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A Little Ado about Rectangles
Antonio Avilés and Grzegorz Plebanek

Abstract. We discuss a problem of Ulam: whether every subset of the plane can be obtained
by making countably many set operations with generalized rectangles.

1. ULAM’S PROBLEM In the 1930s Stanisław Ulam asked a question, which was
recorded in The Scottish Book [15] as Problem 99; it may be stated as follows:

Problem 1. Does every subset of R× R belong to the σ-algebra generated by the sets
of the form A×B where A,B are arbitrary subsets of R?

We call a rectangle any set in the plane that can be written asA×B. The σ-algebra
generated by the sets of the form (a, b)× (c, d) is the Borel σ-algebra of R2, so Ulam’s
question is really about arbitrary rectangles. Consider the following example.

Example 2. If D ⊆ R is a subset and f : D → R is any function, then its graph
Gf = {(x, f(x)) : x ∈ D} can be written as

Gf =
∞⋂

n=1

⋃
q∈Q

f−1
(

[q − 1/n, q]
)
× [q − 1/n, q] ,

since if (x, y) belongs to the right-hand side, then we conclude that |f(x)− y| ≤ 1/n
for every n and hence y = f(x). Therefore, the graph of every function belongs to the
σ-algebra generated by rectangles.

It turned out that the answer to Problem 1 is neither positive nor negative; it cannot
be settled within the usual axioms of set theory. In other words, it is impossible to
produce either a proof that the answer is positive or a proof that it is negative. In this
note, we explain the relation of this question to other better known axioms, and also to
a problem in functional analysis. All the results presented are well known and our aim
is only to present them in an attractive way at an elementary level.

2. SOME SET THEORY We say that the cardinality of a set X is smaller than or
equal to the cardinality of a set Y , and we write |X| ≤ |Y |, if there exists an injective
function f : X −→ Y . The Cantor–Bernstein theorem asserts that if |X| ≤ |Y | and
|Y | ≤ |X|, then there is a bijection between X and Y . In such a case we say that X
and Y have the same cardinality and we write |Y | = |X|. A consequence of the axiom
of choice is that for every X and Y , either |X| ≤ |Y | or |Y | ≤ |X|. The cardinality
of R is denoted by c and called the continuum.

A linear order on a setX is called a well order if every nonempty subset ofX has a
least element. The typical example is the order of the natural numbers. A well order on
an uncountable subset is harder to imagine, but a consequence of the axiom of choice
is the following:

Theorem 1 (Principle of well order). For every set X there exists a well order rela-
tion ≺ on X .

Given a set X , x ∈ X , and a well order ≺ on X , let I≺(x) = {t ∈ X : t ≺ x} be
the initial segment of elements that are smaller than x.
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Theorem 2. For every set X there exists a well order relation on X such that
|I≺(x)| < |X| for all x ∈ X .

Proof. Take any well order ≺ of X . If ≺ does not have the required property then
take y to be the minimum of all x such that |I≺(x)| ≥ |X|. Then there is a injective
function f : X −→ I≺(y) and we can define a new order ≺1 on X declaring that
x ≺1 x

′ if and only if f(x) ≺ f(x′). Then ≺1 is as desired.

3. A POSITIVE ANSWER: THE CONTINUUM HYPOTHESIS The most fa-
mous statement in mathematics that cannot be proved or disproved from the usual
axioms is the following:

Axiom 3 (The Continuum Hypothesis). For every infinite set A ⊂ R, either |A| =
|N| or |A| = c.

The Continuum Hypothesis (CH for short) was stated by Cantor, and constituted the
first problem on Hilbert’s famous list. Gödel [8] showed that it cannot be disproved and
Cohen [5, 6] that it cannot be proved; see also [9] for the history of Hilbert’s list.

We are going to show now that CH implies that Ulam’s problem has a positive
solution. This was first shown by Kunen [13] and Rao [16]. Take an economical well
order ≺ of R as in Theorem 2 and note that under CH every initial segment I≺(x) is
countable. Consider the set D in the plane, where

D = {(x, y) ∈ R× R : y ≺ x}.

If S is any subset of R× R and x, y ∈ R, then the vertical section Sx and horizon-
thal section Sy are defined as Sx = {y ∈ R : (x, y) ∈ S}, Sy = {x ∈ R : (x, y) ∈
S}.

Take any set S ⊆ D. Then Sx ⊆ I≺(x), so Sx is countable for every x. There-
fore, if we write A = {x ∈ R : Sx 6= ∅}, then we can enumerate Sx by a sequence
y1(x), y2(x), . . .. (Note that if Sx is finite then we can repeat its elements.) In such a
way we have defined functions yn : A −→ R and S is the union of their graphs. The
graph of every function yn can be written as in Example 2, and we conclude that S
can be expressed in terms of rectangles using countably many operations.

This is half of the proof but the other half is symmetric: Let S be any subset of
R × R. Consider the set C above the diagonal, that is, C = {(x, y) : x ≺ y}. A
similar argument as above interchanging the roles of the two variables shows that
S ∩ C belongs to the σ-algebra generated by rectangles. Finally, if ∆ = {(x, y) ∈
R2 : x = y}, then S ∩∆ is the graph of a function, so we get that S = (S ∩D) ∪
(S ∩∆) ∪ (S ∩ C) belongs to the σ-algebra generated by rectangles.

Remark 4. It is possible to obtain the same conclusion from a weaker axiom known
as Martin’s Axiom, or even from p = c. See [13] and 21G in [7].

4. A NEGATIVE ANSWER: EXISTENCE OF MEASURES The first time that
we usually encounter σ-algebras is when we learn that Lebesgue measure λ does
not measure all subsets of R but only sets from a certain σ-algebra, the σ-algebra
of Lebesgue-measurable sets. Can we do better?

Problem 5. Is it possible to define a measure λ̄ on all subsets of R that coincides with
Lebesgue measure on the measurable sets?

This question was posed by Banach [2] after Vitali [20] had shown that no such λ̄
exists that is invariant under translations. Banach and Kuratowski [2] showed that the
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Continuum Hypothesis implies that the answer to Problem 5 is negative. Therefore,
it is impossible to prove that the answer to Problem 5 is positive. On the other hand
[11, 17, 19]:

it is impossible to prove that it is impossible to prove1 that the answer to Problem 5
is negative.

Experts agree on the unprovable belief that the answer to Problem 5 cannot be
proven false. Thus, the following assertion is now seen as a legitimate axiom:2

Axiom 6 (Full Measure Extension Axiom). There exists a measure λ̄ defined on all
subsets of R that coincides with Lebesgue measure on the measurable sets.

Let us check that this axiom implies a negative answer to Ulam’s question. Let ≺
be a well order on R as in Theorem 1. If every initial segment I≺(x) of this well
order has measure zero then set X = R. Otherwise, take the first element x such that
λ(I≺(x)) > 0 and set X = I≺(x). In either case, we then have a set X of positive
measure with all its initial segments having measure zero. It’s time to move to the
plane — here we have the product measure λ⊗ λwhich is defined on the σ-algebraR
generated by all rectangles. Recall that the product measure satisfies the formula λ⊗
λ(A×B) = λ(A) · λ(B) for all rectangles and, consequently, we have the following
Fubini formula

λ⊗ λ(S) =

∫ +∞

−∞
λ(Sx) dλ(x) =

∫ +∞

−∞
λ(Sy) dλ(y),

for all S from R. Take D = {(x, y) ∈ X2 : y ≺ x} and note that λ(Dx) = 0 for
every vertical section since Dx is a initial segment of X and hence is of measure
zero. On the other hand, λ(Dy) = λ(X \ I≺(y)) = λ(X) > 0 for every horizontal
section of D and every y ∈ X . Therefore, if we could calculate the measure of D at
all, we would get λ⊗ λ(D) = 0 and λ⊗ λ(D) = λ(X) > 0 at the same time! So
the conclusion is that D is not in the σ-algebra generated by rectangles.

Remark 7. The measure-theoretic argument presented here is due to Kunen [13]; see
also Rao [16]. In fact, for this argument one does not really need the full strength of
Axiom 6. The following weaker version would be enough:

Axiom 8 (Partial Measure Extension Axiom). For every countable familyA of sub-
sets of R, there is an extension of Lebesgue measure to a measure λ on a σ-algebra
containing A.

The advantage of this axiom is that one can actually prove that neither it nor its
negation can be proven from the usual axioms of set theory, a result due to Carlson [4,
10]. So from this, we can conclude that it is impossible to prove that Ulam’s question
has a positive answer.

5. FUNCTIONAL ANALYSIS Ulam’s problem is related to some problems in this
field [1, 12, 14, 18]. We will focus on one of them. Consider the Banach space `∞ of
all bounded sequences of real numbers, with the norm ‖(xn)n∈N‖ = supn |xn|, and
its subspace c0 consisting of all sequences in `∞ that converge to 0. Recall that the

1This repetition is not a typo.
2In fact, the legitimacy of the usual axioms of set theory (the so-called ZFC system) is also based on the

consensus of the community, because Gödel’s second incompleteness theorem implies that we cannot prove
that those axioms are not contradictory.
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quotient space X/Y of a Banach space by its closed subspace Y is the quotient lin-
ear space endowed with the norm ‖x+ Y ‖ = inf{‖x+ y‖ : y ∈ Y }. By a classical
result of Parovichenko in topology, under CH the quotient space `∞/c0 serves as a
universal space for all Banach spaces X of cardinality c:

Theorem 3. Under the Continuum Hypothesis, every Banach space X such that
|X| = c is isometric to a subspace of the quotient space `∞/c0.

We will show, through a simplified version of what was done in [18] and subse-
quently in [12], that the statement above fails if Ulam’s question has a negative answer.
First, let us introduce some notation.

Suppose that we have a set E ⊂ R2 that does not belong to the σ-algebra gener-
ated by rectangles. We have E = {(a, b) ∈ E : a < b} ∪ {(a, b) ∈ E : a = b} ∪
{(a, b) ∈ E : a > b}. One of those three sets does not belong to the rectangle σ-
algebra. It cannot be the central one, since it is the graph of a function. So it has to be
either the first or the last. By symmetry, we can suppose that it is the first set. So, we
suppose that in fact E ⊂ {(a, b) ∈ R2 : a < b}.

Lemma 9. There exists a Banach spaceXE of cardinality c and vectors {ea : a ∈ R}
of XE such that for all a < b:

1. ‖ea + eb‖ = 2 if (a, b) ∈ E;
2. ‖ea + eb‖ = 1 if (a, b) 6∈ E.

Proof. Given a bounded function f : R −→ R, we define its norm by the formula

‖f‖ = max

(
sup
a
|f(a)|, sup

(a,b)∈E
|f(a) + f(b)|

)
.

It is easy to see that if Y is the family of all bounded functions, then (Y, ‖ · ‖) is a
Banach space. For each a ∈ R, let ea ∈ Y be the characteristic function of the point
a; that is, ea(a) = 1 and ea(b) = 0 if b 6= a. Note that the vectors ea satisfy the
required conditions. To finish the proof we define XE to be the closed subspace of
Y generated by all the vectors ea. Then |XE| = c because XE is the set of all limits
of sequences of rational linear combinations of the vectors ea (the cardinality of the
space Y is bigger than c).

Suppose that we have an isometry T : XE −→ `∞/c0. For every a ∈ R, let
S(a) = (S(a)n)n ∈ `∞ be any representative of T (ea) in the quotient space `∞/c0.
The point here is that we can calculate the norm of T (ea) in l∞/c0 by the formula
lim supn |S(a)n|.

In this way, we have defined a function S : R −→ `∞. We shall consider the sets

An = {a ∈ R : S(a)n > 2/3}, Bn = {a ∈ R : S(a)n < −2/3},

and prove that

E =
⋂
m∈N

⋃
n≥m

An ×An ∪
⋂
m∈N

⋃
n≥m

Bn ×Bn, (1)

and this will be a contradiction with our assumption that E is not in the σ-algebra
generated by rectangles.

4 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121



Mathematical Assoc. of America American Mathematical Monthly 121:1 August 23, 2016 2:35 p.m. rectangles˙final.tex page 5

Take a < b such that (a, b) ∈ E. Then ‖ea + eb‖ = 2 and ‖T (ea + eb)‖ = 2 (be-
cause T is an isometry). It follows that lim supn |S(a)n + S(b)n| = 2. Consider the
case when lim supn(S(a)n + S(b)n) = 2. Then S(a)n > 2/3 and S(b)n > 2/3 for
infinitely many n (because |Sn(a)|, |Sn(b)| ≤ 7/6 for almost all n). Hence (a, b) ∈
An × An happens infinitely often which means that (a, b) belongs to the first set of
the right-hand side of (1). The other case, when lim supn(S(a)n + S(b)n) = −2,
follows by a symmetric argument.

To prove the reverse inclusion, take a < b such that (a, b) ∈
⋂

m∈N
⋃

n≥mAn ×
An. Then a, b ∈ An for infinitely many n, so lim supn |S(a)n + S(b)n| > 1. We
conclude that ‖ea + eb‖ > 1 and therefore (a, b) ∈ E.

Remark 10. With extra effort, and considering Ulam’s problem in Rn, instead of only
on R2, one can even obtain Banach spaces of cardinality c that are not isomorphic
to subspaces of `∞/c0 [12, 18]. With completely different techniques, other such ex-
amples were found in [3]. Some connections of Ulam’s problem to the existence of
universal Banach spaces were already investigated by Mauldin [14].

6. FINAL REMARKS Ulam’s problem can be generalized by asking for which sets
X do all subsets of X ×X belong to the σ-algebra generated by rectangles. Such a
property is invariant under arbitrary bijections, so it only depends on the cardinality
of X . Such cardinalities are called Kunen cardinals in [1], following the study in [13].
It is not difficult to see that cardinals larger than c cannot be Kunen — the reader
may wish to prove that if the diagonal in X ×X is in the rectangle σ-algebra, then
|X| ≤ c. The countable cardinal is obviously Kunen, so Ulam’s question is really
about cardinals between the countable and the continuum. It is not difficult to verify
that the proof given in Section 3 shows, without using CH or any additional axiom,
that there exists an uncountable set X such that all subsets of X ×X belong to the
σ-algebra generated by rectangles (takeX the first uncountable initial segment of R in
some well order). In set-theoretic language, that is to say that ω1 is a Kunen cardinal.
For more information, see [1, 12, 13, 18].
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