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Abstract

Some variational problems are revisited showing elastic curves as
a key tool to find solutions to some classical problems such as Will-
more surfaces, Willmore-Chen submanifolds and 2-dimensional nonlin-
ear sigma models. To deepen on the interplay between Geometry and
Physics, some Plyushchay models have been considered.

1 Introduction

A variational problem is a pair formed by

(1) Something we wish to study how it is changing, and

(2) An “admissible” action, i. e., a way to do the change. By “admissible”

we mean “isometry invariant”.

Example 1 Consider the set

C = {γ : [a, b] → M, γ(a) = p, γ(b) = q}

of nailed curves in a manifold M , i. e., curves having the same endpoints.

Let E be the functional on C defined by

E(γ) =

∫ b

a

|γ′(t)|2 dt.

By asking ourselves for the critical points of E, it is well known that they

are the geodesics.
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2 A little bit of history

Let us introduce elastic curves. In 1691 James Bernouilli looked at the

shape of a beam under a load, where we assume that the beam will recover

its size and shape when the load is removed. Let γ(s) = (x(s), y(s)) be a

parameterization of the centerline of the beam (see [St]).

Figure 1: A beam under a load

Three years later, James Bernouilli announced his solution as the following

system of differential equations

dy =
x2√

(1− x4)
dx,

ds =
1√

(1− x4)
dx,

with an extra hypothesis: the bending moment is directly proportional to some

constant related to the composition of the bar and inversely proportional to

the radius of curvature. The elliptic functions were born.

The problem was then taken up again forty years later by Daniel Bernouilli

and L. Euler. In 1742 the former suggested to Euler that

“The way to determine the shape of an elastic rod subject to the pressure

at both ends was to minimize ∫ L

0

1

R2
ds,

where s is the arc length, R the radius of curvature and L is the length of the

elastic rod”.
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Definition 1 An elastica, or elastic curve, is a regular curve γ, with fixed

endpoints and fixed tangent vectors at endpoints, which is critical of the func-

tional

Fλ(γ) =

∫ L

0

(k2 + λ) ds,

where L is the length of γ, k2 = ||γ̈||2 and λ is an arbitrary constant.

When λ = 0 γ will be called free elastica.

Remark 1 The parameter λ is viewed as a length penalty.

L. Euler was writing his book on the calculus of variations when received

D. Bernouilli’s suggestion. Then he treated the elastica problem in the first

appendix of the book. After a qualitative analysis of the differential equations,

Euler gave (presumably based only on experiments) a complete description

of all possible planar elastic curves (besides circle and right line), which are

sketched in Fig. 2 (See [T]).

3 Langer and Singer approach for elastic curves

To look for elastic curves in a Riemannian manifold (M, 〈 , 〉), we follow

the nice works by Joel Langer and David Singer [LS] and [Si] .

Let γ : [a, b] → M be an immersed curve and write ||γ(t)|| = ds
dt

:= v 6= 0, s

standing for the arc length parameter. Let k be the curvature function, which

can be assumed to be k 6= 0, τ the torsion and {T,N, B} the Frenet frame

along γ. Then

γ′ =
dγ

dt
=

dγ

ds

ds

dt
= vT

and the Frenet equations are

dT

ds
= kN,

dN

ds
= −kT + τB,

dB

ds
= −τN.
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Figure 2: Euler elastic classes

As elastica are extremals of a functional, we have to pave the way to define

the set where the functional will apply. To do that, let C = {γ : [a, b] → M}
be a set of nailed curves in M and let F : C → R be the functional. To find

the extremals of F we have to compute its first variation, i. e., we must know

δFγ : TγC → R. To determine TγC we follow [B1].

As for a curve in C let us consider a map

Γ : (ε, ε) → C
z 7→ Γ(z)

so that
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Γ(z) : [a, b] → M

t 7→ Γ(z)(t) ∈ M.

Said otherwise

Γ : (ε, ε)× [a, b] → M

(z, t) 7→ Γ(z, t).

Figure 3: A curve variation

The curve Γ goes throughout γ ∈ C provided that Γ(0) = γ, i. e., Γ(0, t) =

γ(t). Then Γ(z, t) is known as a variation of γ(t). We then have defined two

vector fields

V (z, t) =
∂Γ

∂t
(z, t)

and

W (z, t) =
∂Γ

∂z
(z, t),

usually known as “longitudinal” and “transversal”, respectively, such that

V (0, t) = γ′(t). Furthermore, W (t) := W (0, t) is a vector field along γ(t)

so that

Γ′(0) =
∂Γ

∂z

∣∣∣
z=0

=
∂Γ(z, t)

∂z

∣∣∣
z=0

= W (t).

Then TγC is a subset of the set of vector fields on M along γ.
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Conversely, let W (t) be a vector field along γ and define

Γ : (−ε, ε)× [a, b] → M

by

Γ(z, t) = expγ(t)zW (t).

Then

Γ(0, t) = γ(t),

∂

∂z

∣∣∣
z=0

Γ(z, t) = W (t).

As a consequence, TγC = {vector fields along γ}.
Therefore

δFγ : TγC → R
W 7→ δFγ(W ).

Take

Γ : (−ε, ε) → C
with Γ(0) = γ and Γ′(0) = W . Then

δFγ(W ) =
d

dz

∣∣∣
z=0

F (Γ(z)) =
∂

∂z

∣∣∣
z=0

F (Γ(z, t)).

We write down, for short, W = ∂Γ
∂z

, V = ∂Γ
∂t

and V = vT , so that 〈V, V 〉 =

v2. Then we get

0 = [W, V ] = [W, vT ] = W (v)T + v[W, T ].

So [W, T ] = −W (v)
v

T = gT , where g := −W (v)
v

.

Now

2vW (v) = W (v2) = W 〈V, V 〉
= 2 〈∇W V, V 〉 = 2 〈∇V W, V 〉
= 2 〈∇vT W, vT 〉 = 2v2 〈∇T W, T 〉 .
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So g = −〈∇T W, T 〉.
On the other hand, as k2 = 〈∇T T,∇T T 〉, we find that

∂k2

∂z
= W (k2) = 2 〈∇W∇T T,∇T T 〉

= 2
〈
∇T∇W T +∇[W,T ]T + R(W, T )T,∇T T

〉
= 2

〈
∇T (∇T W + [W, T ]) +∇[W,T ]T + R(W, T )T,∇T T

〉
= 2

〈
∇2

T W +∇T (gT ) + g∇T T + R(W, T )T,∇T T
〉

= 2
〈
∇2

T W,∇T T
〉

+ 2g 〈∇T T,∇T T 〉+ 2 〈R(W, T )T,∇T T 〉+ 2g 〈∇T T,∇T T 〉
= 2

〈
∇2

T W,∇T T
〉

+ 2 〈R(W, T )T,∇T T 〉+ 4g 〈∇T T,∇T T 〉 .

Remark 2 In the above computations we have used

(i) R(W, T )T = ∇W∇T T −∇T∇W T −∇[W,T ]T ;

(ii) ∇W T = ∇T W + [W, T ]; and

(iii) [W, T ] = gT.

As ∇T T = kN , we get

∂k2

∂z
= 2k

〈
∇2

T W, N
〉

+ 4gk2 + 2k 〈R(W, T )T, N〉 .

Now
∂k2

∂z
= 2k

∂k

∂z
,

so that
∂k

∂z
= W (k) =

〈
∇2

T W, N
〉

+ 2gk2 + 〈R(W, T )T,N〉 .

In what follows γ : [0, 1] → M will be a curve of length L. Now for a fixed

constant λ let us consider the functional

Fλ(γ) =
1

2

∫ L

0

(k2 + λ) ds.

Problem. Find the critical values of Fλ.

To do that we first observe, as v(t) = ds
dt

, that
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Fλ(γ) =
1

2

∫ 1

0

(k2 + λ) v(t) dt.

Then, take a variation Γ(z, t) of γ(t) as above, with variational vector field

W and compute

d

dz
Fλ(Γ(z, t)) =

1

2

∫ 1

0

W [(k2 + λ)v]dt

=
1

2

∫ 1

0

{W (k2)v + k2W (v) + λW (v)}dt

=
1

2

∫ 1

0

{W (k2)− (k2 + λ)g}vdt

=
1

2

∫ L

0

{W (k2)− (k2 + λ)g}ds

=

∫ L

0

{k
〈
∇2

T W, N
〉

+ 2gk2 + k 〈R(W, T )T, N〉 − 1

2
(k2 + λ)g}ds

=

∫ L

0

{k
〈
∇2

T W, N
〉

+ 2gk2 + k 〈R(N, T )T, W 〉 − 1

2
(k2 + λ)g}ds.

Integrating by parts, and using that g = −〈∇T W, T 〉, we get

d

dz
Fλ(Γ(z, t)) =

∫ L

0

{
〈
∇2

T W,∇T T
〉
−

〈
∇T W, 2k2T

〉
+ 〈R(∇T T, T )T,W 〉

+
1

2

〈
∇T W, (k2 + λ)T

〉
}ds

=

∫ L

0

{T 〈∇T W,∇T T 〉 −
〈
∇T W,∇2

T T
〉
}ds +

∫ L

0

〈R(∇T T, T )T,W 〉 ds

+

∫ L

0

〈∇T W, ΛT 〉 ds

= 〈∇T W,∇T T 〉 |L0 −
∫ L

0

T
〈
W,∇2

T T
〉
ds +

∫ L

0

〈
W,∇3

T T
〉
ds

+

∫ L

0

〈R(∇T T, T )T,W 〉 ds +

∫ L

0

T 〈W, ΛT 〉 ds−
∫ L

0

〈W,∇T ΛT 〉 ds

= [〈∇T W,∇T T 〉+
〈
W,−∇2

T T + ΛT
〉
]L0 +

∫ L

0

〈E, W 〉 ds,
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where Λ = λ−3k2

2
and

E = ∇3
T T −∇T (ΛT ) + R(∇T T, T )T

is the Euler-Lagrange operator.

We assume that (M, 〈 , 〉) is of constant curvature C. Then

R(X,Y )Z = C(〈Y, Z〉X − 〈X, Z〉Y ),

so that R(∇T T, T )T = C∇T T and the Euler-Lagrange operator writes down

as follows

E = ∇3
T T −∇T (ΛCT ),

whereΛC = Λ− C.

To compute E we use the Frenet equations. Then we find

E = ∇3
T T −∇T (ΛCT )

= ∇T (∇2
T T − ΛCT )

= ∇T (∇T (kN)− ΛCT )

= ∇T (ksN + k∇T N − ΛCT )

= ∇T

(
ksN − k2T + kτB − λ− 2C − 3k2

2
T

)
=

2kss + k3 − λk + 2Ck − kτ 2

2
N + (2ksτ + kτs)B.

The curve γ is an elastica provided that E = 0, said otherwise, γ is an

elastica if and only if the following system of differential equations holds

2kss + k3 − λk + 2Ck − kτ 2 = 0

2ksτ + kτs = 0.

From the second equation we get

k2τ = a constant.
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Eliminating τ from the first equation and integrating we have

k2
s +

k4

4
+ (C − λ

2
)k2 +

a2

k2
= A.

Letting u = k2, this becomes

u2
s + u3 + 4(C − λ

2
)u2 − 4Au + 4A2 = 0,

whose solutions are (see [Si])

1. u = k2 = constant and τ = constant: helices and circles.

2. k = k0 sech( k0

2w
s) and τ = 0: borderline elastica.

Figure 4: Borderline elastica

3. k = k0 dn( k0

2w
s, p) and τ = 0: orbitlike elastica.

Figure 5: Orbitlike elastica

4. k = k0 cn( k0

2w
s, p) and τ = 0: wavelike elastica (see [Br]).
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Figure 6: Wavelike elastica

4 Elastica and Willmore functional.

Let I(M2, R3) = {φ : M2 → R3} be the set of immersions of a surface M2

in the Euclidean 3-space. The Willmore functional is defined on I(M2, R3) by

W(φ) =

∫
M

H2 dA,

where H2 stands for the mean curvature of the surface in the 3-space.

The extremals of W(φ) are called Willmore surfaces. In order to classify

them in R3, the starting result is

Theorem 1 Willmore’s theorem ([W1], [W2]) Let S ⊂ R3 be a compact sur-

face. Then we have

(i) W(S) ≥ 4π; and

(ii) W(S) = 4π if and only if S = S2(r).
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To leave R3, let S be a surface in a Riemannian manifold (M, 〈 , 〉). Now

the Willmore functional writes down as

W(S) =

∫
S

(H2 + R) dA,

where H2 stands for the mean curvature of S in M and R is the sectional

curvature of M along the tangent bundle TS.

A crucial fact is that the Willmore functional is conformally invariant.

Then R3 and S3 have the same Willmore surfaces, being minimal surfaces the

trivial ones.

A test surface. It is well known that the Clifford torus TC is minimal,

then Willmore, in S3. Furthermore, it is easy to see that

W(TC) = 2 π2.

Let I(T, R3) be the set of immersions of a torus T in the Euclidean 3-space.

The Willmore functional is now defined by

W(φ) =

∫
T

H2
φ dAφ.

We then have

The Willmore conjecture ([W1], [W2]), which states that W(φ) ≥
2 π2, equality holding if and only if φ(T ) is conformal to the Clifford torus.

Now we get a second key point

Pinkall’s theorem ([Pi]). Willmore tori in S3 are obtained by lifting, via

the Hopf mapping, closed elastic curves in S2.

To see that let Π : S3(1) → S2(1
2
) be the usual Hopf fibration. Let γ : I ⊂

R → S2(1
2
) be a unit speed curve and let γ̄ be its horizontal lift. Then Mγ =

Π−1(γ) is a flat surface, which we will call the Hopf tube over γ, parameterized

by

φ(s, t) = eitγ̄(s).

When γ is closed in S2(1
2
) of length L, enclosing an area A, then the

Hopf tube is a flat torus isometric to R2/Γ, Γ being the lattice spanned by

{(0, 2π), (L, 2A)}.
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The Euler-lagrange equation for Willmore tori in S3 is

∆DH = |A|2H − 2 〈H, H〉H,

which becomes

2k̄′′ + k̄3 + 4k̄ = 0,

k̄ standing for the curvature of the lifting γ̄. Therefore Mγ is Willmore in S3

if and only if γ is an elastica in S2(1
2
).

This was the key point to design a programme to find Willmore surfaces in

the anti de Sitter space H3
1, as well as Willmore-Chen submanifolds (see next

section) in pseudo-Riemannian space forms.

In [BFLM1] we exhibit a new method to find Willmore tori in spaces en-

dowed with pseudo-Riemannian warped product metrics, whose fibres are ho-

mogeneous spaces. The chief points are the invariance of the involved varia-

tional problems with respect to the conformal changes of the metrics on the

ambient spaces and the Palais principle of symmetric criticality [Pa]. They al-

low us to relate the variational problems with that of generalized elastic curves

in the conformal structure of the base space. Among others applications we

get a rational one-parameter family of Willmore tori in the standard anti De

Sitter 3-space shaped on an associated family of closed free elastic curves in the

once punctured standard 2-sphere. As an application of a general approach to

our method, we give nice examples of pseudo-Riemannian 3-spaces which are

foliated with leaves being non-trivial Willmore tori. More precisely, the leaves

of this foliation are Willmore tori which are conformal to non-zero constant

mean curvature flat tori.

Our main results are sketched as follows:

(i) Willmore tori in the 3-sphere S3.

Let π : S3 → S2(1/2) be the usual Hopf fibration, which is a Riemannian

submersion relative to canonical metrics on both spheres. For any unit

speed curve γ : I ⊂ R → S2(1/2), we can talk about horizontal lifts γ̄(s)

of γ(s) and obtain unit speed curves in S3. All these curves define the

complete lift Mγ = π−1(γ) of γ. This is a flat surface which we will call

the Hopf tube over γ. It is easy to see that Mγ can be parametrized by

Ψ(s, t) = eitγ̄(s), (1)

13



Ψ being a mapping I×R → S3 and γ̄ a fixed horizontal lift of γ. If γ is a

closed curve in S2(1/2) of length L enclosing an oriented area A, then its

Hopf tube Mγ is a flat torus (the Hopf torus over γ) which is isometric

to R2/Γ, Γ being the lattice generated by (0, 2π) and (L, 2A). Then Mγ

is a Willmore surface in S3, if and only if γ is a 4-elastica in S2(1/2).

(ii) Willmore tori in non-standard anti De Sitter 3-space.

Let π : (M, g) → (B, h) be a pseudo-Riemannian submersion. We can

define a very interesting deformation of the metric g by changing the

relative scales of B and the fibres. More precisely, it is defined the

canonical variation gt, t > 0, of g by setting

gt|V = t2 g|V ,

gt|H = g|H ,

gt(V ,H) = 0,

where V and H stand for vertical and horizontal distributions, respec-

tively, associated with the submersion. Thus we obtain a one-parameter

family of pseudo-Riemannian submersions πt : (M, gt) → (B, h) with

the same horizontal distribution H, for all t > 0. Relative to O’Neill

invariants At and T t of these pseudo-Riemannian submersions, we will

just recall a couple of properties. First, if g has totally geodesic fibres

(T ≡ 0), the same happens for gt, for all t > 0. Furthermore,

At
Y U = t2AY U, (2)

for any Y ∈ H and U ∈ V .

Now we consider the canonical variation of the Hopf fibration π = π0 :

H3
1 → H2(−1/2) to get a one-parameter family of pseudo-Riemannian

submersions πt : (H3
1, gt) → (H2(−1/2), g0). Let γ be a unit speed curve

immersed in H2(−1/2). Set Tγ,t = π−1
t (γ). Then Tγ,t is a Lorentzian flat

surface immersed in H3
1, that will be called the Lorentzian Hopf tube over

γ. As the fibres of πt are H1
1, which topologically are circles, then Tγ,t is

a Hopf torus in (H3
1, gt), provided that γ is a closed curve. It is obvious

that the group G = S1 naturally acts through isometries on (H3
1, gt), for

all t > 0, getting (H2(−1/2), g0) as the orbit space.

Now, let πt : (H3
1, gt) → (H2(−1/2), g0), t > 0, be the canonical variation

of the pseudo-Riemannian Hopf fibration. Let γ be a closed immersed
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curve in (H2(−1/2), g0) and Tγ,t = π−1
t (γ) its Lorentzian Hopf torus.

Then Tγ,t is a Willmore surface in (H3
1, gt) if and only if γ is an elastica

in (H2(−1/2), g0) with Lagrange multiplier λ = −4t2.

In [BF1] we obtain isoperimetric inequalities for the Willmore energy of

Hopf tori in a wide class of conformal structures on the three sphere. This

class includes, on the one hand, the family of conformal Berger spheres and,

on the other hand, a one parameter family of Lorentzian conformal structures.

This allows us to give the best possible lower bound of Willmore energies

concerning isoareal Hopf tori.

The main result states as follows:

Let α be an immersed closed curve in S2(1/2) = (S2, g) with length L, then

the Willmore energy of Sα in (S3, [ḡε
r ]) satisfies

Wε
r (Sα) ≥ max

{
2πr2[π + L(εr2 − 1)]; 2πr2

[
π2

L
+ L(εr2 − 1)

]}
,

with equality holding if and only if α is a circle of S2(1/2) and so Sα is a

rotational torus with area 2πrL in (S3, ḡε
r).

As a consequence, we give some applications. For instance, choosing a point

qo ∈ S3, we use the stereographic projection Eo : S3 − {qo} → E3. Then take

Lo > 0 and consider the subclass of tori Eo(To) = {Eo(Sα) : Length(α) = Lo}.
Then, we get the best possible lower bound

Wo(Eo(Sα)) ≥ max

{
2π2,

2π3

L

}
for the Willmore energy in the class Eo(To), with equality holding if and only

if Eo(Sα) is an anchor ring with known radii.

The complete classification of homogeneous three spaces is well known for

some time. Of special interest are those with rigidity four which appear as

Riemannian submersions with geodesic fibers over surfaces with constant cur-

vature. Consequently their geometries are completely encoded in two values,

the constant curvature, c, of the base space and the so called bundle curvature,

r. In [BFG] we obtain the complete classification of equivariant Willmore sur-

faces in homogeneous three spaces with rigidity four. All these surfaces appear

by lifting elastic curves of the base space. Once more, the qualitative behavior

of these surfaces is encoded in the above mentioned parameters (c, r). The case
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where the fibres are compact is obtained as a special case of a more general

result that works, via the principle of symmetric criticality, for bundle-like con-

formal structures in circle bundles. However, if the fibres are not compact, a

different approach is necessary. We compute the differential equation satisfied

by the equivariant Willmore surfaces in conformal homogeneous spaces with

rigidity of order four and then we reduce directly the symmetry to obtain the

Euler Lagrange equation of 4r2-elasticae in surfaces with constant curvature, c.

We also work out the solving natural equations and the closed curve problem

for elasticae in surfaces with constant curvature. It allows us to give explicit

parametrizations of Willmore surfaces and Willmore tori in those conformal

homogeneous 3-spaces.

In [BFG] we give the complete classification of equivariant Willmore sur-

faces in three dimensional conformal homogeneous spaces having 4-dimensional

isometry group, no matter if the fibres are compact or not. In both cases, the

original problem becomes one about elastic curves in B(c), for which we use

the machinery developed in [LS] and [Si]. The field equation for these curves,

and so their qualitative behavior, is completely encoded in the parameters

(c, r) that determine the homogeneous structure as we have described in the

section 6. Our main results can be summarized as follows:

(1) The family of equivariant Willmore surfaces in the conformal E(c, r) with

c ≥ 2r2 is made up of the following surfaces:

(1.1) Minimal surfaces obtained by lifting geodesics.

(1.2) A one-parameter class of surfaces obtained by lifting wavelike elastic

curves.

(2) The family of equivariant Willmore surfaces in the conformal E(c, r) with

c < 2r2 is made up of the following surfaces:

(2.1) Minimal surfaces obtained by lifting geodesics.

(2.2) Surfaces with constant mean curvature
√

2(2r2 − c)/2 shaped on

circles with curvature
√

2(2r2 − c).

(2.3) A one-parameter class of surfaces built on orbitlike elastic curves.

(2.4) A one-parameter class of surfaces built on wavelike elastic curves.

(2.5) A surface shaped on a borderlike elastic curve.
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Up to now we have worked in codimension one, but this restriction can be

dropped as follows.

5 Elastica and Willmore-Chen functional.

Let I
(
(Mm, g), (M̄, ḡ)

)
be the set of immersions between two Riemannian

manifolds. The Willmore-Chen functional is defined on I
(
(Mm, g), (M̄, ḡ)

)
by

WC(φ) =

∫
M

(H2 − τe)
m
2 dA,

where H2 stands for the mean curvature of M in M̄ and τe is the extrinsic

scalar curvature (see [Ch]).

Then the extremals of WC(φ) are called Willmore-Chen submanifolds.

Problem. Look for Willmore surfaces and Willmore-Chen submanifolds

in pseudo-Riemannian space forms.

The solution of this problem will show us a natural and nice connection

between Geometry and Physics.

In [BFLM1] we find Willmore-Chen submanifolds in spaces endowed with

pseudo-Riemannian warped product metrics, whose fibres are homogeneous

spaces. We obtain rational one-parameter families of Willmore-Chen sub-

manifolds in standard pseudo-hyperbolic spaces. We introduce a new method

to construct critical points of the Willmore-Chen functional in the pseudo-

hyperbolic space Hn
r = Hn

r (−1). First we will write Hn
r as a warped product

with base space the standard hyperbolic space Hn−r. Then we will use the

conformal invariance of the Willmore-Chen variational problem to make a con-

formal change of the canonical metric of Hn
r . Next we use the Palais principle

of symmetric criticality to reduce the problem to a variational one for closed

curves in the once punctured standard (n− r)-sphere. Then we show

(1) Let γ be a fully immersed closed curve in the hyperbolic space Hn−r. The

tube Υγ = Φ(γ × Sr) in (Hr, h0) is a Willmore-Chen submanifold if and

only if γ is a generalized free elastica in the once punctured unit sphere

(Σn−r, dσ2). In particular, n− r ≤ 3.
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(2) Let r be any natural number. For any non zero rational number q, there

exists an (r+1)-dimensional Willmore-Chen submanifold Υγ = Φ(γ×Sr)

in the pseudo-hyperbolic space (Hr+3
r , h0), γ being an r-generalized free

elastic closed helix in the once punctured unit 3-sphere (Σ3, dσ2).

In [BFLM2] we exhibit a criterion for a reduction of variables for Willmore-

Chen submanifolds in conformal classes associated with generalized Kaluza-

Klein metrics on flat principal fibre bundles. Our method relates the vari-

ational problem of Willmore-Chen with an elasticity functional defined for

closed curves in the base space. The main ideas involve the extrinsic confor-

mal invariance of theWillmore-Chen functional, the large symmetry group of

generalized Kaluza- Klein metrics and the Palais principle of symmetric criti-

cality. We also obtain interesting families of elasticae in both lens spaces and

surfaces of revolution (Riemannian and Lorentzian). We give applications to

the contruction of explicit examples of isolated Willmore-Chen submanifolds,

discrete families of Willmore-Chen submanifolds and foliations whose leaves

are Willmore- Chen submanifolds. The main result states as follows:

Let G be an m-dimensional compact Lie group endowed with a bi-invariant

metric. Let (Γ, ω) be a flat principal connection on a principal fibre bun-

dle P (M, G). Let h̄ = Φε(h, u) be a generalized Kaluza-Klein metric on

P (M, G, ω) and C(h̄) its conformal class. Given an immersed closed curve

γ in M , then Nγ is a Willmore-Chen submanifold in (P, C(h̄)) if and only if γ

is an m-generalized elastica in (M, u−2h).

In [BFL] we deal with string theories and M -theories on backgrounds of

the form AdS × M , M being a compact principal U(1)-bundle. These con-

figurations are the natural settings to study Hopf T-dualities [MLP], and so

to define duality chains connecting different string theories and M-theories.

There is an increasing great interest in studying those properties (physical or

geometrical) which are preserved along the duality chains. For example, it

is known that Hopf T-dualities preserve the black hole entropies. In this pa-

per we consider a two-parameter family of actions which constitutes a natural

variation of the conformal total tension action (also known as Willmore-Chen

functional in Differential Geometry). Then, we show that the existence of

wide families of solutions (in particular compact solutions) for the correspond-

ing motion equations is preserved along those duality chains. In particular, we

exhibit ample classes of Willmore-Chen submanifolds with a reasonable degree

of symmetry in a wide variety of conformal string theories and conformal M-
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theories, that in addition are solutions of a second variational problem known

as the area-volume isoperimetric problem. These are good reasons to refer

those submanifolds as the best worlds one can find in a conformal universe.

The method we use to obtain this invariant under Hopf T-dualities is based on

the Palais principle of symmetric criticality. However, it is used in a two-fold

sense. First to break symmetry and so to reduce variables. Second to gain

rigidity in direct approaches to integrate the Euler-Lagrange equations. The

existence of generalized elastic curves is also important in the explicit exhibi-

tion of those configurations. The relationship between solutions and elasticae

can be regarded as a holographic property.

6 Interplay between Geometry and Physics (see

[B2])

We first note that the Hopf map is more than a simple tool. It provides

excellent applications in different contexts in Physics, as we can see in the nice

paper [U] by H. K. Urbantke.

Secondly, the Willmore functional has a certain universality regarding its

physical applications: from strings and branes to membranes and vesicles,

because all of them are extremals of a certain action. We are interested in

knowing what kind of action.

In that line, Poisson and Sophie Germaine proposed that action should be

an even and symmetric function of the principal curvatures of the surface.

In the seventies, thinking about membranes, Canham and Helfrich pro-

posed a new model, now based on a quadratic function of the principal curva-

tures, given by

CH(S) =

∫
S

(a + bH2 + cG) dA,

H and G standing for the mean and Gauss curvatures, respectively, of the

surface, and a, b, c ∈ R.
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As the topology of membranes does not change by fluctuations, then the

Gauss-Bonnet theorem reduces the Canham-Helfrich functional to

CH(S) =

∫
S

(a + bH2) dA.

Furthermore, as minimality and compacity are not good mates, we can

assume that b 6= 0. Then, by taking b = 1, the Canham-Helfrich functional is

nothing but a modified Willmore funcional.

Thirdly, it seems that strings theories will play a key role to understand

physical world. A string theory is carry out in a non-flat spacetime, where

strings (curves) evolve generating surfaces (worldsheets). The problem now is

looking for the action describing the dynamics.

The most widely accepted nowadays is that of Kleiner and Polyakov given

by

KP(S) = a

∫
S

dA + b

∫
S

H2 dA,

which strongly sounds Willmore again.

7 Elastica and two-dimensional O(2, 1) nonlin-

ear sigma model

In [BF2] the two-dimensional O(2, 1) nonlinear sigma model with bound-

ary is considered. We calibrate the size of its space of field configurations by

exhibiting new and wide classes of solutions. We first construct solutions by

evolving, under a certain group of transformations, free elastic curves in any

surface, either Riemannian or Lorentzian, of constant curvature. Furthermore,

we show that any null scroll can provide a solution of this sigma model. This

surprising phenomenon, which obviously has no Euclidean counterpart, guar-

antees the existence of an ample class of solutions which are generated by null

(or lightlike) curves evolving through null ruling flows.

Our main results are

(1) The solutions of the two dimensional O(2, 1) nonlinear sigma model are

just the Willmore surfaces.
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(2) A surface Sγ = γ × S1 is a solution of the two dimensional O(2, 1)

nonlinear sigma model if and only if its profile curve, γ, is a clamped

free elastic curve in the unit sphere.

(3) There exist wide classes of solutions of the two dimensional O(2, 1) non-

linear sigma model obtained from elastic curves in any surface, Rieman-

nian or Lorentzian, with constant curvature.

(4) Every null scroll is a Willmore surface in L3.

(5) Null scrolls provide solutions of the two dimensional O(2, 1) nonlinear

sigma model.

8 The Plyushchay model

The integrand of the elastica functional

F(γ) =

∫
γ

(k2 + λ) ds

can be modified to get a new functional

P(γ) =

∫
γ

f(ki) ds

depending on the curvatures of γ. Then could you find the critical points of

P? Furthermore, could you find the physical meaning of them?

As for (ii) remember that we wish to consider the general functional

P(γ) =

∫
γ

f(ki) ds

and look for its critical points.

Let (M, 〈 , 〉) be an n-dimensional Riemannian manifold. As above write

C = {γ : [a, b] → M}

and the simplest functional
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Fm : C → R,

for any m ∈ R defined by

Fm(γ) =

∫
γ

(k(s) + m) ds.

This is known as the Plyushchay functional (or Plyushchay model, see [Pl]),

because he was the first to use it to study trajectories of relativistic particles.

Remark 3 (1) When m = 0 then F0(γ) is nothing but the total curvature of

curves in C. If M = R2 then k = θ′. Now, if γ is closed then

F0(γ) =

∫
γ

k(s) ds = 2π i(γ),

i(γ) ∈ Z being the rotation index of γ and F0 is constant on any homotopy

class of curves.

If C is the space of clamped curves curves, i. e., γz(a) = γz(b), γz
′(a) = ~u

and γz
′(b) = ~v, then

F0(γ) = ϕ0 + 2π #(interior loops),

where ϕ0 = angle(~u,~v). Therefore, F0 is also constant on any homotopy class

of clamped curves.

Summarizing, the variational problem associated with F0 on R2 has no

physical interest.

(2) What about F0 when M2 is a surface in R3? Take now C the set of

one-to-one closed curves in M2 and let D be a disc in R2. Consider the space

of embeddings {Φ : D → M2}
Then we have ∫

γ

k(s) ds +

∫
Φ(D)

K dA = 2π.

(3) As for F0 on M = R3, some classical results are known.

(3.1) If γ ⊂ R3 is one-to-one and closed, then∫
γ

k(s) ds ≥ 2π,
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Figure 7: An embedding

equality holding if and only if γ is planar and convex.

(3.2) If γ ⊂ R3 is one-to-one, closed and knotted, then∫
γ

k(s) ds ≥ 4π.

To look for the critical points of Fm(γ) =
∫

γ
(k(s) + m) ds in the general

background, let

Γ : (−ε, ε)× [a, b] → M

be a variation of γ defined by

Γ(z, t) = expγ(t)zW (t),

W (t) being a vector field along γ. Then

Γ(0, t) = γ(t)

∂

∂z

∣∣∣
z=0

Γ(z, t) = W (t).

and
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δFm(W ) =
d

dz

∣∣∣
z=0
Fm(Γ(z))

=
∂

∂z

∣∣∣
z=0
Fm(Γ(z, t))

=
∂

∂z

∫ b

a

k(z, t) v(z, t) dt

=

∫ b

a

W (k) v dt +

∫ b

a

k W (v) dt

=

∫
γ

〈Ω(γ), W 〉 ds + [B(γ, W )]L0 ,

where

Ω(γ) = ∇2
T N +∇T ((k −m)T ) + R(N, T )T

stands for the Euler-Lagrange operator and

B(γ, W ) = 〈∇T W, N〉+ 〈W, mT + τB〉

is the boundary operator.

Let C be the set of clamped curves defined by C = {γ : [a, b] → M / γ(a) =

p, γ(b) = q, γ′(a) = ~u, γ′(b) = ~v}. Then TγC = {W along γ : W (a) = W (b) =

0}, so that

[B(γ, W )]L0 = 0.

Summarizing, γ is a critical point of Fm if and only if Ω(γ) = 0.

The condition Ω(γ) = 0 is called the Euler-Lagrange equation of the vari-

ational problem.

By using the Frenet equations, the condition Ω(γ) = 0, in a space form

Mn(C), reads as follows

τ 2 + mk = C,

τ ′s = 0,

τη = 0,

where η ⊥ {T, N, B}.
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As a first consequence we have that τ = constant, as well as η = 0. Then

the critical points of this model live in a 3-dimensional totally geodesic sub-

manifold. Furthermore, when

(i) When m 6= 0, then the critical points form a 1-parameter family of helices

{(k, τ) ∈ R2 : mk + τ 2 = C}.

(ii) When m = 0 we only know that τ 2 = C, i. e., the critical points are

living in S3(C).

Without loss of generality, we can take C = 1 and state the following

problem.

Problem. Look for τ 2 = 1 curves in S3(1).

To get an answer we recall the Hopf map to find that the lifting of any

curve in S2(1
2
) provides a curve in S3(1) with τ 2 = 1.

Going for a walk in the realm of Lorentzian world, it is easy to see that

the extremals of this variational problem is given by the one-parameter family

{(k, τ) ∈ R2 : ε2mk − τ 2 = C}, where ε2 = 〈N, N〉 is the causal character of

N . So they are living in the anti de Sitter world H3
1(−1). Then in the anti

de Sitter world the dynamics of a system of particles governed by the action∫
γ
(k(s) + m) ds is also described by helices.

The beauty of the model governed by actions of the form∫
γ

f (k1(s), · · · , kn(s)) ds

lies in the fact that the degree of freedom that were added in the classical

method is actually encoded in the geometry of the particle paths.

Then in [BFJL1] we consider the motion of relativistic particles described

by an action that is linear in the torsion (second curvature) of the particle

path. The Euler-Lagrange equations and the dynamical constants of the mo-

tion associated with the Poincaré group, the mass and the spin of the particle,

are expressed in terms of the curvatures of the embedded worldline. The mod-

uli spaces of solutions are completely exhibited in 4-dimensional background

spaces and in the 5-dimensional case we explicitly obtain the curvatures of the

worldline.
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In [FGJL] we deal with the motion of relativistic particles described by an

action which is a function of the curvature and torsion of the particle path.

The Euler-Lagrange equations and the dynamical constants of the motion are

given in a simple way in terms of a suitable coordinate system. The moduli

spaces of solutions in a three-dimensional pseudo-Riemannian space form are

completely exhibited.

In [BFJL2] models describing relativistic particles, where Lagrangian den-

sities depend linearly on both the curvature and the torsion of the trajectories,

are revisited in D = 3 Lorentzian spacetimes with constant curvature. The

moduli spaces of trajectories are completely and explicitly determined. Tra-

jectories are Lancret curves including ordinary helices. To get the geometric

integration of the solutions, we design algorithms that essentially involve the

Lancret program as well as the notions of scrolls and Hopf tubes. The most

interesting and consistent models appear in anti de Sitter spaces, where the

Hopf mappings, both the standard and the Lorentzian ones, play an impor-

tant role. The moduli subspaces of closed solitons in anti de Sitter settings are

also obtained. Our main tool is the isoperimetric inequality in the hyperbolic

plane.

The mass spectra of these models are also obtained. In anti de Sitter back-

grounds, the characteristic feature is that the presence of real gravity makes

that, under reasonable conditions, these physical spectra always present mas-

sive states. This fact has no equivalent in flat spaces where spectra necessarily

present tachyonic sector. Furthermore, the existence of systems with only mas-

sive states, in anti de Sitter geometry, solves an early stated problem in spaces

with a non trivial gravity.
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pus de Espinardo, 30100 Murcia, Spain

E-mail: aferr@um.es, URL: webs.um.es/aferr

28


