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Abstract. Given an analytic multiple gap Γ = {Γi : i < n}, we study the

family B(Γ) of the sets A ⊂ n for which there is a restriction {Γi|a : i ∈ A}
which is still a multiple gap, while a ∈ Γ⊥i for i 6∈ A. This family always

contains at least two sets of cardinality 2, and every set of cardinality k is

contained in a set from B(Γ) of cardinality J(k), a number that grows as
3

8
√
2πk
· 9k. All these results can be stated in terms of the topology of the

Čech-Stone remainder ω∗ and in terms of sequences in Banach spaces. For

example, for any finite family of analytic open sets of ω∗ with non-disjoint
closures there is always a point that lies in exactly two closures. And given

a sequence {xn}n<ω of vectors in a Banach space that contains subsequences

equivalent to `1, `2, . . . , `n in a way that cannot be separated, it always con-
tains a subsequence {xnk}k<ω where the `1 and `2 subsequences cannot be

separated, while there are at most 6 (and this is sharp) of the remaining p’s
for which {xnk}k<ω contains subsequences equivalent to `p.

1. Introduction

Let N be a countable infinite set, and Fin(N) the family of its finite subsets.
Let us say that a family I of subsets of N is a preideal if whenever we have a ⊂ b
with a infinite and b ∈ I, it follows that a ∈ I as well. For two preideals I and
J , it is equivalent to say that I ∩ J ⊂ Fin(N) or that x ∩ y is finite for all x ∈ I
and y ∈ J . In such a case we say that I and J are orthogonal. A trivial reason for
I and J to be orthogonal is that there exist two disjoint sets a, b ⊂ N such that
x ⊂∗ a and y ⊂∗ b for all x ∈ I and y ∈ J (here, u ⊂∗ v means that u is almost
contained in v in the sense that u \ v is finite). When such a and b exist we say
that I and J are separated. A pair (I, J) of orthogonal but not separated preideals
is the classical well-studied notion of a gap [6, 7]. This was generalized to higher
dimensions [1] in the following way:

• The preideals Γ0, . . . ,Γn−1 are separated if there exist a0, . . . , an−1 ⊂ N
such that a0 ∩ · · · ∩ an−1 = ∅ and xi ⊂∗ ai for all i < n.

• An n-gap (or, in this paper, simply a gap) is a family Γ = {Γ0, . . . ,Γn−1}
of n-many preideals that are pairwise orthogonal and are not separated.

For a preideal I and a ⊂ N we can consider the restriction I|a = {x ∈ I :
x ⊂ a}. If Γ = {Γ0, . . . ,Γn−1} is a gap and a ⊂ N , then the restriction Γ|a =
{Γ0|a, . . . ,Γn−1|a} may still be a gap or may become separated. And it may be the
case that while Γ|a becomes separated, the subgap {Γi : i ∈ A} remains a gap after
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restriction to a, for some subsets A ⊂ {0, . . . , n − 1}. We look at the family of all
subgaps of a given gap which can be isolated from the rest by a restriction:

B(Γ) =

{
A ⊂ {0, . . . , n− 1}

1 < |A| < n
: ∃a ⊂ N :

{Γi|a : i ∈ A} is still a gap,
but Γi|a ⊂ Fin(N) if i 6∈ A.

}
In the language of [1], Γ is a B-clover when B 6∈ B(Γ). It is convenient for us to

have a name for the opposite property: we say that Γ is B-broken if B ∈ B(Γ). We
constructed n-gaps in [1] such that B(Γ) = ∅ but we needed to use Bernstein sets
for that. On the other hand, all the nicely definable gaps that we found seemed to
have a large family B(Γ). Let us say that Γ = {Γ0, . . . ,Γn−1} is analytic if each
Γi is analytic as a subset of 2N with its natural product topology. So the natural
question arises: Can we build analytic gaps with any prescribed family B(Γ)? In
particular, can we construct, for n ≥ 3, analytic n-gaps with B(Γ) = ∅? In this
paper we show that the answer to these questions is negative. Indeed, the fact that
Γ is analytic implies a number of restrictions on the structure of the family B(Γ).
We are not able to give a completely satisfactory characterization of the families of
sets that can be found as B(Γ) for Γ analytic gap. Instead, we give a number of
sample results that can be obtained with a general technique, like the following:

Theorem 1.1. If Γ is an analytic n-gap with n ≥ 3, then B(Γ) contains at least
two sets of cardinality 2.

Theorem 1.2. For every natural number k there is a natural number J(k) > k
such that for every analytic gap Γ and every A ∈ B(Γ) of cardinality k there exists
B ∈ B(Γ) of cardinality at most J(k) such that A ⊂ B.

The optimal value J(k) in the above theorem can be computed as:

J(n) = 2n − 1 +

n∑
i=1

n∑
j=1

(
i+ j − 1

j

)
B(i, j, n);

B(i, j, n) =

(
n
i

)(
n
j

)
−
n−max(i,j)∑

p=0

(
n− p− 1
j − 1

)(
n− p− 1
i− 1

)
.

Its first values are J(2) = 8, J(3) = 61, J(4) = 480 . . . with an asymptotic
behavior

J(n) ∼ 3

8
√

2πn
· 9n.

Through Stone duality, our results can be restated in terms of the topology of
ω∗ = βω \ω, the Čech-Stone remainder of the natural numbers. Let us say that an
open set U ⊂ ω∗ is analytic if {a ⊂ ω : a \ a ⊂ U} is an analytic family of subsets
of ω. As an illustration, this is the translation into this language of Theorem 1.2
when n = 3:

Theorem 1.3. If U1, . . . , Un are pairwise disjoint analytic open subsets of ω∗ and
U1 ∩ U2 ∩ U3 6= ∅, then there exists a point x ∈ U1 ∩ U2 ∩ U3 such that |{i : x ∈
U i}| ≤ 61. The number 61 is optimal in this result.

Another natural context where our results can be applied is for sequences of
vectors in a Banach space, where many classes of subsequences which are usually
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considered (`1-sequences, c0-sequences, etc.) are in fact analytic. Again, for the
purpose of illustration, this is a corollary of Theorem 1.2 for n = 2:

Theorem 1.4. Let F be a finite set of reals with {1, 2} ⊂ F ⊂ [1,+∞), and let
{xn}n∈N be a sequence of vectors in a Banach space. Then one of the following
holds:

(1) either there is a decomposition N = a∪b such that {xn}n∈a does not contain
any `1-subsequence and {xn}n∈b does not contain any `2-subsequence,

(2) or there is an infinite subset c ⊂ N which does not admit any decomposition
like above, and moreover there are at most eight many p ∈ F for which
{xn}n∈c has an `p-subsequence.

The number 8 is optimal in this result.

Concerning the proofs, they essentially rely on the machinery developed in our
previous works [3] and [4]. The paper is structured as follows: In Section 2 we
recall some concepts and facts from [3, 4] that will be used later. In Section 3 we
give some examples and we prove a number of facts concerning the family B(Γ).
In Sections 4 and 5 we interpret our results in terms of the topology of ω∗ and in
terms of sequences in Banach spaces, respectively. Finally, Section 6 is devoted to
the study of the function J(k).

It is worth noticing that although we state all our results for analytic gaps, they
also hold for more general projective gaps under the axiom of projective determi-
nacy, cf.[3]. Another remark concerns countable separation and strong gaps. The
preideals {Γi : i < n} are countably separated if there exists a countable family of
sets C such that whenever we pick xi ∈ Γi for i = 0, . . . , n − 1, there exist ai ∈ C
such that xi ⊂ ai for all i < n and

⋂
i<n ai = ∅. When a gap is not countably

separated it is called a strong gap. In such case, we can consider the family of
subgaps

B+(Γ) =

{
A ⊂ {0, . . . , n− 1}

1 < |A| < n
: ∃a ⊂ N :

{Γi|a : i ∈ A} is a strong gap,
but Γi|a ⊂ Fin(N) if i 6∈ A.

}
.

There is a theory of strong gaps analogous to that of gaps, which is in fact
simpler. The role of types explained below is played by so-called (i, j)-combs, for
each couple i, j ∈ k, cf. [2]. Similar results as the ones proved for B(Γ) hold for
B+(Γ) when Γ is strong, with analogous but much easier proofs. For example,
Theorem 1.2 is true for B+(Γ) when Γ is strong but with k2 instead of J(k). The
analogue of Theorem 1.1 holds as well. Both follow from the results in [2].

2. Preliminaries

In this section we introduce basic terminology and we state some results that we
need, that are coming from our previous works [3, 4]. Given a positive integer n,
the n-adic tree is the set n<ω of all finite sequences of numbers from {0, . . . , n−1}.
If t = (t1, . . . , tp) and s = (s1, . . . , sq) are elements of n<ω, the length of t is p = |t|,
and the concatenation of t and s is t_s = (t1, . . . , tp, s1, . . . , sq). We consider two
orders on n<ω.

• The tree partial order : t ≤ s if and only if there exists r ∈ n<ω such that
s = t_r. We write t < s if t ≤ s and t 6= s.
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• The total order : t ≺ s if and only if either |t| < |s|, or |t| = |s| and ti < si
where i is the first index at which t and s differ. We write t � s if either
t ≺ s or t = s.

The meet t ∧ s is the element r ∈ n<ω of maximal length that satisfies r ≤ t and
r ≤ s. When t ≤ r, the difference r \ t is the s such that r = t_s. For every k < n
we consider

Wk = {(t1, . . . , tp) ∈ n<ω : t1 = k, t2 ≤ k, . . . , tp ≤ k}.

Definition 2.1. A type τ is a triple (τ0, τ1, /) where τ0 and τ1 are subsets of
{0, . . . , n− 1}, and / is a total order relation on τ0 × {0} ∪ τ1 × {1} satisfying the
following constrains:

• τ0 6= ∅.
• If τ1 6= ∅, then min(τ0) 6= min(τ1).
• (k, i) / (l, i) if k < l and i ∈ {0, 1}.
• The maximal element of the order / is of the form (k, 0).

Definition 2.2. Consider a type τ where τ0 = {k0 < · · · < kp} and τ1 = {l0 <
. . . < lq}. We say that a couple (u, v) is a rung of type τ if the following conditions
hold:

(1) u can be written as u0
_ · · ·_ up where ui ∈Wki ,

(2) v can be written as v0
_ · · ·_ vq where vi ∈Wli ,

(3) (ki, 0) / (lj , 1) if and only if u0
_ · · ·_ ui ≺ v0

_ · · ·_ vj .

When τ1 = ∅, this means that v = ∅ and u satisfies condition (1) above.

Definition 2.3. Consider a type τ . We say that an infinite set X ⊂ m<ω is of
type τ if there exists u ∈ m<ω and a sequence of rungs (u0, v0), (u1, v1), . . . of type
τ such that we can write X = {x0, x1, . . .} and

xk = u_u0
_u1

_ · · ·_ uk−1
_vk

for k = 0, 1, . . .

A direct application of Ramsey’s theorem shows that every infinite subset of n<ω

contains an infinite set that is of some type τ [3, Lemma 3.4]. The set of all types
made with numbers from {0, 1, . . . , n − 1} is denoted by Tn. This is a finite list
of types, whose cardinality is the number that we will denote by J(n). If a subset
of n<ω has type τ according to Definition 2.3, then τ ∈ Tn. We denote each type
with two rows of numbers between brackets, the upper row being τ1 (it is omitted
if τ1 = ∅), the lower row being τ0, and the order / being read from left to right.
For example, there are 8 types in T2,

T2 = {[0], [1], [01], [101], [01], [10], [01
1], [0

1
1]}

If τ1 = ∅, then τ is called a chain type, and if τ1 6= ∅, then τ is called a comb
type. These names correspond to the shapes of the respective sets of type τ .

Now, let us consider again gaps. If I is a preideal of subsets of N , let I⊥ =
{a ⊂ N : I|a ⊂ Fin(N)}. Notice that I ∩ I⊥ consists only of finite sets, and from
our point of view finite sets will be negligible. If Γ = {Γ0, . . . ,Γn−1}, we write
Γ⊥ =

⋂
i<n Γ⊥i . If Γ and ∆ are two n-gaps on countable sets N and M , we write

Γ ≤ ∆ if there exists a one-to-one function f : N −→M such that

(1) If a ∈ Γi then f(a) ∈ ∆i,
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(2) If a ∈ Γ⊥i , then f(a) ∈ ∆⊥i .

This is relevant for us due to the following observation:

Lemma 2.4. If Γ ≤ ∆ then B(Γ) ⊂ B(∆).

Proof. Let f : N −→M be the map that witnesses that Γ ≤ ∆. If A ∈ B(Γ) then
we have a ⊂ N such that {Γi|a : i ∈ A} is a gap but Γi|a ⊂ Fin(N) for i 6∈ A. We
claim that A ∈ B(∆) because {∆i|f(a) : i ∈ A} is a gap but ∆i|f(a) ⊂ Fin(M) for
i 6∈ A. The latter fact is just part (2) in the above definition of Γ ≤ ∆. For the
first fact, if {∆i|f(a) : i ∈ A} were separated, we would have sets bi ⊂M such that⋂
i bi = ∅ and y ⊂∗ bi for y ∈ ∆i, i < n. But then the sets ai = f−1(bi) would show

that {Γi|a : i ∈ A} are separated, because if x ∈ Γi|a, then f(x) ∈ ∆i|f(a), hence

f(x) ⊂∗ bi, hence by injectivity of f , x ⊂∗ f−1(bi). �

This lemma and the following theorem show that we can restrict our attention
to a particular kind of analytic gaps: those made from types. Given a set S ⊂ Tn,
we denote by ΓS the preideal consisting of all subsets of n<ω that are of type τ for
some type τ ∈ S.

Theorem 2.5. Let n,m < ω be natural numbers.

(1) If S0, . . . , Sn−1 are nonempty pairwise disjoint subsets of Tm, then the
preideals {ΓS0

, . . . ,ΓSn−1
} form an analytic n-gap. This follows from [3,

Lemma 4.3] and [4, Theorem 4.5].
(2) For every analytic n-gap ∆ there exist pairwise disjoint subsets S0, . . . , Sn−1

of Tn, and a permutation ε : n −→ n such that [ε(i)] ∈ Si for each i < n
and {ΓSε(0)

, . . . ,ΓSε(n−1)
} ≤ ∆ [3, Theorem 4.5].

In the above theorem, notice that [ε(i)] is denoting a chain type τ for which
τ0 has a single integer ε(i), following the bracket notation that we introduced for
types. An analytic n-gap of the form {ΓSε(0)

, . . . ,ΓSε(n−1)
} as above is called stan-

dard. Since Tn is finite, there are only finitely many standard n-gaps, and what
the above theorem says is that any analytic n-gap contains a standard n-gap. For
simplicity, if we have a gap of the form {ΓSi

: i < n} where each Si is a set of types
in n<ω, when we say that a type τ belongs to ΓSi

we mean that τ ∈ Si.

In [4] we introduced the notion of normal embedding. We do not need to recall
the formal definition with all its technicalities, the only thing that we need to know
for our purposes is that a normal embedding is an injective map φ : m<ω −→ n<ω

with the property that it induces a function φ̄ : Tm −→ Tn such that φ(A) is a
set of type φ̄τ whenever A is a set of type τ . For gaps constructed from types, the
relation ≤ is always witnessed by normal embeddings [4, Corollary 4.4]:

Lemma 2.6. Let S0, . . . , Sk−1 be disjoint sets of types in n<ω and S̃0, . . . , S̃k−1

disjoint sets of types in m<ω. The following are equivalent:

(1) {ΓSi
: i < k} ≤ {ΓS̃i

: i < k}.
(2) There exists a normal embedding φ : n<ω → m<ω such that for every i < k

and for every τ ∈ Tn we have that τ ∈ Si if and only if φ̄τ ∈ S̃i.

For a type τ , max(τ) is the largest integer that appears in that type. The
following are Theorem 4.5 and Corollary 4.6 in [4]:

Theorem 2.7. For a family {τi : i ∈ n} ⊂ Tm the following are equivalent:
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(1) There exists a normal embedding φ : n<ω −→ m<ω such that φ̄[i] = τi for
i = 0, . . . , n− 1,

(2) max(τ0) ≤ · · · ≤ max(τn−1).

Corollary 2.8. If φ : n<ω −→ m<ω is a normal embedding and τ, σ ∈ Tn satisfy
max(τ) ≤ max(σ), then max(φ̄τ) ≤ max(φ̄σ).

A type τ = (τ0, τ1, /) is called a top-comb type if it is a comb type and moreover
the penultimate position in the order / is occupied by an element coming from
τ1 × {1}. We say that the type τ dominates the type σ if τ is a top-comb type
and moreover max(τ1) ≥ max(σ). By [4, Corollary 6.4], if τ dominates σ and
φ : m<ω −→ n<ω is a normal embedding, then φ̄τ either dominates or is equal
to φ̄σ. We shall frequently use the following fact, which is a particular case of [4,
Theorem 6.2]

Theorem 2.9. If τ0, τ1 ∈ Tm are two types and τ1 dominates τ0, then there exists
a normal embedding φ : 2<ω −→ m<ω such that φ̄[0] = τ0 and φ̄σ = τ1 for all
σ ∈ T2 \ {[0]}.

Finally, the following lemma is part of [4, Lemma 5.2], and it says that normal
embeddings send a comb type to a chain type only in trivial cases.

Lemma 2.10. Let φ : n<ω −→ m<ω be a normal embedding and let k ≤ n. The
following are equivalent:

(1) There exists a comb type τ with max(τ1) = k − 1 and a chain type σ such
that φ̄(τ) = σ.

(2) There exists a chain type σ such that φ̄(τ) = σ for all types τ with max(τ) <
k.

3. Studying the family B(Γ)

Our main tool to study the family B(Γ) for analytic gaps is the following lemma:

Lemma 3.1. Let {Si : i < n} be nonempty pairwise disjoint sets of types in m<ω,
and Γ = {ΓSi

: i ∈ n} the corresponding n-gap. For a set B ⊂ n with 1 < |B| < n
the following are equivalent:

(1) B ∈ B(Γ).
(2) There exists some k and a normal embedding φ : k<ω −→ m<ω such that

the range of φ̄ intersects each Si with i ∈ B, but it is disjoint from Sj for
j 6∈ B.

(3) There exists some k, a normal embedding φ : k<ω −→ m<ω and a bijection
u : k −→ B such that φ̄[i] ∈ Su(i) for all i < k, but φ̄τ 6∈ Sj whenever
τ ∈ Tk and j 6∈ B.

Proof. The obvious fact is that (3) implies (2). If (2) holds, then the image a =
φ(k<ω) is the set that witnesses that B ∈ B(Γ). This is because, on the one
hand, ΓSi

|a = ∅ when i 6∈ B since Si is disjoint from φ̄(Tk). And on the other
hand, {ΓSi |a : i ∈ B} are not separated because otherwise {φ−1(ΓSi) : i ∈ B}
would be separated, and φ−1(ΓSi) ⊃ Γφ̄−1(Si) and these sets are not separated by

Theorem 2.5. So this proves that (2) implies (1). Now, suppose that B ∈ B(Γ)
and a ⊂ m<ω is such that a ∈ Γ⊥i for i 6∈ B while {ΓSi

|a : i ∈ B} is a gap. Then
by Theorem 2.5, we can find a standard gap {ΓS̃i

: i ∈ B} on some k<ω such that

{ΓS̃i
: i ∈ B} ≤ {ΓSi

|a : i ∈ B}.
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By Lemma 2.6, this relation ≤ is witnessed by a normal embedding φ : k<ω −→
a ⊂ m<ω, which satisfies condition (3). �

Lemma 3.2. Let φ : m<ω −→ n<ω be a normal embedding. Suppose that we have
j < n and a type τ ∈ Tm such that φ̄τ = [j]. Then there exists i < m such that
φ̄[i] = [j].

Proof. If τ is a comb type, it follows from Lemma 2.10 that φ̄[0] = [j]. So we
suppose that τ is a chain type, and we write τ = [i0 i1 · · · ik] being i0 < i1 < · · · <
ik < m. We are going to prove that the desired i is precisely i = i0, the smallest
integer in τ . Let us use the following notation: given s, t two finite sequences
of integers and given an integer p, we write t ∼p s if there exists r ∈ Wp such
that s = t_r or t = s_r. Thus, a [p]-chain is just an infinite set A such that
s ∼p t for all different s, t ∈ A. It is enough for us to prove that if x ∈ m<ω and
r ∈ Wi, then φ(x) ∼j φ(x_r). For this, pick r1 ∈ Wi1 , . . . , rk ∈ Wik and consider
w = r_i_r_1 · · ·_ rk, x1 = x_w, x2 = x_w_w, and in general xξ+1 = xξ

_w.
Notice that both {x, x1, x2, x3 . . .} and {x_r, x1, x2, x3, . . .} are chains of type τ ,
hence both {φ(x), φ(x1), φ(x2), . . .} and {φ(x_r), φ(x1), φ(x2), . . .} are chains of
type [j]. This easily implies that φ(x) ∼j φ(x_r) as desired. �

Given two chain types τ = [τ1 < τ2 < · · · < τp] and σ = [σ1 < σ2 < · · · < σq],
we define the chain type

τ ∗ σ = [τ1 < τ2 < · · · < τp < σξ < σξ+1 < · · · < σq]

where ξ is the least integer such that σξ > τp. If there is no such integer, we declare
τ ∗σ = τ . By [4, Lemma 5.1], if φ : m<ω −→ n<ω is a normal embedding and σ, τ ,
φ̄σ and φ̄τ are all chain types, then φ̄(τ ∗ σ) = φ̄τ ∗ φ̄σ. As a corollary, we get:

Lemma 3.3. Let {Si : i < n} be pairwise disjoint sets of types in m<ω, and
Γ = {ΓSi

: i < n} the corresponding gap. Fix A ∈ B(Γ). If τ ∈ Si, σ ∈ Sj are
chain types and i, j ∈ A, then σ ∗ τ 6∈

⋃
k 6∈A Sk.

Proof. Find φ and u as in Lemma 3.1(3), and then use the property mentioned
above. �

Before stating any positive results, we give some examples to set some limits on
what we can expect:

Theorem 3.4. We have the following examples:

(1) For every n, there is an n-gap with B(Γ) = {A : 1 < |A| < n}.
(2) For every n, there is an n-gap with B(Γ) = {A : 1 < |A| < n, n− 1 ∈ A}.
(3) There is a 4-gap with B(Γ) = {{0, 2}, {0, 3}, {1, 2}, {1, 3}, {0, 1, 2}, {1, 2, 3}}.

Proof. The examples that we are going to provide in order to check the three
statements above are all of the form {ΓSi

: i < n} for some pairwise disjoint sets
of types Si ⊂ Tm. For (1), take m = n and Si = {[i]}. For A ⊂ n, the set
a = A<m of all finite sequences with entries in A, witnesses that A ∈ B(Γ). For
the second example, take m = 2n − 2, Si = {[i], [n − 1 + i]} for i < n − 1, and
Sn−1 = Tm \ {[i] : i < m}. If n − 1 ∈ A and B = {i, n − 1 + i : i ∈ A \ {n − 1}}
then the set B<ω witnesses that A ∈ B(Γ). On the other hand, suppose that
n − 1 6∈ A ∈ B(Γ). Then there exists a normal embedding φ : k<ω −→ m<ω such
that the range of φ̄ does not hit Sn−1 while hitting all Sj for j ∈ A. Lemma 2.10
implies that φ̄

[
k−1

0

]
is a comb type, so it belongs to Sn−1, a contradiction. For
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the third example, take n = 4, m = 3, S0 = {[0]}, S1 = {[12]}, S2 = {[012]} and
S3 = {[1]}. The inclusion [⊂] follows from Lemma 3.3, since [0] ∗ [12] = [012] and
[1] ∗ [012] = [12]. For the other inclusion, for a set W ⊂ 3<ω, let us denote

a(W ) = {w_1 w_2 · · ·_ wp : w1, . . . , wp ∈W}

the set of all finite concatenations of elements of W . That each of the indicated
sets belongs to B(Γ) is witnessed by the sets a(0, 012), a(0, 1), a(12, 012), a(12, 1),
a(0, 12, 012) and a(12, 012, 1) respectively. �

We are now ready to prove Theorem 1.1:

Proof. We can suppose that Γ = {Γk : k < n} is a standard gap of the form
{ΓSk

: k < n} for some pairwise disjoint sets Sk ⊂ Tn with [k] ∈ Sk. For each
pair {i, j} ⊂ m we can consider the restriction {ΓSk

|{i,j}<ω : k < n}. We notice
that if A(i, j) is the set of all k such that Sk contains at least one type made of
integers only i and j, then we have that {ΓSk

|{i,j}<ω : k ∈ A(i, j)} is a gap, while

ΓSk
∈ ({i, j}<ω)⊥ for k 6∈ A(i, j). Notice that i, j ∈ A(i, j) because [k] ∈ Sk.

If |A(i, j)| = 2 for all pairs i, j, then B(Γ) contains all pairs and we are done.
Otherwise, there is a pair {i, j} such that |A(i, j)| > 2. For simplicity, we suppose
that {i, j} = {0, 1} and A(i, j) = {0, 1, 2, . . . ,m} with 2 ≤ m < 8. Remember that
there are just eight types in T2. The types [10], [01

1] and [0
1
1] are top-comb types

with max(τ1) = 1, so they dominate any of the other types. If any of these three
types τ belongs to some Sk with k ≤ m, then we will be done. This is because in this
case we can choose two other types σ1 and σ2 in two other different sets Sk1 and Sk2,
and then Lemma 2.9 provides, for u = 0, 1, embeddings φu : 2<ω −→ 2<ω such that
φ̄u[0] = σu and φ̄uρ = τ for all ρ 6= [0]. This means that {k, k1}, {k, k2} ∈ B(Γ).
So, we can suppose that the three types [10], [01

1] and [0
1
1] do not hit any of the sets

Sk, and so 2 ≤ m < 5. We can use the following table to visualize the distribution
of the types in the gap:

[0] [1] [01] [101] [01] [10] [0
1
1] [01

1]
S0 S1 ? ? ? no no no

We are going to give normal embeddings ϕ1, ϕ2, . . . , ϕ9 from 2<ω into itself. We
summarize in the following non-exhaustive table the facts about these embeddings
that will be most relevant for our discussion:

τ [0] [1] [01] [101] [0] [1] [01] [101] [01]
ϕ1τ [0] [01] [01] [01] X − − − X
ϕ2τ [1] [01] [1] [0

1
1] − X − − X

ϕ3τ [01] [01] [01] [0
1
1] − − X − X

ϕ4τ [01] [101] [01] − − − X X
ϕ5τ [0] [101] [101] X − − X
ϕ6τ [1] [101] [1] − X − X
ϕ7τ [01] [101] − − X X
ϕ8τ [0] [01] X − X
ϕ9τ [01] [1] − X X

In the left half of the table we indicate the value of ϕiτ for each of the four types
indicated in the top row. In the right half of the table we indicate with the symbol
X which of those five types is in the range of ϕi and with the symbol − those which
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are not. The purpose is, of course, to apply Lemma 3.1. We do not need to worry
about the remaining three types on the right half of the table because we already
assumed that they do not belong to any Sk.

Before describing what the embeddings ϕi are, let us note how we can deduce
from the information in the table that there are three different i, j, k such that
{i, j}, {i, k} ∈ B(Γ). This is easy, by a consideration of cases. In the first case, if
[01] is in some Si, then two other types from [0], [1], [01] or [101] must belong to
two other Sj and Sk, and then two of the embeddings ϕ1, ϕ2, ϕ3 or ϕ4 give, using
Lemma 3.1, that {i, j}, {i, k} ∈ B(Γ). In the second case, we assume that [01] is
not in any Si but [101] is in some of them. Then, similarly as in the first case two of
the embeddings ϕ5, ϕ6 of ϕ7 give the desired conclusion. Finally, in the third case
if neither [01] nor [101] is in any Sk, then ϕ8 and ϕ9 show that {0, 2}, {1, 2} ∈ B(Γ).

Theorem 2.7 ensures that if σ, σ′ ∈ T2 are such that max(σ) ≤ max(σ′) then
there exists a normal embedding such that φ̄[0] = σ and φ̄[1] = σ′. Thus, for each
row of the table above we can find a normal embedding which takes the prescribed
values on the types [0] and[1]. We take ϕ5, ϕ7, ϕ8 and ϕ9 in this way, just given by
Theorem 2.7. However, the value at [0] and [1] does not determine the action on
the rest of types, and we describe more precisely the rest of cases. The embedding
ϕ1 will be the one provided by Theorem 2.9 for τ0 = [0] and τ1 = [01], so that
ϕ1[0] = [0] and ϕ1τ = [01] for any type τ 6= [0]. For the rest, we need some
notation. Given s0, s1, s ∈ 2<ω, we define a function ψ[s0, s1, s] : 2<ω −→ 2<ω

whose value on a given t ∈ 2<ω is the sequence obtained by substituting each 0
by the sequence s0, each 1 by the sequence s1, and finally adding a single copy
of the sequence s at the end. We consider ψ2 = ψ[01, 11, 0], ψ3 = ψ[001, 111, 0],
ψ4 = ψ[1111, 0001, 10], ψ6 = ψ[1111, 0001, 1]. It is a straightforward exercise to
check that if A is a set of type τ , then ψi(A) is a set of the type ϕiτ given by
the table (in the cases where the table indicates what this type should be). The
functions ψi are injective but we did not say that they are normal embeddings.
But [4, Theorem 4.2] states that for an injective function ψi there is always a nice
embedding ui : 2<ω −→ 2<ω such that ψi ◦ ui is a normal embedding. We do not
need to recall now the technical definition of a nice embedding; it is enough to know
that a nice embedding is a function m<ω −→ m<ω that maps sets of type τ onto
sets of type τ for all τ ∈ Tm, cf. Proposition 2.4 and remarks before Lemma 3.4
in [3]. So we can take ϕi = ψi ◦ ui and in this way we already have all the normal
embeddings that satisfy the left half of our table.

Now let us check the right half of the table. The X’s are filled just by looking
at these values at [0] and [1], so the point is how to make sure that we can put a −
sign in the corresponding places.

The values for ϕ1 are clear by definition. The three excluded types [10], [101]
and [01

1] dominate [1], hence their images under a ϕi dominate (or equal) ϕi[1]
which has maximum 1 for i ≥ 2. Therefore the image of any of these three types is
again one of those three types or equals ϕ̄i[i], so we do not need to care about their
values to fill the right half of the table. Since [01] dominates [0], ϕi[

0
1] dominates

or equals ϕi[0]. Hence ϕi[
0
1] is either one of the three excluded types or [01] itself,

or ϕ̄i[0]. Therefore, we do not need to care about the image of [01] to fill the right
half the table. The values for ϕ5 are given by [4, Lemma 8.1]. The − signs for
the columns of [0] and [1] follow from Lemma 3.2. The fact that [101] cannot be
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sent to a chain type follows from Lemma 2.10. The rest of − signs follow from the
observations above and the information on the left side of the table. �

A gap Γ on the set N is called dense if every infinite subset of N contains
an infinite subset of one the preideals of Γ. In other words, if Γ⊥ = Fin(N).
By [3, Lemma 3.4] every infinite subset of m<ω contains an infinite subset of one
type. Therefore a gap on m<ω of the form {ΓSi

: i < n} is dense if and only if⋃
i<n Si = Tm.

Theorem 3.5. For every dense analytic n-gap Γ there exists k ∈ n such that
{k, i} ∈ B(Γ) for all i ∈ n \ {k}. Moreover, B ∪ {k} ∈ B(Γ) whenever B ∈ B(Γ).

Proof. Suppose that Γ is a standard n-gap in n<ω and let k be such that Γk contains
a top-comb type τ with max(τ1) = n − 1. The theorem follows from application
of Theorem 2.9. The last statement follows similarly from the more general [4,
Theorem 6.2]. �

The above result is not true for general gaps, as example 3 in Theorem 3.4 shows.
On the other hand, by example 2 in Theorem 3.4, Theorem 3.5 is an optimal result
concerning the doubletons that we can find in B(Γ) for Γ dense and analytic.

For a natural number m, let J(m) = |Tm| be the number of types in m<ω.
Theorem 1.2 follows now from Theorem 3.6 below. The function J will be studied
in more detail later in Section 6.

Theorem 3.6. For every analytic n-gap Γ and for every set A ⊂ n with |A| = k
there exists B ⊃ A with |B| ≤ J(k) such that Γ can be B-broken. The number J(k)
is optimal in this result.

Proof. Let φ : k<ω −→ m<ω be a normal embedding witnessing that we have a
standard k-gap Γ′ ≤ {Γi : i ∈ A}. Since there are only J(k) types in k<ω, at most
J(k) ideals from Γ can be present after this reduction, so this proves the statement
of the theorem. Concerning optimality, let {τi : i ∈ J(k)} be an enumeration of all
types in k<ω where τi = [i] for i < k. Consider the J(k)-gap Γ = {Γ{τi} : i ∈ J(k)}
in k<ω. We claim that if Γ can be B-broken for some B ⊃ A = {i : i < k}, then
B is the whole J(k). Suppose that we have a normal embedding φ : p<ω −→ k<ω

witnessing that Γ is B-broken. Then since A ⊂ B, there must exist types σi for
i < k such that φ̄σi = [i]. Since max[i] < max[j] when i < j, it follows from
Corollary 2.8 that max(σi) < max(σj) when i < j. By Theorem 2.7, we get a
normal embedding ψ : k<ω −→ p<ω such that ψ̄[i] = σi for i < k. Then, φ̄ψ̄[i] = [i]
for i < k and this implies that φ̄ψ̄τ = τ for all types τ in k<ω, hence B must be
the whole set J(k). �

4. Interpretation in ω∗

The phenomena studied in this paper have a nice topological interpretation
through Stone duality. Let us remind the reader that βω, the Čech-Stone com-
pactification of ω, is a compact Hausdorff topological space that is characterized
by the fact that it contains ω as a dense subset of isolated points with the prop-
erty that a ∩ b = ∅ whenever a and b are disjoint subsets of ω. The Čech-Stone
remainder of ω is the compact space ω∗ = βω \ ω. The clopen subsets of ω∗ are
the sets of the form ā \ ω with a ⊂ ω, and they form a basis of the topology of ω∗.
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To each open subset V of ω∗ = βω \ ω we associate the preideal (in fact the ideal)
I(V ) = {a ⊂ ω : a\ω ⊂ V }. We say that V is analytic if I(V ) is an analytic subset
of 2ω. The following lemma contains just some elementary manipulations in ω∗.
The first four statements are implicit in [1] but we sketch a proof anyway.

Lemma 4.1. Let {Ui : i < n} be open subsets of ω∗.

(1) The preideals {I(Ui) : i < n} are pairwise orthogonal if and only if the open
sets {Ui : i < n} are pairwise disjoint.

(2) The preideals {I(Ui) : i < n} are separated if and only if
⋂
i∈n Ui = ∅.

(3) The preideals {I(Ui) : i < n} are an n-gap if and only if the open sets
{Ui : i < n} are pairwise disjoint and

⋂
i∈n Ui 6= ∅.

(4) I(Ui)
⊥ = {a ⊂ ω : a ∩ Ui = ∅}.

(5) For B ⊂ n the n-gap {I(Ui) : i < n} can be B-broken if and only if⋂
i∈B Ui \

⋃
i 6∈B Ui 6= ∅.

Proof. For (1), if I(U) and I(V ) are not orthogonal, then there is an infinite a ∈
I(U) ∩ I(V ), and then ∅ 6= a \ ω ⊂ U ∩ V . Conversely if U ∩ V 6= ∅, then U ∩ V
contains a basic open set of the form ā \ ω, and then a ∈ I(U) ∩ I(V ). For (2),
if the preideals are separated by some a0, . . . , an−1 ⊂ ω, then since

⋂
i<n ai = ∅,

we get that
⋂
i<n ai = ∅. Moreover, Ui ⊂ ai because if ā \ ω is a basic clopen

set inside Ui, then a ∈ I(Ui) and therefore a ⊂∗ ai and a \ ω ⊂ ai. This proves
that

⋂
i<n Ui = ∅. Conversely, if

⋂
i<n Ui = ∅, then there are clopen sets Ci ⊃ Ui

such that
⋂
i<n Ci = ∅ (cf. [1, Lemma 9]). The sets Ci can be taken of the form

Ci = ai\ω with
⋂
i<n ai = ∅, and the ai’s separate the I(Ui)’s. Part (3) just follows

from (1) and (2). Concerning (4), first notice that the closure of Ui is superfluous
in that expression since a is open. The expression in (4) is just saying that, for
a ⊂ ω, a is disjoint from Ui if and only if it is disjoint from all basic clopens inside
Ui. For part (5), if the gap can be B-broken, then we have a set a ∈

⋂
i6∈B I(Ui)

⊥

such that {I(Ui)|a : i ∈ B} is a gap. But this means that Ui ∩ a = ∅ for i 6∈ B and
a ∩

⋂
i∈B Ui 6= ∅. Therefore,⋂

i∈B
Ui \

⋃
i 6∈B

Ui ⊃ a ∩
⋂
i∈B

Ui 6= ∅.

Conversely, if
⋂
i∈B Ui \

⋃
i 6∈B Ui 6= ∅, then we can pick a point x in this set, and

a clopen neighborhood V of x which is disjoint from
⋃
i6∈B Ui. This clopen set V

must be of the form V = a \ ω for some a ⊂ ω, and this set a witnesses that the
gap {I(Ui) : i < n} can be B-broken. �

After this lemma, we can automatically start getting corollaries from the results
in Section 3.

Corollary 4.2. Let U be a finite family of pairwise disjoint analytic open subsets
of ω∗. Then

(1) either their closures {U : U ∈ U} are also pairwise disjoint,
(2) or there exists a point x ∈ ω∗ such that |{U ∈ U : x ∈ U}| = 2.

Moreover, in the second case, unless all but two of those closures are disjoint from
all others, there are in fact at least two points x, y ∈ ω∗ for which the sets {U ∈ U :
x ∈ U} and {U ∈ U : y ∈ U} are different and both of cardinality 2.
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Proof. Suppose that (1) does not hold, and consider {Ui : i ∈ n} a maximal sub-
family of U with

⋂
i∈n Ui 6= ∅. We can find a clopen set V ⊃

⋂
i∈n Ui such that

V ∩ U = ∅ for all U ∈ U , U 6= Ui, i < n. The result follows from Lemma 4.1 and
Theorem 1.1 applied to the gap {I(Ui ∩ V ) : i < n}. �

Corollary 4.3. Let U be a countable family of pairwise disjoint analytic open
subsets of ω∗, and let {Ui : i ∈ k} ⊂ U be a finite subfamily with

⋂
i<k Ui 6= ∅.

Then, there exists a point x ∈
⋂
i<k Ui such that |{U ∈ U : x ∈ U}| ≤ J(k).

Moreover, J(k) is optimal in this result.

Proof. First, consider the case when U is finite, and we write it in the form U =
{Ui : i ∈ n}, for some k ≤ n < ω. Pick y ∈

⋂
i<k Ui, and let us suppose as well that

we have k ≤ m ≤ n such that y ∈
⋂
i<m Ui but y 6∈

⋃
m≤i<n Ui. Let C be a clopen

subset of ω∗ such that y ∈ C and C ∩
⋃
m≤i<n Ui = ∅. Since C is a clopen subset

of ω∗, it is of the form C = c̄ \ ω for some infinite set c ⊂ ω. By Theorem 3.6, we
can find B ⊃ A = k with |B| ≤ J(k) such that the gap {I(Ui ∩C) : i < m} can be
B-broken. This implies, by Lemma 4.1 that⋂

i∈B
Ui ∩ C \

⋃
i∈m\B

Ui ∩ C 6= ∅.

Any point x in the intersection above satisfies that {i ∈ n : x ∈ Ui} ⊂ B, so it is as
required.

Now, suppose that U is infinite, and write it as U = {Ui : i < ω}. We define
inductively a decreasing sequence of clopen subsets Cn of ω∗ and points xn ∈
Cn ∩

⋂
i<k Ui. We can start with C0 = ω∗ and x0 any point from

⋂
i<k Ui. Using

the finite case proved above, we pick xn+1 ∈ Cn ∩
⋂
i<k Ui (this set is nonempty,

since we had xn from the previous step) such that |{i < n+1 : xn+1 ∈ Ui}| ≤ J(k).
Then, we can choose Cn+1 ⊂ Cn so that xn+1 ∈ Cn+1 and Cn+1 is disjoint from
all Ui such that xn+1 6∈ Ui and i < n+ 2. Let x be a cluster point of the sequence
{xn : n < ω}. On the one hand, x ∈

⋂
i<k Ui since all xn belong to that intersection.

Suppose for contradiction that |{i < ω : x ∈ Ui}| > J(k). Find n such that
|{i < n : x ∈ Ui}| > J(k). But the construction of our sequence was done in such
a way that |{i < n : y ∈ Ui}| ≤ J(k) for all y ∈ Cn, and x ∈ Cn because xm ∈ Cn
for all m ≥ n. This is a contradiction.

For the optimality, consider the gap on ω that witnessed optimality in Theo-
rem 3.6. That is, we have Γ = {Γi : i < J(k)} which cannot be B-broken for any
B ⊃ k, B 6= J(k). Consider the open sets Ui =

⋃
a∈Γi

a \ ω. It is easy to see

that Γi ⊂ I(Ui) and that every element of I(Ui) is contained in a finite union of
elements of Γi. From these facts we can transfer all properties of {Γi : i < n} to
{I(Ui) : i < J(k)} which is, in this way, also a gap which cannot be B-broken for
any B ⊃ k, B 6= J(k). By Lemma 4.1, this means that the family {Ui : i < J(k)}
witnesses optimality. �

Finally, the direct translation of Theorem 3.5 is the following fact:

Corollary 4.4. Whenever {Ui : i < n} are pairwise disjoint analytic open subsets
of ω∗ such that

⋂
i<n Ui 6= ∅ and

⋃
i<n Ui = ω∗, then there exists k < n such that
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for all B ⊂ n ⋂
i∈B

Ui \
⋃
i 6∈B

Ui 6= ∅ ⇒
⋂

i∈B∪{k}

Ui \
⋃

i 6∈B∪{k}

Ui 6= ∅.

5. Sequences in Banach spaces

If (xk)k<ω is a sequence of vectors in a Banach space, having a preideal I ⊂ ω
is equivalent to having a class of subsequences of (xk)k<ω which is hereditary,
that is, it is closed under taking further subsequences. Thus, a gap {Γi : i < n}
is viewed as finitely many hereditary families of subsequences which are pairwise
orthogonal (that is, no subsequence can be in two different classes at the same time)
and are not separated. Separation would mean that there exists a decomposition
ω =

⋃
i<n bi such that (xn)n∈bi does not contain any subsequence from Γi. This

is just a reformulation of separation by looking at the sets bi = ω \ ai instead of
the ai’s in the original definiton. Classes of sequences considered in Banach space
theory are often analytic, sometimes coanalytic and rarely from higher projective
classes. In any case, they are typically definable in some sense so the results of this
paper apply. Just to give an example, for a real number p ∈ [1,∞), a sequence of
vectors x = {xk}k<ω in a Banach space are said to be an `p-sequence if there exists
a constant L > 0 such that

1

L

(
m∑
i=1

api

)1/p

≤

∥∥∥∥∥
m∑
i=1

aixi

∥∥∥∥∥ ≤ L
(

m∑
i=1

api

)1/p

for all real numbers a1, . . . , am. Clearly, the definition does not change if we take
L and a1, . . . , am rational. It is obvious then that the class of `p-subsequences of
a given sequence is Borel. After these explanations, it is clear that Theorem 1.4 is
a corollary of Theorem 3.6 for n = 2, except for the fact that the constant J(k)
is sharp. This requires to check that the corresponding counterexample can be
made with this particular kind of preideals, which is the content of the following
statement:

Proposition 5.1. Let {Si : i < n} be pairwise disjoint nonempty sets of types in
m<ω, and let {pi : i < n} be numbers with 1 ≤ pi <∞. Then there exists a Banach
space E and a sequence of vectors {xk : k ∈ m<ω} ⊂ E in a Banach space such
that {xk : k ∈ X} is an `pi-sequence whenever X is a set of type τ ∈ Si.

Proof. Let {xk : k ∈ m<ω} be the canonical basis of the completion of c00(m<ω)
(the set of all functions m<ω −→ R which vanish out of a finite set) endowed with
the norm

‖f‖ = sup


(∑
k<ω

|f(sk)|pi
)1/pi

: {s0, s1, . . .} is of type τ ∈ Si

 .

Just take into account that the intersection of two sets of different types has cardi-
nality at most 2. �

6. Asymptotic behavior of the number of types

The function J can be computed as follows:
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J(n) = 2n − 1 +

n∑
i=1

n∑
j=1

(
i+ j − 1

j

)
B(i, j, n);

B(i, j, n) =

(
n
i

)(
n
j

)
−
n−max(i,j)∑

p=0

(
n− p− 1
j − 1

)(
n− p− 1
i− 1

)
.

In the first formula above, 2n − 1 is the number of chain types, B(i, j, n) is the
number of pairs (τ0, τ1) corresponding to types where τ0 has imany numbers and τ1

has j many numbers, while the combinatorial number that multiplies B(i, j, n) is the
number of possible order relations / once τ0 and τ1 are fixed increasing sequences
of i many and j many numbers. In the second formula, the first summand is the
total number of pairs of increasing sequences (τ0, τ1) while in each summand of the
sum on the right we are subtracting those pairs of sequences that begin with the
same integer p, that must be excluded. The first values of J(n) are the following:

n 1 2 3 4 5 6 7 · · ·
J(n) 1 8 61 480 3881 31976 266981 · · ·

It is possible to find some recursive formulas as well. But it is perhaps more
interesting to analyze the asymptotic behavior, to get an idea of the magnitude
of the numbers. This is stated in Proposition 6.3, which requires some previ-
ous computations along two lemmas. We are not experts in probability, and
for the proof of Lemma 6.1, we must acknowledge the hint provided in the web
math.stackexchange.com (cf. question 353748).

Given n < ω, and p ∈ Z, let Mn(p) be the set of all 2× n matrices with entries
{−1, 0, 1} such that the number of −1’s in the upper row equals p plus the number
of −1’s in the lower row.

Given u, v ∈ {1,−1}, let Mn(p)[uv ] be the set of all matrices from Mn(p) such
that the first (leftmost) nonzero element of the upper row takes value u, and the
first nonzero element of the lower row takes value v.

Let M=
n (p)[uv ] be the set of all matrices in Mn(p)[uv ] such that the first nonzero

element of the upper row and the first nonzero element of the lower row appear in
the same column. Let M 6=n (p)[uv ] be the set of all matrices in Mn(p)[uv ] such that the
first nonzero element of the upper row and the first nonzero element of the lower
row appear in different columns.

Lemma 6.1. For fixed p, as n goes to infinity,

|Mn(p)| ∼ 3 · 9n

2
√

2πn
.

Proof. We can consider our matrices as random matrices in which each entry takes
the value 0, 1 or −1 with equal probability. Let Xi be the the random variable
that provides the difference between number of −1’s in the upper row and number
of −1’s in the lower row, but looking only at column i. Thus Xi takes value 0 with
probability 5/9, value 1 with probability 2/9, and value −1 with probability 2/9.
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We have that

|Mn(p)| = 9n · P

(
n∑
i=1

Xi = p

)
.

The random variables Xi are independent, equidistributed, have mean µ = 0 and
variance σ = 2/3. Let

Yn =
3

2
√
n

n∑
i=1

Xi

be their standardized sums, which converge to a normal distribution N(0, 1). Let
Fn = P(Yn ≤ x) be the distribution function of Yn. The Xi are concentrated in
{−1, 0, 1} ⊂ {x0 + dz : z ∈ Z} for x0 = 0 and d = 1, so they are so-called lattice
random variables. The way in which the functions Fn(x) converge to the Gaussian

Φ(x) =
∫ x
−∞

e−t2/2
√

2π
dt is estimated by the following Esseen’s formula [5, Theorem 3,

p. 56]:

Fn(x)−Φ(x) =
α3(1− x2)

6σ3
√

2πn
e−x

2/2 +
d

σ
√

2πn
Q1

(
(x− ξn)σ

√
n

d

)
e−x

2/2 + o(n−1/2)

where Q1(t) = [t] − t + 1/2 is the translation of the decimal part of t to the
interval (−1/2, 1/2] and o(n−1/2) denotes a function f such that n1/2f converges
to 0 uniformly on x as n goes to +∞. The numbers ξn are described in [5, (29),
p. 55] but in our case ξn = 0 since x0 = 0. The other constants appearing in the
formula take in our case the values d = 1, σ = 2/3 and the third moment [5, p.40]
of the distributions Xi is α3 = 0, so we get:

Fn(x)− Φ(x) =
3

2
√

2πn
Q1

(
2x
√
n

3

)
e−x

2/2 + o(n−1/2).

Thus,

9−n · |Mn(p)| = P
(
Yn =

3p

2
√
n

)
= Fn

(
3p

2
√
n

)
− Fn

(
3(p− 1)

2
√
n

)
= Φ

(
3p

2
√
n

)
− Φ

(
3(p− 1)

2
√
n

)
+ o(n−1/2)

and taking into account that Φ(x) = 1
2 + 1√

2π
x+ o(x), we get

9−n · |Mn(p)| =
3

2
√

2πn
+ o(n−1/2) ∼ 3

2
√

2πn

as desired. �

Lemma 6.2. For fixed p, u, v, as n grows to infinity,

|M 6=n (p)[uv ]| ∼ |M=
n (p)[uv ]| ∼ 3 · 9n

16
√

2πn
.
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Proof. We are going to prove that |M=
n (p)[uv ]| & 1

8Mn(p) and |M 6=n (p)[uv ]| & 1
8Mn(p).

Since

|Mn(p)| = |M=
n (p)[11]|+ |M=

n (p)[+1
−1]|+ |M=

n (p)[−1
+1]|+ |M=

n (p)[−1
−1]|+

|M 6=n (p)[11]|+ |M 6=n (p)[+1
−1]|+ |M 6=n (p)[−1

+1]|+ |M 6=n (p)[−1
−1]|

we conclude that |M=
n (p)[uv ]| ∼ 1

8 |Mn(p)| and |M 6=n (p)[uv ]| ∼ 1
8 |Mn(p)|, and the

statement of the lemma will follow from Lemma 6.1. One corollary of Lemma 6.1
that we are going to use in the sequel is that for any fixed q and k, |Mn−k(q)| ∼
9−k|Mn(p)|. We start by proving that |M=

n (p)[uv ]| & 1
8Mn(p). If we fix m < n, we

can get a lower bound by counting only those matrices whose first nonzero elements
appear in one of the first columns, and we get

|M=
n (p)[uv ]| ≥

m∑
k=1

|Mn−k(p′)|

where p′ equals either p,p+ 1 or p−1, depending on the values of u and v. Asymp-
totically,

|M=
n (p)[uv ]| &

m∑
k=1

9−k|Mn(p)|.

Since this happens for every m, and
∑∞
k=1 9−k = 8−1, we get that

|M=
n (p)[uv ]| & 1

8
Mn(p)

as desired. We check now that |M 6=n (p)[uv ]| & 1
8 |Mn(p)|. Given k, s ≥ 1 with

s+ k < n, the number of matrices in M 6=n (p)[uv ] whose first nonzero element of the
upper row appears at column s, and the first nonzero element of the lower row
appears at column s+ k can be computed as∑

ξ∈3k

|Mn−s−k(pξ)|

where ξ runs over all possible entries in the upper row between s + 1 and s + k,
and pξ is a number which depends only on ξ. Similarly, the number of matrices in
M 6=n (p)[uv ] whose first nonzero element of the lower row appears at column s, and
the first nonzero element of the upper row appears at column s+k can be computed
as ∑

ξ∈3k

|Mn−s−k(p′ξ)|.

In this way, if we fix m, we can estimate for n > 2m,

|M 6=n (p)[uv ]| ≥
m∑
k=1

m∑
s=1

∑
ξ∈3k

|Mn−s−k(pξ)|+ |Mn−s−k(p′ξ)|

∼
m∑
k=1

m∑
s=1

∑
ξ∈3k

2|Mn(p)|
9s+k

∼ 2|Mn(p)|

(
m∑
k=1

m∑
s=1

3k

9s+k

)

∼ 2|Mn(p)|

(
m∑
k=1

1

3k

)(
m∑
s=1

1

9s

)
.

Since this happens for every m, and
∑∞

1 3−k = 2−1 and
∑∞

1 9−s = 8−1, we get
that |M 6=n (p)[uv ]| & 1

8 |Mn(p)| as desired. �
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Proposition 6.3.

J(n) ∼ 3

8
√

2πn
· 9n

Proof. To each type τ in n<ω we associate a 2 × n matrix (aτij) with entries in
{−1, 0, 1}. This time it is convenient to enumerate the rows of the matrix by the
indices i = 0, 1, and the columns by the indices j = 0, . . . , n − 1. The matrix is
defined as follows:

• aτij = 0 if j 6∈ τ i,
• aτij = 1 if j ∈ τ i and the immediate predecessor of (j, i) in / is of the form

(k, i),
• aτij = −1 if j ∈ τ i and the immediate predecessor of (j, i) in / is of the form

(k, 1− i), or there is no immediate predecessor.

It is a simple exercise to check that

{(aτij) : τ is a comb type in n<ω} = M 6=n (0)[−1
−1] ∪M 6=n (−1)[−1

−1].

The cardinality of the set of chain types in n<ω is 2n − 1, so

J(n) = |M 6=n (0)[−1
−1]|+ |M 6=n (−1)[−1

−1]|+ 2n − 1,

and using Lemma 6.2 the proof is over. �

7. Final comments

The results stated in this paper are very far from giving an understanding of the
family B(Γ). One may wonder if it is possible to find an internal characterization
of those families of subsets of n that are of the form B(Γ) for some analytic gap
Γ. Even basic questions like the following are unknown to us: Are there always
sets in B(Γ) of any possible cardinality? How many at least? On the other hand,
what we do in this paper is to look at several families of subsequences of a given
sequence and studying how they can be separated. This seems a basic situation
that could arise in different areas of mathematics. The examples provided in ω∗

and with `p-sequences in Banach spaces illustrate this. It is natural to expect that
other applications may appear.
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