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Abstract—This work integrates well-known proposals for
indoor location of wireless devices using signal strength on
commodity hardware. During the last years, remarkable con-
tributions have been made by the research community to
enable location-aware services for indoor scenarios. Location
fingerprinting has been proved to be a promising technique of
exploiting already existing infrastructures based on IEEE 802.11.
In this paper, we combine several approaches in order to design
a location estimator which is able to provide good accuracy and
performance for different hardware devices, such as laptops,
smart phones and wireless tags. Some of the techniques that we
have implemented are: error estimation, clustering, probabilistic
inference to estimate the location of a device, hidden Markov
model, handling of heterogeneous hardware through the least-
squares method, and path-restricted location. Qur selection has
been made after an exhaustive analysis of the existing proposals,
pursuing a good balance between accuracy and performance.
The experimental testbed has an area of 1050 squared meters,
with several corridors, offices and labs. Our main intention is
to determine whether this set of techniques can be used to build
a ready-to-use location service and to investigate the need for
integrating other sensors that would enhance the results. Signal
strength will be used to determine a cluster of physical points,
or zone, where the device seems to be. Taking into account that
we are also working with smart phones, this work has to be
considered as a starting point for a multi-sensor architecture able
to incorporate accelerometers and cameras for better estimation.
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I. INTRODUCTION

The widespread adoption of devices like smart phones is
confirming the essential role of location-based applications.
For a diverse set of areas including tracking, geographic
routing or entertainment, location-sensing systems have been
an active research field. Though the Global Positioning Sys-
tem (GPS) is the predominant outdoor positioning system,
it suffers from several obstacles blocking the radio signals
indoor.

However, wireless devices, like those based on IEEE
802.11, include the hardware necessary to measure the re-
ceived signal strength intensity (RSSI) of transmitted packets.
Using this widely-deployed off-the-shelf hardware, several
previous works have demonstrated that a significant accuracy
can be obtained by means of location fingerprinting techniques
[6], each associated with distinct tradeoffs between accuracy
and scalability.

Nowadays, the increasing number of sensors on mobile
devices presents new opportunities for localization [1][8][25].
In-built accelerometers or cameras may be useful in inferring
coarse-grained user motion and the nature of particular places,

respectively. Our final goal is to design an architecture able to
fusion data from different sensors in order to provide several
levels of accuracy, depending on the application. RSSI plays
a major role in our proposal, since it constitutes the primary
data to limit the amount of information to be examined.
Using fingerprinting methods, we obtain a cluster of physical
points where there is a high probability of finding the device.
Further refinement, for example by means of images, will be
constrained to the data related to that particular cluster.

Therefore, in order to accomplish our work, we have
analyzed and implemented several well-known proposals for
indoor location based on RSSI fingerprinting. The primary
contribution of this paper is the analysis and the integration
of several existing techniques for location estimation. For
our particular scenario, we wanted to know which technique
provides a higher accuracy, how to improve the performance,
how to support different devices, and how the scenario may be
optimized when path restrictions apply. As we show, we have
mainly focused on location techniques based on Bayesian
inference. We find especially interesting the obtained balance
between accuracy and performance, which constitutes a solid
basis to integrate other sensors.

The rest of this paper is structured as follows. Section
II gives an overview of the techniques that inspired our
work. Section III describes our experimental setup. Section
IV presents that way we have managed different devices.
Section V presents the results we obtained with different es-
timation techniques. Section VI introduces the system model
based on Markov. Section VII analyzes how we can improve
performance in terms of locations per second. Section VIII
describes a method for obtaining better accuracy when path is
restricted. Section IX depicts that clustering favors integration
of multiple sensors. Section X provides information about the
accuracy provided by our system when using several devices
in real time estimations. Finally, Section XI presents our main
remarks and future directions.

II. RELATED WORK

Indoor positioning is a research field that has been ad-
dressed by many different authors and disciplines. Several
types of signals (radio, light, sound) and methods have been
used to infer location. Each method has specific requirements
as to what types of measurements are needed. Different
methods make use of the propagation speed of signals in order
to collect distance-related measurements. Lateration methods,
such as Time-Of-Flight (TOF) [33] and Time-Difference-Of-
Arrival (TDOA) [28], estimate positions from distance-related



measurements to fixed sensors with known positions. Angle-
Of-Arrival (AOA) methods [27] work by observing what
angle a signal from a sensor arrives in. Both lateration and
angulation require special sensors or hardware to be installed
in the covered area. However, most of the pattern recognition
methods, like fingerprinting, estimate locations by recognizing
position-related patterns in measurements using commodity
hardware. Fingerprinting is based on radio maps containing
patterns of RSSIs, which are obtained using 802.11, Zigbee,
Bluetooth or any other widespread wireless technology. Maps
can be manually obtained by collecting signal samples or can
be derived from radio propagation models [11][30]. Compared
to other types of positioning methods, fingerprinting is not
able to provide the centimetre accuracy realized with other
proposals, which is not necessary for most location-based
applications. As we will see in this paper, we can obtain an
accuracy ranging from 0.5 to 3 meters using fingerprinting.

Fingerprinting can be classified into two main categories:
deterministic techniques and probabilistic techniques. Deter-
ministic techniques [2][32] represent the signal by a scalar
value and use some pattern-matching method to estimate the
user location, for example by means of nearest neighbor.
However, probabilistic techniques [4][10][35] store informa-
tion about the signal strength distributions from the access
points and represent user positions as probability vectors. For
example, one of the main methods to infer location is the
Bayesian inference. In this paper we are going to analyze the
results obtained using both set of techniques.

On the other hand, there are several options to implement
location systems using 802.11, depending on the division
of responsibilities between wireless clients, access points,
and servers. The three main categories are network-based,
client-assisted and client-based, and they differ in who sends
out beacons, who makes measurements and who stores the
radio map and estimates locations. Network-based systems
[21[5]1[17] offer better support for limited wireless clients,
since measurements are collected by access points and for-
warded to location servers. Most fingerprinting systems were
built client-assisted or client-based [3][29][34], which are
more suitable tu support privacy since clients measure RSSI
and might estimate locations using the radio map. As we show
in this work, our system is both network-based and client-
assisted, depending on the type of client we are using (tags,
smart phones or laptops).

III. EXPERIMENTAL ENVIRONMENT
A. Physical environment

The testbed where our experiments were conducted is
located on the third floor of our Faculty. The dimension of
the testbed is 35 meters by 30 meters, and includes 26 rooms.
We have selected 94 cells where the users could be located,
spaced out 1.5 meters, according to recommendations made
by King et al. in [12].

Our location system works in two phases. First, an off-
line or training phase is performed to build the radio signal
map and to obtain the signal distribution models. Then, it is
during the on-line phase when we are able to estimate the
user location.

As we will show, in order to compare the accuracy of our
system depending on the number of access points and the

number of samples used to build the radio map, we carried
out several tests using two different testbed configurations.
Initially, we distributed four access points along our depen-
dencies (in Figure 1 they are indicated as red dots). During the
corresponding training phase we collected 60 observations'
at each cell. Later, we carried out a second set of tests, by
adding two more access points (blue dots in Figure 1) and
collecting 250 observations at each cell. There are several
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Fig. 1. Experimental environment map

works proposing how to automate the training phase. Chen
et al. [7] or LaMarca et al. [21] provide techniques for
the automatic generation of fingerprinting maps. The former
approach was developed using RFID sensors, while the latter
studies the pattern of WiFi signals. Though we have not
integrated these proposals within our testbed, as it is relatively
small, they should be considered in order to improve the
scalability for bigger scenarios.

B. Hardware and software

Our experiments were carried out using several hardware
devices. The training observations were captured with an
Asus Eee 1201 laptop with a Realtek TRL8191SE Wireless
LAN 802.11n card. In addition, during the online phase we
have also used a HP iPAD hx2400 series using Windows
Mobile 2005, a HTC Desire smart phone with Android and
Aeroscout T2 wireless tags. With the exception of wireless
tags, we developed the appropriate software client for each
device in order to collect RSSIs and to send them to a
repository. Applications were programmed in C++ and Java,
depending on the requirements imposed by each device.
Furthermore, we implemented several estimation techniques
in Java. According to the different nature of our devices, the
system was designed to support both a client-assisted and a
network-based infrastructure, that is, RSSI can be collected
by the end-user devices or by the 802.11 access points.

We have used Linksys WRT54G access points with
802.11abg support. Their locations were chosen so as to
provide consistent coverage throughout the entire scenario.
In addition, the firmware was modified to work in monitor
mode, thus providing support for special devices with limited
computing resources, like the already mentioned wireless tags.

I An observation is a set of RSSIs collected from all the reachable access
points at the same cell and during a particular scan.



IV. CALIBRATION

Besides accuracy or performance, one of the imposed
requirements of our proposal is the support for heterogeneous
hardware clients. Due to the wide range of devices on
the market, we do not want to restrict the performance of
our location system to specific hardware. However, different
devices provide different intensity readings, depending on
antennas, transmission power and many other factors. Gwon
and Jain proposed in [9] a calibration-free location algorithm
that eliminates offline RSSI measurements. However, mean
error distance is about 5.4 meters. Several proposal such as
[10][14][15] provide calibration mechanisms improving this
distance error.

On the one hand, Haeberlen et al. [10] propose a calibration
function based on the following linear relationship:

c(i)=c1-i+co

ey

where i is the observed signal intensity value by the new
device and c(i) is the value that would have been observed
by the training device. Computing the least-squares fit be-
tween the observations obtained by the new device on the
calibration cells? and the corresponding values from the sensor
map, we can obtain the parameters ¢; and co. The authors
proposed several methods for manual, quasi-automatic and
automatic calibration. On the other had, Kjaergaard [15]
proposes a Hyperbolic location fingerprinting to solve the
signal-strength difference problem and an automatic technique
[14] for adapting an indoor localization system based on
signal strength to the specific hardware and software of a
wireless network client. In relation to our scenario, the best
calibration parameters were obtained with the proposal from
Haeberlen et al. As Figure 2 shows, unadjusted RSSIs do not
fit to the training laptop signal. Nevertheless, once we have
calibrated all the devices, Figure 3, signals are quite similar.
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V. ANALYSIS OF ESTIMATION METHODS

As we mentioned before, our first intention was to explore
the accuracy of the system as we varied the amount of access
points and the number of observations used to build the radio
maps. We have accomplished several tests using two different
techniques in order to compare their results. On the one

2A set of cells previously established to get a heterogeneous set of
observations.
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hand we have used a deterministic technique based on nearest
neighbor and Euclidean distance of RSSIs. We implemented
the proposal from [2] and it is able to estimate location with
a mean error distance between 2 and 3 meters, about the size
of a typical office room. On the other hand, we have also
represented the position as a probability distribution using
a Bayesian inference technique discussed in [10][13][20].
This algorithm estimates posterior distributions and can be
applied in the case of sensors that have non-Gaussian noise
distributions, such as our signal strength sensor.

We have to take into account that signal propagation in an
indoor environment is noisy since it is affected by reflection,
diffraction, and scattering of radio waves caused by structures
within the building. These dynamic environmental influences
can cause the observed signal strength to vary considerably
and this makes very difficult to estimate the location using
a single signal observation. So, using historical information
about the previous locations of the user, we may get better
results by means of probabilistic methods, as you can see in
Figure 4. Hereinafter, we will focus our tests on probabilistic
methods since they offer several possibilities to improve the
performance and accuracy of our system.

Being C' = {c1,..,¢n} the set of cells that make up the
finite space state and 7 a probability distribution vector over
each cell, for each observation O;, the probability to take a
measurement from the access point ag at reference cell c;
with a signal strength Ag can be expressed by the conditional
probability:
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These conditional probabilities are used to update the
probability vector 7 by applying Bayes’ Rule:

ﬂ_{ _ FiPT(Oj|Ci) (3)
b e (maPr(Ojlea))

We also compare taking a Gaussian fit of signal strength
to using the full histogram of signal strength. Parametric-
based distribution is built by modeling the signal intensity
as a normal distribution defined at each cell and for every
base station by its mean and standard deviation. Histograms
represent the sensor model explicitly.

As you can see in Figure 4, there are some techniques that
perform better using four access points but it is clear that
the result obtained using the histogram-based probabilistic
method and six access points provides the higher accuracy.
WiFi signals have a very unpredictable behavior so the main
cause of histograms to perform better than parametric is
because signals are not fit to a parametric based probability
distribution, therefore using a histogram based probability
distribution it is easier to obtain a correct probability estima-
tion. Therefore, we are going to analyze the results obtained
from this configuration of 6 base stations and 250 training
observations. Additionally, in order to provide more detailed
information, Figure 5 shows the mean error for each cell
after estimating the user position. The shape of the histogram
sometimes is particularly sensitive to the number of bins.
In order to find the right number of bins there are several
aspects that we have to take into account. If the bins are
too wide, important information might get omitted. However,
if the bins are too narrow, what seems to be meaningful
information may be due to random variations that show up
because of the small range in a bin. In conclusion, there is
no best number of bins since different bin sizes can reveal
different features of the data. So, to determine whether the
bin width is set to an appropriate size, different bin widths
should be tested to determine the sensitivity of the histogram
shape with respect to it size. It is worth mentioning that every
bin is considered to contain at least one sample, in order to
discard zero probability.
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Figure 6 shows the error distance obtained using a distribu-
tion model based on histograms varying the number of bins.
When a greater number of bins is used, accuracy improves
since each bin is formed by a lower range of samples, giving
more importance to those that are more representative, and
lowering the error down to 0.7 meters.
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VI. SYSTEM MODEL

Until now, the way we have used RSSIs is not rich enough
to track the location of a mobile device since we should
include additional information to infer motion. Considering
that, at this stage, we have not integrated inertial sensors (like
an accelerometer) into our system, we might take into account
several proposals integrating sensor readings over time to
track mobile users. Krumm and Horvitz [19] measure the
variance of the signal strength of the strongest access point to
infer whether the user is still or moving. Muthukrishnan et al.
[26] presents an inference system based on euclidean distances
between signals. Despite both proposals are good motion
estimators, we implemented an algorithm which takes the
output of the estimation method as a stream of observations
and stabilizes the distribution by modeling the usual behavior
of users within our scenario.

This algorithm is based on a Hidden Markov Model (HMM)
[16][31] and it has been used in several proposal such as
[10][20], where it has been proved as a good system model.
Given a user position, this method spreads probability over
those points that are reachable during the next interval of time.
The performance we can obtain from HMM depends on the
design of the Markov chain, which encodes assumptions about
how the user can move from state to state, referring to a state
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as a cell in our scenario. This chain specifies the probability
of remaining still at a cell or moving to a nearby one. One of
the more critical points of using HMM is to define the matrix
describing how the system being modeled evolves with time.
In order to create the chain that best fits to our environment,
we took into account several considerations. We have designed
a matrix A that encodes the HMM chain considering the
normal behavior of users around our scenario. As we saw
in equation 3, if 7 is a probability distribution vector over .,
then 7’ = Am will be the probability distribution vector at the
following instant time.

Our scenario is mainly static, since it will not suffer relevant
changes over time. Thus, definition of A will be carried out
only once. Additionally, taking into account that our scenario
is mainly formed by offices and laboratories where people
usually stays static, probability of moving should be lower
than remaining at the same point. Also, we assume that people
do not exceed a speed of 2 meters per second. Once the HMM
matrix is designed, we carried out some tests using histograms
and 20 bins in order to check whether better results are
obtained. Figure 7 confirms that the best location estimation
technique is based on histograms and including HMM, since
it usually reduces the error down to 0.41 meters on average.

VII. PERFORMANCE ANALYSIS

In order to reduce the computational cost of our location
estimation system, to minimize the number of operations
per location estimation, and thus to get a greater number
of locations per second, we studied the contributions made
by Youssef et al. in [34][35], paying more attention to
the Incremental Triangulation (IT) clustering technique. This
technique is based on the idea that the strongest signals come
from the nearest access points. Therefore we can assume that
those signals are more stable and more reliable. So, when
we estimate the location of a user using the received signals
ordered by their intensity, it means that we evaluate the signals
ordered by their usefulness. During the location estimation
process we use the access points iteratively, one after the other,
then starting with the first access point. Therefore, we restrict
our search space to the cells covered by this access point.
In reduced scenarios, like ours, this might not suppose any
important improvement since we do not discard so many cells.
Nevertheless, in bigger spaces with a higher number of access
points, like an airport or a hospital, this can suppose a huge

time reduction. As it is presented in [34], given a sequence
of observations from each access point, we start by sorting
the access points in descending order according to received
intensity. If the probability of the most probable location is
meaningfully higher (threshold) than the probability of the
second most probable location, we return that most probable
location as our location estimation, and we do not take into
consideration the next access points. If we come back to
equation 2, when we calculate the probability of being at each
cell we reduce the number n of access points.

Before analyzing the IT results, we would like to note
that our main intention is to compare performance in relative
terms. However, for the sake of completeness we provide
the details of the used computing platform: CPU Pentium(R)
Dual-Core E5300(2M Cache, 2.60 GHz, 800 MHz FSB), 2GB
RAM memory and Windows XP Professional. Table I summa-

No IT 0,419 6,0 1772
0.1 1,224 2,3 2645
0.2 0,854 2,8 2219
0.3 0,668 3,2 2240
0.4 0,571 3,5 2102

33,64%
27,31%
24,19%
18,72%

2670
2437
2337
2180

Tabla I
PERFORMANCE ANALYSIS

rizes the obtained results applying this algorithm. For lower
threshold values (1** column), the decision is taken quickly
after examining a small number of access points, no more
than 3 access points on average (3™ column). As the threshold
value increases, a higher number of access points has to be
evaluated. Consequently, as the number of considered access
points increases, the number of operations increases, which
reduces the number of location estimations per second (4™
column), but the average accuracy increases (2" column). We
have carried out this test using the histogram-based probability
distribution technique with HMM. As we can see, using
IT we can obtain similar results in terms of accuracy to
those obtained previously. Using a threshold of 0.4 we are
able to reduce the number of analyzed access points, from
6 to 3.5 on average. This involves a speed-up of 15.73%
on average. System accuracy is adversely affected by a few
centimeters, from an error distance of 0.41 m. to 0.57 m.,
what is acceptable to estimate the location of a user into our



scenario.

Despite we obtained a good improvement with I7T, we
designed a further optimization. This optimization tries to
improve system performance without compromising accuracy.
We avoid to evaluate unnecessary cells (at each iteration of
the IT algorithm) where probability is meaningfully low. For
example, if using the signal received by one of the strongest
access points the cell probability is under a threshold, we will
not evaluate this cell again using the next access points. This
threshold is determined by the minimum density of histogram
distributions.

This optimization reduces the required cells in vector 7
(equation 3), and therefore the number of locations per second
increases. The 5" column in table I shows the results of
applying this optimization to the IT technique, always offering
better results. The 6" column shows the speed-up of using IT
in relation to the absence of any improvement (1% row). As
we can see, we can improve our performance up to 18.72%
without having an adverse effect on accuracy.

VIII. PATH-RESTRICTED LOCATION

There are scenarios where users have restricted access to
some dependencies’. To reflect these restrictions, we have
to discard those points where the user cannot be located.
One approach is to label each cell indicating its access level.
Since our scenario is within a Faculty, we have conducted
some tests assuming two different types of users: professors
and students. Usually students will move primarily along the
corridors, so the cells belonging to those dependencies are
labeled as public. The rest of dependencies are labeled as
private, and only professors can gain access to them.

Consequently, we propose another optimization with the
aim of minimizing the number of cells where a user could
be located. We called it Path-Restricted Location (PRL). I'T-
based and PRL optimizations may be complementaries, but
we prefer to show them in an independent way. We carried out
some tests assuming that the user was a student and therefore
he had no access to private rooms. To carry out these tests we
have used the histogram-based probability distribution with
20 bins and HMM. The path we have covered during the test
goes from cell 33, through 49 and 50, to cell 60 (it can be see
in Figure 1. As you can see in Figure 8, PRL still improves
accuracy due to average error is reduced to 0.31 meters. This
makes sense if we think that the number of cells analyzed is
lower than in the previous tests, around 33%, discarding the
possibility of being in private dependencies.
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Fig. 8. Accuracy using PRL

3Referred to a set of cells that form a corridor, a laboratory, an office, etc.

IX. CLUSTERING

Clustering techniques have been applied in several ways.
On the one hand, Youssef et al. [35] propose the Joint
Clustering algorithm that uses joint probability distributions of
the RSSI of different access points to find the most probable
user location. They try to reduce the computational cost by
grouping the cells into clusters according to the access points
providing coverage, at the expense of loosing accuracy. Each
cell belonging to a cluster has in common the order in which
signals are received, according to their intensity, from those of
the strongest visible access points g choose for clustering. This
technique is further applied during the online phase, using the
q strongest access points to select the cluster of cells that will
be analyzed to determine the most probable location. A similar
proposal was made by Krumm and Hinckley [18] to obtain a
coarse-grained proximity between users.
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On the other hand, Lemelson et al. propose in [22] four
algorithms to estimate the position error that is inherent to
802.11-based positioning systems. One of them, Fingerprint
Clustering algorithm, makes use of the training RSSIs to find
clusters. It is based on the idea that the signal collected in
nearby cells tend to cover only a limited range of the possible
values. So, if we find an area with similar signal properties,
the position estimation error will be higher because of the
number of similar fingerprints is high. However, we have
a high probability to estimate the location of a user within
those areas, with a maximum error distance less than or
equal to distance between the two furthest points from the



cluster in which user has been located. We are especially
interested in this second proposal, since it will help us to
define medium-sized zones, joining adjacent clusters, where
WiFi-based location might be further refined by means of
other sensors. We can define the clusters once the training
phase have been finished, and it does not require a high
computational effort.

In order to show how this proposal can be applied to our
interest, we have calculated the clusters, shown in Figure 9,
and then we have carried out several tests. The clusters hit
probabilities obtained from those tests are shown in Figure
10. As you can see, most of the already-analyzed techniques
obtain a high cluster hit percentage, up to 93%. These results
will have important implications for our future work.

X. TRACKING TESTS

Previous sections have presented analytic results that were
calculated using the observations obtained during the training
phase as inputs to our location system. Nevertheless, in order
to validate our location system, we realized that we have to
demonstrate its accuracy carrying out real time test, i.e. trying
to estimate a user location using the RSSI captured while the
user is walking around the scenario. The estimation method
we used is also histogram-based with HMM.
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Fig. 11. Mean error while tracking

Therefore, we walked around our scenario carrying three
different devices: PDA, smart phone and laptop (the one used
during the training phase). We took one observation at each
cell along the path. Figure 11 presents the results on average.
There are several conclusions we can derive from those tests.
Firstly, we show that the error distance is lower than 2.5
meters on average. This accuracy is quite similar to that
obtained in referenced proposals. Also we have to take into
account that we move through a complex environment made
of several materials and with moving persons. Secondly, both
Figures highlight the importance of the calibration process,
since the results obtained with both the PDA and the smart
phone are very similar to those obtained with the training
laptop.

XI. SUMMARY AND FUTURE WORK

In this paper, we have analyzed widely known research
works for indoor location in order to evaluate them and to
design a system for heterogeneous clients. This heterogeneity
is given by the possibility of using a wide range of devices.
The results shown in the calibration section allow us to be
optimistic about it, as we have been able to adapt the signals
collected by different devices to those of the training laptop.

We modeled the signal strength distributions received from
access points using deterministic and probabilistic techniques
(by means of parametric and non-parametric based probability
distributions). This allowed us to demonstrate that probabilis-
tic methods fit better to signal behavior since they reduces the
effect of temporal variations. Therefore, we decided to use
the Bayesian inference technique using a 20 bins histogram-
based probability distribution as default algorithm for our
next experimental tests, because it reduces the error down to
0.7 meters on average. Thereinafter, we have added several
optimizations to our location estimation system that offer
better accuracy and performance results.

The integration of HMM, discussed in section VI, improves
the accuracy of our system. In the absence of inertial sensors,
the HMM allows us to estimate user movements. Using this
widely-deployed technique we have improved the accuracy of
the system up to 40% on average, reducing the error to 0.41
meters.

In addition, we have analyzed several proposals in order to
improve the system performance, and we have carried out our
own tests to validate their benefits within our scenario. On the
one hand, in section VII we have analyzed the Incremental
Triangulation (IT) clustering technique, that allows us to
reduce the number of required operations to infer the user
location. Furthermore, we proposed an optimization to IT
that improves the system performance up to 18.72% without
having an adverse effect on accuracy. On the other hand,
test results from section VIII, where we discussed the Path-
Restricted Location optimization, show that using environ-
ment information we avoid the evaluation of unnecessary
cells, and we are able to improve the average accuracy error.
This results demonstrate the need for an appropriate context
model, whose design we are already defining.

From previous sections, we are able to state the degree of
accuracy a WiFi sensor can offer. Indeed, considering a cluster
level accuracy around 93% on average, we will concentrate
our efforts on integrating several sensors within our location
system. Some proposals, like Azizyan et al. [1], introduced
several methods to join data from different sensors of existing
smart phones. Our future direction to exploit the sensor fusion
goes in a different way.

Using the camera of the smart phone and the Scale-Invariant
Feature Transform (or SIFT) algorithm proposed by Lowe
[23]]24] we are able to detect and describe local features in
images. Some initial tests show that combining the informa-
tion from both sensors, WiFi and camera, we are able get
better accuracy. However, the main drawback of using images
is the elevated computational cost. This gets more importance
when we need to locate a user in large scenarios, since the
number of images to analyze is excessive, involving serious
scalability problems. As we have previously mentioned, the
use of clustering algorithms, such as Fingerprint Clustering,
reduces the number of cells to be analyzed to those contained
in the cluster. Once we have used RSSIs to determine the
cluster, we can process a reduced set of images to perform a
fine-grained localization, improving scalability.

Finally, in order to check if our system works properly
in real time conditions we carried out some tracking test,
discussed in section X. After analysing this tests results we



can get some conclusions. We confirm that selected position
estimation technique gets good results to locate a user in
motion. Moreover, we demonstrate that it has been able to
adapt the signals collected by different devices since all of
them have similar behaviour, so it means that calibration
works properly.

Summarizing, once we are able to decide which RSSI based
technique obtains the best results, we are experimenting in
order to design a multi sensor location estimation using as
much information from sensor as we can as well as making
use of available context information.
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