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Abstract

In this two hours talk we will survey on some variational problems
concerning curves as well as their significance in the interplay between
Geometry and Physics.

1 What’s a variational problem?

It’s a pair:

(1) Something we wish to study how it is changing; and

(2) An “admissible” action, i. e., a way to do the change. By “admissible”

we mean “isometry invariant”.

Example 1 Consider the set

C = {γ : [a, b] → M, γ(a) = p, γ(b) = q}

of nailed curves in a manifold M , i. e., curves having the same endpoints.

Then consider the functional E defined by

E(γ) =

∫ b

a

|γ′(t)|2 dt.
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Figure 1: A curve variation

By asking ourselves for the critical points of E, it is well known that they

are the geodesics.

In the following we wish to explain why we are interested in curves.

2 Willmore and Willmore-Chen functionals

Willmore functional (see [W1] and [W2]). Let I(M2,R3) = {φ :

M2 → R3} be the set of immersions of a surface M2 in the Euclidean 3-space.

The Willmore functional is defined on I(M2,R3) by

W(φ) =

∫

M

H2 dA,

where H2 stands for the mean curvature of the surface in the 3-space.

Then the extremals of W(φ) are called Willmore surfaces.

In order to classify Willmore surfaces in R3 we have a first interesting result.

Theorem 1 (Willmore’s theorem) Let S ⊂ R3 be a compact surface. Then

we have

(i) W(S) ≥ 4π; and

(ii) W(S) = 4π if and only if S = S2(r).
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To leave R3, let S be a surface in a Riemannian manifold (M, 〈 , 〉). Now

the Willmore functional writes down as

W(S) =

∫

S

(H2 + R) dA,

where H2 stands for the mean curvature of S in M and R is the sectional

curvature of M along the tangent bundle TS.

A crucial fact is that the Willmore functional is conformally invariant.

Then R3 and S3 have the same Willmore surfaces, being minimal surfaces the

trivial ones.

A test surface. It is well known that the Clifford torus TC is minimal,

then Willmore, in S3. Furthermore, it is easy to see that

W(TC) = 2 π2.

Let I(T,R3) be the set of immersions of a torus T in the Euclidean 3-space.

The Willmore functional is now defined by

W(φ) =

∫

T

H2
φ dAφ.

We then have

The Willmore conjecture which states that W(φ) ≥ 2 π2, equality hold-

ing if and only if φ(T ) is conformal to the Clifford torus.

Now we get a second key point

Pinkall’s theorem (see [P]). Willmore tori in S3 are obtained by lifting,

via the Hopf mapping, closed elastic curves in S2.

Up to now we have worked in codimension one, but this restriction can be

dropped as follows.

Willmore-Chen functional (see [Ch]). Let I
(
(Mm, g), (M̄, ḡ)

)
be the

set of immersions between two Riemannian manifolds. The Willmore-Chen

functional is defined on I
(
(Mm, g), (M̄, ḡ)

)
by

WC(φ) =

∫

M

(H2 − τe)
m
2 dA,

where H2 stands for the mean curvature of M in M̄ and τe is the extrinsic

scalar curvature.
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Then the extremals of WC(φ) are called Willmore-Chen submanifolds.

Problem. Look for Willmore surfaces and Willmore-Chen submanifolds

in pseudo-Riemannian space forms.

The solution of this problem will show us a natural and nice connection

between Geometry and Physics.

3 Interplay between Geometry and Physics (see

[B2])

We first note that the Hopf map is more than a simple tool. It provides

excellent applications in different contexts in Physics, as we can see in the nice

paper [U] by H. K. Urbantke.

Secondly, the Willmore functional has a certain universality regarding its

physical applications: from strings and branes to membranes and vesicles,

because all of them are extremals of a certain action. We are interested in

knowing what kind of action.

In that line, Poisson and Sophie Germaine proposed that action should be

an even and symmetric function of the principal curvatures of the surface.

In the seventies, thinking about membranes, Canham and Helfrich pro-

posed a new model, now based on a quadratic function of the principal curva-

tures, given by

CH(S) =

∫

S

(a + bH2 + cG) dA,

H2 and G standing for the mean and Gauss curvatures, respectively, of the

surface, and a, b, c ∈ R.

As the topology of membranes does not change by fluctuations, then the

Gauss-Bonnet theorem reduces the Canham-Helfrich functional to

CH(S) =

∫

S

(a + bH2) dA.

Furthermore, as minimality and compacity are not good mates, we can

assume that b 6= 0. Then, by taking b = 1, the Canham-Helfrich functional is

nothing but a modified Willmore funcional.
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Thirdly, it seems that strings theories will play a key role to understand

physical world. A string theory is carry out in a non-flat spacetime, where

strings (curves) evolve generating surfaces (worldsheets). The problem now is

looking for the action describing the dynamics.

The most widely accepted nowadays is that of Kleiner and Polyakov given

by

KP(S) = a

∫

S

dA + b

∫

S

H2 dA,

which strongly sounds Willmore again.

Finally, we have to talk about elastic curves. In 1691 James Bernouilli

looked at the shape of a beam under a load, where we assume that the beam

will recover its size and shape when the load is removed. Let γ(s) = (x(s), y(s))

be a parameterization of the centerline of the beam (see [St]).

-�

1

Figure 2: A beam under a load

Three years later, James Bernouilli announced his solution as the following

system of differential equations

dy =
x2

√
(1− x4)

dx,

ds =
1√

(1− x4)
dx,
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with an extra hypothesis: the bending moment is directly proportional to some

constant related to the composition of the bar and inversely proportional to

the radius of curvature. The elliptic functions were born (see Appendix).

The problem was then taken up again forty years later by Daniel Bernouilli

and L. Euler. In 1742 the former suggested to Euler that

“The way to determine the shape of an elastic rod subject to the pressure

at both ends was to minimize

∫ L

0

1

R2
ds,

where s is the arc length, R the radius of curvature and L is the length of the

elastic rod”.

Definition 1 An elastica, or elastic curve, is a regular curve γ, with fixed

endpoints and fixed tangent vectors at endpoints, which is critical of the func-

tional

Fλ(γ) =

∫ L

0

(k2 + λ) ds,

where L is the length of γ, k2 = ||γ̈||2 and λ is an arbitrary constant.

When λ = 0 γ will be called free elastica.

Remark 1 The parameter λ is viewed as a length penalty.

L. Euler was writing his book on the calculus of variations when received

D. Bernouilli’s suggestion. Then he treated the elastica problem in the first

appendix of the book. After a qualitative analysis of the differential equations,

Euler gave (presumably based only on experiments) a complete description

of all possible planar elastic curves (besides circle and right line), which are

sketched as follows (See [T])
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Figure 3: Euler elastic classes
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4 Langer and Singer approach for elastic curves

To look for elastic curves in a Riemannian manifold (M, 〈 , 〉), we follow

the nice works by Joel Langer and David Singer [LS] and [Si] .

Let γ : [a, b] → M be an immersed curve and write ||γ(t)|| = ds
dt

:= v 6= 0, s

standing for the arc length parameter. Let k be the curvature function, which

can be assumed to be k 6= 0, τ the torsion and {T, N, B} the Frenet frame

along γ. Then

γ′ =
dγ

dt
=

dγ

ds

ds

dt
= vT

and the Frenet equations are

dT

ds
= kN

dN

ds
= −kT + τB

dB

ds
= −τN

As elastica are extremals of a functional, we have to pave the way to define

the set where the functional will apply. To do that, let C = {γ : [a, b] → M}
be a set of nailed curves in M and let F : C → R be the functional. To find

the extremals of F we have to compute its first variation, i. e., we must know

δFγ : TγC → R. To determine TγC we follow [B1].

As for a curve in C let us consider a map

Γ : (ε, ε) → C
z 7→ Γ(z)

so that

Γ(z) : [a, b] → M

t 7→ Γ(z)(t) ∈ M.
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Said otherwise

Γ : (ε, ε)× [a, b] → M

(z, t) 7→ Γ(z, t).

The curve Γ goes throughout γ ∈ C provided that Γ(0) = γ, i. e., Γ(0, t) =

γ(t). Then Γ(z, t) is known as a variation of γ(t). We then have defined two

vector fields

V (z, t) =
∂Γ

∂t
(z, t)

and

W (z, t) =
∂Γ

∂z
(z, t),

usually known as “longitudinal” and “transversal”, respectively, such that

V (0, t) = γ′(t). Furthermore, W (t) := W (0, t) is a vector field along γ(t)

so that

Γ′(0) =
∂Γ

∂z |z=0
=

∂Γ(z, t)

∂z |z=0
= W (t).

Then TγC is a subset of the set of vector fields on M along γ.

Conversely, let W (t) be a vector field along γ and define

Γ : (−ε, ε)× [a, b] → M

by

Γ(z, t) = expγ(t)zW (t).

Then

Γ(0, t) = γ(t)

∂

∂z |z=0
Γ(z, t) = W (t).

As a consequence, TγC = {vector fields along γ}.
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Therefore

δFγ : TγC → R
W 7→ δFγ(W ).

Take

Γ : (−ε, ε) → C
with Γ(0) = γ and Γ′(0) = W . Then

δFγ(W ) =
d

dz |z=0
F (Γ(z)) =

∂

∂z |z=0
F (Γ(z, t)).

We write down, for short, W = ∂Γ
∂z

, V = ∂Γ
∂t

and V = vT , so that 〈V, V 〉 =

v2. Then we get

0 = [W,V ] = [W, vT ] = W (v)T + v[W,T ].

So [W,T ] = −W (v)
v

T = gT , where g := −W (v)
v

.

Now

2vW (v) = W (v2) = W 〈V, V 〉
= 2 〈∇W V, V 〉 = 2 〈∇V W,V 〉
= 2 〈∇vT W, vT 〉 = 2v2 〈∇T W,T 〉 .

So g = −〈∇T W,T 〉.
On the other hand, as k2 = 〈∇T T,∇T T 〉, we find that

∂k2

∂z
= W (k2) = 2 〈∇W∇T T,∇T T 〉
= 2

〈∇T∇W T +∇[W,T ]T + R(W,T )T,∇T T
〉

= 2
〈∇T (∇T W + [W,T ]) +∇[W,T ]T + R(W,T )T,∇T T

〉

= 2
〈∇2

T W +∇T (gT ) + g∇T T + R(W,T )T,∇T T
〉

= 2
〈∇2

T W,∇T T
〉

+ 2g 〈∇T T,∇T T 〉+ 2 〈R(W,T )T,∇T T 〉+ 2g 〈∇T T,∇T T 〉
= 2

〈∇2
T W,∇T T

〉
+ 2 〈R(W,T )T,∇T T 〉+ 4g 〈∇T T,∇T T 〉 .
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Remark 2 In the above computations we have used

(i) R(W,T )T = ∇W∇T T −∇T∇W T −∇[W,T ]T ;

(ii) ∇W T = ∇T W + [W,T ]; and

(iii) [W,T ] = gT.

As ∇T T = kN , we get

∂k2

∂z
= 2k

〈∇2
T W,N

〉
+ 4gk2 + 2k 〈R(W,T )T, N〉 .

Now
∂k2

∂z
= 2k

∂k

∂z
,

so that
∂k

∂z
= W (k) =

〈∇2
T W,N

〉
+ 2gk2 + 〈R(W,T )T,N〉 .

In what follows γ : [0, 1] → M will be a curve of length L. Now for a fixed

constant λ let us consider the functional

Fλ(γ) =
1

2

∫ L

0

(k2 + λ) ds.

Problem. Find the critical values of Fλ.

To do that we first observe, as v(t) = ds
dt

, that

Fλ(γ) =
1

2

∫ 1

0

(k2 + λ) v(t) dt.
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Then, take a variation Γ(z, t) of γ(t) as above, with variational vector field

W and compute

d

dz
Fλ(Γ(z, t)) =

1

2

∫ 1

0

W [(k2 + λ)v]dt

=
1

2

∫ 1

0

{W (k2)v + k2W (v) + λW (v)}dt

=
1

2

∫ 1

0

{W (k2)− (k2 + λ)g}vdt

=
1

2

∫ L

0

{W (k2)− (k2 + λ)g}ds

=

∫ L

0

{k 〈∇2
T W,N

〉
+ 2gk2 + k 〈R(W,T )T, N〉 − 1

2
(k2 + λ)g}ds

=

∫ L

0

{k 〈∇2
T W,N

〉
+ 2gk2 + k 〈R(N, T )T, W 〉 − 1

2
(k2 + λ)g}ds.

Integrating by parts, and using that g = −〈∇T W,T 〉, we get

d

dz
Fλ(Γ(z, t)) =

∫ L

0

{〈∇2
T W,∇T T

〉− 〈∇T W, 2k2T
〉

+ 〈R(∇T T, T )T, W 〉

+
1

2

〈∇T W, (k2 + λ)T
〉}ds

=

∫ L

0

{T 〈∇T W,∇T T 〉 − 〈∇T W,∇2
T T

〉}ds +

∫ L

0

〈R(∇T T, T )T, W 〉 ds

+

∫ L

0

〈∇T W, ΛT 〉 ds

= 〈∇T W,∇T T 〉 |L0 −
∫ L

0

T
〈
W,∇2

T T
〉
ds +

∫ L

0

〈
W,∇3

T T
〉
ds

+

∫ L

0

〈R(∇T T, T )T, W 〉 ds +

∫ L

0

T 〈W, ΛT 〉 ds−
∫ L

0

〈W,∇T ΛT 〉 ds

= [〈∇T W,∇T T 〉+
〈
W,−∇2

T T + ΛT
〉
]L0 +

∫ L

0

〈E,W 〉 ds,

where Λ = λ−3k2

2
and
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E = ∇3
T T −∇T (ΛT ) + R(∇T T, T )T

is the Euler-Lagrange operator.

We assume that (M, 〈 , 〉) is of constant curvature C. Then

R(X,Y )Z = C(〈Y, Z〉X − 〈X, Z〉Y ),

so that R(∇T T, T )T = C∇T T and the Euler-Lagrange operator writes down

as follows

E = ∇3
T T −∇T (ΛCT ),

whereΛC = Λ− C.

To compute E we use the Frenet equations. Then we find

E = ∇3
T T −∇T (ΛCT )

= ∇T (∇2
T T − ΛCT )

= ∇T (∇T (kN)− ΛCT )

= ∇T (ksN + k∇T N − ΛCT )

= ∇T

(
ksN − k2T + kτB − λ− 2C − 3k2

2
T

)

=
2kss + k3 − λk + 2Ck − kτ 2

2
N + (2ksτ + kτs)B.

The curve γ is an elastica provided that E = 0, said otherwise, γ is an

elastica if and only if the following system of differential equations holds

2kss + k3 − λk + 2Ck − kτ 2 = 0

2ksτ + kτs = 0.

From the second equation we get

k2τ = a constant.
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Eliminating τ from the first equation and integrating we have

k2
s +

k4

4
+ (C − λ

2
)k2 +

a2

k2
= A.

Letting u = k2, this becomes

u2
s + u3 + 4(C − λ

2
)u2 − 4Au + 4A2 = 0,

whose solutions are (see [Si])

1. u = k2 = constant and τ = constant: helices and circles.

2. k = k0 sech( k0

2w
s) and τ = 0: borderline elastica.

Figure 4: Borderline elastica

3. k = k0 dn( k0

2w
s, p) (see Appendix for elliptic functions) and τ = 0:

orbitlike elastica.
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Figure 5: Orbitlike elastica

4. k = k0 cn( k0

2w
s, p) (see Appendix for elliptic functions) and τ = 0:

wavelike elastica (see [Br]).

Figure 6: Wavelike elastica
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5 The Plyushchay model

This note does not pretend teaching on elastic curves, however two facts

will be pointed out:

(i) What’s the relationship between critical points of Willmore and critical

points of elastica functionals?; and

(ii) The integrand of the elastica functional

F(γ) =

∫

γ

(k2 + λ) ds

can be modified to get a new functional

P(γ) =

∫

γ

f(ki) ds

depending on the curvatures of γ. Then could you find the critical points of

P? Furthermore, could you find the physical meaning of them?

We first answer to the question (i).

Let Π : S3(1) → S2(1
2
) be the usual Hopf fibration. Let γ : I ⊂ R→ S2(1

2
)

be a unit speed curve and let γ̄ be its horizontal lift. Then Mγ = Π−1(γ) is a

flat surface, which we will call the Hopf tube over γ, parameterized by

φ(s, t) = eitγ̄(s).

When γ is closed in S2(1
2
) of length L, enclosing an area A, then the

Hopf tube is a flat torus isometric to R2/Γ, Γ being the lattice spanned by

{(0, 2π), (L, 2A)}.
The Euler-lagrange equation for Willmore tori in S3 is

∆DH = |A|2H − 2 〈H, H〉H,

which becomes

2k̄′′ + k̄3 + 4k̄ = 0,

k̄ standing for the curvature of the lifting γ̄.
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Therefore Mγ is Willmore in S3 if and only if γ is an elastica in S2(1
2
), (see

[P]).

This was the key point to design a programme to find Willmore surfaces in

the anti de Sitter space H3
1, as well as Willmore-Chen submanifolds in pseudo-

Riemannian space forms.

As for (ii) remember that we wish to consider the general functional

P(γ) =

∫

γ

f(ki) ds

and look for its critical points.

Let (M, 〈 , 〉) be an n-dimensional Riemannian manifold. As above write

C = {γ : [a, b] → M}
and the simplest functional

Fm : C → R,

for any m ∈ R defined by

Fm(γ) =

∫

γ

(k(s) + m) ds.

This is known as the Plyushchay functional (or Plyushchay model, see [Pl]),

because he was the first to use it to study trajectories of relativistic particles.

Remark 3 (1) When m = 0 then F0(γ) is nothing but the total curvature of

curves in C. If M = R2 then k = θ′. Now, if γ is closed then

F0(γ) =

∫

γ

k(s) ds = 2π i(γ),

i(γ) ∈ Z being the rotation index of γ and F0 is constant on any homotopy

class of curves.

If C is the space of clamped curves curves, i. e., γz(a) = γz(b), γz
′(a) = ~u

and γz
′(b) = ~v, then

F0(γ) = ϕ0 + 2π #(interior loops),
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where ϕ0 = angle(~u,~v). Therefore, F0 is also constant on any homotopy class

of clamped curves.

Summarizing, the variational problem associated with F0 on R2 has no

physical interest.

(2) What about F0 when M2 is a surface in R3? Take now C the set of

one-to-one closed curves in M2 and let D be a disc in R2. Consider the space

of embeddings {Φ : D → M2}

γ = φ(∂D)

φ(D)

S

-

∂D

D

φ

Figure 7: An embedding

Then we have ∫

γ

k(s) ds +

∫

Φ(D)

K dA = 2π.

(3) As for F0 on M = R3, some classical results are known.

(3.1) If γ ⊂ R3 is one-to-one and closed, then

∫

γ

k(s) ds ≥ 2π,

equality holding if and only if γ is planar and convex.

(3.2) If γ ⊂ R3 is one-to-one, closed and knotted, then

∫

γ

k(s) ds ≥ 4π.
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To look for the critical points of Fm(γ) =
∫

γ
(k(s) + m) ds in the general

background, let

Γ : (−ε, ε)× [a, b] → M

be a variation of γ defined by

Γ(z, t) = expγ(t)zW (t),

W (t) being a vector field along γ. Then

Γ(0, t) = γ(t)

∂

∂z |z=0
Γ(z, t) = W (t).

and

δFm(W ) =
d

dz |z=0
Fm(Γ(z))

=
∂

∂z |z=0
Fm(Γ(z, t))

=
∂

∂z

∫ b

a

k(z, t) v(z, t) dt

=

∫ b

a

W (k) v dt +

∫ b

a

k W (v) dt

=

∫

γ

〈Ω(γ),W 〉 ds + [B(γ, W )]L0 ,

where

Ω(γ) = ∇2
T N +∇T ((k −m)T ) + R(N, T )T

stands for the Euler-Lagrange operator and

B(γ, W ) = 〈∇T W,N〉+ 〈W,mT + τB〉
is the boundary operator.

Let C be the set of clamped curves defined by C = {γ : [a, b] → M / γ(a) =

p, γ(b) = q, γ′(a) = ~u, γ′(b) = ~v}. Then TγC = {W along γ : W (a) = W (b) =

0}, so that

[B(γ, W )]L0 = 0.
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Summarizing, γ is a critical point of Fm if and only if Ω(γ) = 0.

The condition Ω(γ) = 0 is called the Euler-Lagrange equation of the vari-

ational problem.

By using the Frenet equations, the condition Ω(γ) = 0, in a space form

Mn(C), reads as follows

τ 2 + mk = C,

τ ′s = 0,

τη = 0,

where η ⊥ {T, N,B}.
As a first consequence we have that τ = constant, as well as η = 0. Then

the critical points of this model live in a 3-dimensional totally geodesic sub-

manifold. Furthermore, when

• When m 6= 0, then the critical points form a 1-parameter family of helices

{(k, τ) ∈ R2 : mk + τ 2 = C}.
• When m = 0 we only know that τ 2 = C, i. e., the critical points are

living in S3(C).

Without loss of generality, we can take C = 1 and state the following

problem.

Problem. Look for τ 2 = 1 curves in S3(1).

To get an answer we recall the Hopf map to find that the lifting of any

curve in S2(1
2
) provides a curve in S3(1) with τ 2 = 1.

Going for a walk in the realm of Lorentzian world, it is easy to see that

the extremals of this variational problem is given by the one-parameter family

{(k, τ) ∈ R2 : ε2mk − τ 2 = C}, where ε2 = 〈N, N〉 is the causal character of

N . So they are living in the anti de Sitter world H3
1(−1). Then in the anti

de Sitter world the dynamics of a system of particles governed by the action∫
γ
(k(s) + m) ds is also described by helices.
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Final remark. The beauty of the model governed by actions of the form

∫

γ

f (k1(s), · · · , kn(s)) ds

lies in the fact that the degree of freedom that were added in the classical

method is actually encoded in the geometry of the particle paths.

6 Appendix: elliptic functions

The formulas for elastic curves involve elliptic functions. The three ba-

sic elliptic ones are denoted sn(x, m), cn(x,m) and dn(x,m). The so called

modulus m is a number between 0 and 1. The elliptic functions generalize

the trigonometric ones. For instance, sn(x, 0) = sin(x), cn(x, 0) = cos(x) and

dn(x, 0) ≡ 1. They become hyperbolic functions when m = 1. In this case

sn(x, 1) = tgh(x) and cn(x, 1) = dn(x, 1) = sech(x).

The inverse sn−1 is given by

sn−1(y, m)

∫ y

0

dt√
1− t2

√
1−mt2

.

Analogous to the trigonometric case, sn is a smooth periodic odd function

defined for all real numbers. Once sn is defined, the identities

cn2 + sn2 = 1,

dn2 + m sn2 = 1,

define both cn and dn as smooth periodic even functions. When m < 1, cn

and dn differ qualitatively in that dn is a positive function and its period is

half the period of cn. The function K(m) = sn−1(1,m) generalizes π
2
. The

periods are 4K(m) for sn and cn, but 2K(m) for dn.

As for derivatives we have (sn)′ = cn dn, (cn)′ = −sn dn and (dn)′ =

−m sn cn.
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Finally, some graphics are sketched as follows

Figure 8: Graphics of elliptic functions for k = 0.1

Figure 9: Graphics of elliptic functions for k = 0.6
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