 1−my2) + B l2m(K + 1)yz

... l2m(K + 1)wz l2m(K + 1)xz l2m(K + 1)yz A(K − 1−mz2) + B


.
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where A = −l2(K + 1) and B = 12m− 3/2l2.

Some particular cases could be interesting, for instance we get the following Ricci

matrix when K = 1 (or m = 0)

Ric1 =



l2 0 0 0 0 0 0

0 l2 0 0 0 0 0

0 0 l2 0 0 0 0

0 0 0 −3/2l2 0 0 0

0 0 0 0 −3/2l2 0 0

0 0 0 0 0 −3/2l2 0

0 0 0 0 0 0 −3/2l2


Remark 12 When l = 1, we find the Ricci curvature of the quaternionic Heisenberg

group.

An easy computation leads to

Corollary 13 The EBCV manifold has constant scalar curvature S = 48m.
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5 Killing vector fields in EBCV

Remember that a Killing vector field is a vector field on a Riemannian manifold that

preserves the metric. Killing vector fields are the infinitesimal generators of isometries,

that is, flows generated by Killing fields are continuous isometries of the manifold. Spe-

cifically, a vector field X is a Killing vector field if the Lie derivative with respect to X of

the metric g vanishes: LXg = 0 or equivalently

LXds2
l,m = (LXωi)⊗ ωi = 0, (1)

where

LXωi = ιXdωi + d(ιXωi).

In terms of the Levi-Civita connection, Killing’s condition is equivalent to

g(∇Y X, Z) + g(Y,∇ZX) = 0. (2)

It is easy to prove that

Proposition 14 LXg(Y, Z) = 0 if and only if LXg(Xi, Xj) = 0 for basic vector fields

Xi, Xj.
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We know that the dimension of the Lie algebra of the Killing vector fields is

m ≤ n(n + 1)/2,

and the maximum is reached on constant curvature manifolds ([6], p. 238, Vol. II) , then

for our manifold m < 28. Then obviously

Proposition 15 The basic vertical vector fields X1, X2, X3 are Killing fields.

From (2) it is easy to prove that the horizontal basic vector fields X4, · · · , X7 are not

Killing vector fields.

In her thesis, Profir [9] proved that the Lie algebra of Killing vector fields is 4-

dimensional. Our problem now is to determine the space of Killing vector fields in EBCV .

By using (1) and the values of ωi and dωi we obtain that the Killing vector fields are cha-

racterized by the following system of partial differential equations (28 equations).
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The Killing equations

In the usual coordinate system (r, s, t, w, x, y, z) on EBCV , a vector field X =
∑7

i=1 fiXi

will be a Killing field if and only if the real functions fi satisfy the following system of

28-partial differential equations:

01 ∂r(f1) = 0
...

...

04 ∂r(f2) + ∂s(f1) = 0
...

...

07 ∂r(f4) + K∂w(f1) + ly
2 ∂s(f1) + lz

2 ∂t(f1)− lm{ 1
m + (y2 + z2)}f5 − lm(wz − xy)f6 + lm(wy + xz)f7 = 0

...
...

19 K∂w(f4) + lx
2
∂r(f4) + ly

2
∂s(f4) + lz

2
∂t(f4)− 2mxf5 − 2myf6 − 2mzf7 = 0

...
...

28 ∂z(f7)− ly
2
∂r(f7) + lx

2
∂s(f7)− lw

2
∂t(f7) = 0

It seems that the solution of the system is very difficult, so that we focus on solving

the system for m = 0, that is:
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01 ∂r(f1) = 0
...

...

04 ∂r(f2) + ∂s(f1) = 0
...

...

07 ∂r(f4) + ∂w(f1) + ly
2
∂s(f1) + lz

2
∂t(f1)− lf5 = 0

...
...

19 ∂w(f4) + lx
2
∂r(f4) + ly

2
∂s(f4) + lz

2
∂t(f4) = 0

...
...

28 ∂z(f7)− ly
2
∂r(f7) + lx

2
∂s(f7)− lw

2
∂t(f7) = 0

Proceeding as in [9], Profir considered a harder condition LXωi = 0, then we find the

following result
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Proposition 16 When m = 0, the following vector fields

K1 = X1

K2 = X2

K3 = X3

K4 = −lxX1 − lyX2 − lzX3 + X4

K5 = lwX1 + lzX2 − lyX3 + X5

K6 = −lzX1 + lwX2 + lxX3 + X6

K7 = lyX1 − lxX2 + lwX3 + X7

are Killing ones.

Remark 17 (1) If l = 1, we obtain Killing fields for the quaternionic Heisenberg group.

(2) We have just known that Ki = Xi, i = 1, 2, 3 are Killing vector fields, however the

Lie brackets of Ki do not produce new Killing fields.
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6 BCV as a submanifold of EBCV

We define a basis of vector fields in BCV , seen as a submanifold of EBCV , adapted

to the coordinates (r, s, t, w, x, y, z) as follows:

M1 = ∂r, M2 = L∂w +
lx

2
∂r, M3 = L∂x −

lw

2
∂r,

where L = 1 + m(w2 + x2)

We complete this basis to obtain a new one B = {M1, M2, M3, M4, M5, M6, M7} for

EBCV , given by:

M1 = ∂r,

M2 = L∂w + lx
2
∂r,

M3 = L∂x − lw
2
∂r,

M4 = ∂s,

M5 = ∂t,

M6 = K∂y + lz
2
∂r − lw

2
∂s − lx

2
∂t,

M7 = K∂z − ly
2
∂r + lx

2
∂s − lw

2
∂t.

This basis is well defined and {Ma, a = 1, 2, 3} span the tangent space of the subma-

nifold and {Mu, u = 4, 5, 6, 7} span an orthonormal basis of the normal space.
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We define the metric

ds2
l,m|BCV

=
dw2 + dx2

L2
+

(
dr +

l

2L
(wdx− xdw)

)2

.

We can also consider B as an orthonormal basis of EBCV . Then we are going to get

the induced Levi-Civita connection to study the geometry of BCV as a submanifold of

EBCV .

The only non null brackets are

[M2, M3] = −lM1 − 2mxM2 + 2mwM3,

[M2, M6] = − L
2K
{2lmwzM1 + (Kl − 2lmw2)M4 − 2lmwxM5 − 4mwM6},

[M2, M7] = L
2K
{2lmwyM1 − 2lmwxM4 − (Kl − 2lmw2)M5 + 4mwM7},

[M3, M6] = − L
2K
{2lmxzM1 − 2lmwxM4 + (Kl − 2lmx2)M5 − 4mxM6},

[M3, M7] = L
2K
{2lmxyM1 + (Kl − 2lmx2)M4 + 2lmwxM5 + 4mxM7},

[M6, M7] = −LlM1 − lm(xy + wz)M4 + lm(wy − xz)M5 − 2mzM6 + 2myM7.
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Gauss and Weingarten formulas

Let us write the Gauss and Weingarten formulas (see [6])

∇′
XY = ∇XY + α(X, Y ),

∇′
Xξ = −AξX + DXξ,

where X, Y ∈ X(BCV ), ξ ∈ X⊥(BCV ), ∇′,∇ are the Levi-Civita connections on EBCV

and BCV , respectively, and D is the normal connection. Then, for instance, we find that

∇′
M1

M1 = 0 ∇′
M1

M2 = l
2
M3 + Llmw

2K
(zM6 − yM7)

∇′
M1

M3 = − l
2
M2 + Llmx

2K
(zM6 − yM7) ∇′

M2
M1 = l

2
M3 + Llmw

2K
(zM6 − yM7)

∇′
M3

M1 = − l
2
M2 + Llmx

2K
(zM6 − yM7) ∇′

M2
M3 = − l

2
M1 − 2mxM2

∇′
M2

M2 = 2mxM3 ∇′
M3

M2 = l
2
M1 − 2mwM3

∇′
M3

M3 = 2mwM2

so that
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∇M1M1 = 0, α(M1, M1) = 0,

∇M1M2 = l
2
M3, α(M1, M2) = Llmw

2K
(zM6 − yM7),

∇M1M3 = − l
2
M2, α(M1, M3) = Llmx

2K
(zM6 − yM7),

∇M2M3 = − l
2
M1 −mxM2, α(M2, M3) = 0

...
...

we get

Corollary 18 Only when m = 0, BCV is a totally geodesic submanifold of EBCV .

Using the theory of submanifolds of a Riemannian manifold, we can now study a lot

of problems such that the equations of Gauss, Codazzi and Ricci and their consequences.
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