Universidad de Murcia

Departamento Matemáticas

Funciones de una variable real II Fórmula de Taylor y aplicaciones

B. Cascales • J. M. Mira • L. Oncina

Departamento de Matemáticas Universidad de Murcia

Grado en Matemáticas • 2012-2013

Objetivos

- Estudiar la aproximación de funciones mediante polinomios: fórmula de Taylor.
- Presentar algunas aplicaciones de la fórmula de Taylor: cálculo de los valores de una función, cálculo de límites, problemas de optimización, desigualdades...
- Estudiar la noción de convexidad, su relación con la derivabilidad y algunas aplicaciones.
- Saber utilizar Maxima en relación con estas temáticas.

Para conocer el valor de un polinomio en un punto

Sea $P_n(x)$ un polinomio de grado n. ¿Qué necesito para calcular el valor en un punto?

1 La fórmula, $P_n(x) = a_0 + a_1x + \cdots + a_{n-1}x^{n-1} + a_nx^n$, papel y lápiz.

Sea $P_n(x)$ un polinomio de grado n. ¿Qué necesito para calcular el valor en un punto?

- **1** La fórmula, $P_n(x) = a_0 + a_1x + \cdots + a_{n-1}x^{n-1} + a_nx^n$, papel y lápiz.
- ② Alternativamente, me basta con saber cuanto vale el polinomio y sus n derivadas en un punto fijo x_0 , cualquiera que sea éste.

$$P_n(x) = P_n(x_0) + \frac{P_n(x_0)^{(1)}}{1!}(x-x_0) + \cdots + \frac{P_n(x_0)^{(n)}}{n!}(x-x_0)^n,$$

papel y lápiz. Demostración: OCW, Capítulo 4, pág. 153.

Para conocer el valor de un polinomio en un punto

Sea $P_n(x)$ un polinomio de grado n. ¿Qué necesito para calcular el valor en un punto?

- **1** La fórmula, $P_n(x) = a_0 + a_1x + \cdots + a_{n-1}x^{n-1} + a_nx^n$, papel y lápiz.
- ② Alternativamente, me basta con saber cuanto vale el polinomio y sus n derivadas en un punto fijo x_0 , cualquiera que sea éste.

$$P_n(x) = P_n(x_0) + \frac{P_n(x_0)^{(1)}}{1!}(x-x_0) + \cdots + \frac{P_n(x_0)^{(n)}}{n!}(x-x_0)^n,$$

papel y lápiz. Demostración: OCW, Capítulo 4, pág. 153.

Esta segunda forma de escribir el polinomio se llama *Fórmula de Taylor*.

Para conocer el valor de un polinomio en un punto

Sea $P_n(x)$ un polinomio de grado n. ¿Qué necesito para calcular el valor en un punto?

- **1** La fórmula, $P_n(x) = a_0 + a_1x + \cdots + a_{n-1}x^{n-1} + a_nx^n$, papel y lápiz.
- Alternativamente, me basta con saber cuanto vale el polinomio y sus n derivadas en un punto fijo x_0 , cualquiera que sea éste.

$$P_n(x) = P_n(x_0) + \frac{P_n(x_0)^{(1)}}{1!}(x-x_0) + \cdots + \frac{P_n(x_0)^{(n)}}{n!}(x-x_0)^n,$$

papel y lápiz. Demostración: OCW, Capítulo 4, pág. 153.

Esta segunda forma de escribir el polinomio se llama Fórmula de Taylor.

[derivadas10.wxmx] Maxima ayuda en las cuentas

¿Y si lo hacemos para una función «muy» derivable?

Si tenemos una función f «muy» derivable podemos hacer algo similar, generando un polinomio: el polinomio de Taylor de f en x_0 .

$$P_n(f,x;x_0):=f(x_0)+\frac{f(x_0)^{(1)}}{1!}(x-x_0)+\cdots+\frac{f(x_0)^{(n)}}{n!}(x-x_0)^n$$

¿Cómo es ese polinomio?

¿Y si lo hacemos para una función «muy» derivable?

Si tenemos una función f «muy» derivable podemos hacer algo similar, generando un polinomio: el polinomio de Taylor de f en x_0 .

$$P_n(f,x;x_0):=f(x_0)+\frac{f(x_0)^{(1)}}{1!}(x-x_0)+\cdots+\frac{f(x_0)^{(n)}}{n!}(x-x_0)^n$$

¿Cómo es ese polinomio?

- 🍒 [derivadas11.wxmx] Significado del polinomio de Taylor
 - Dibujamos el seno y el polinomio P_1 para el seno cerca de 0.
 - Modificamos el intervalo. Incrementamos el grado.
 - Usamos otras funciones y el comando taylor para seguir experimentando.

El resto en la fórmula de Taylor

El coseno y las otras funciones no son polinomios. Se comete un error. ¿Cómo cuantificarlo?

Teorema (Fórmula de Taylor)

Sea $f:(a,b) \longrightarrow \mathbb{R}$ n veces derivable en (a,b) y sean $x_0, x \in (a,b)$. Definimos $R_{n-1}(x;x_0)$, que llamamos resto de orden n-1 de f en x_0

mediante la fórmula

$$R_{n-1}(x; x_0) := f(x) - P_{n-1}(x; x_0) \Leftrightarrow f(x) = P_{n-1}(x) + R_{n-1}(x)$$

Entonces para cada $k \in \mathbb{N}, 1 \le k \le n$, existe c estrictamente contenido entre x y x_0 tal que

$$R_{n-1}(x,x_0) = \frac{(x-x_0)^k(x-c)^{n-k}}{(n-1)!k} f^{(n)}(c).$$

Esta forma de expresar el resto se llama la forma de Schömilch. Como casos particulares tomando k=n y k=1 se obtienen, respectivamente, los siguientes:

1 Resto de Lagrange: existe $c \in (a, b)$ tal que

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \cdots + \frac{f^{(n)}(c)}{n!}(x - x_0)^n.$$

2 Resto de Cauchy: existe $c \in (a, b)$ tal que

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x-x_0) + \cdots + \frac{f^{(n)}(c)}{(n-1)!}(x-x_0)(x-c)^{n-1}.$$

Demostración: OCW Teorema 4.3.11 pág. 164

Fórmula de Taylor para funciones «elementales»

$$e^{x} = 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \dots + \frac{1}{(n-1)!}x^{n-1} + \frac{e^{\theta x}}{n!}x^{n}$$

$$\operatorname{sen} x = x - \frac{1}{3!}x^{3} + \frac{1}{5!}x^{5} - \frac{1}{7!}x^{7} + \dots + \frac{\operatorname{sen}(\theta x + n\pi/2)}{n!}x^{n}$$

$$\cos x = 1 - \frac{1}{2!}x^{2} + \frac{1}{4!}x^{4} - \frac{1}{6!}x^{6} + \dots + \frac{\cos(\theta x + n\pi/2)}{n!}x^{n}$$

$$\log(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots + (-1)^{n-1}\frac{1}{n(1+\theta x)^{n}}x^{n}$$

$$(1+x)^{\alpha} = 1 + {\alpha \choose 1}x + {\alpha \choose 2}x^{2} + {\alpha \choose 3}x^{3} + \dots + {\alpha \choose n}\frac{(1+\theta x)^{\alpha}}{(1+\theta x)^{n}}x^{n}.$$

Resto de Landau y desarrollos limitados

Forma de Landau para el resto y desarrollos limitados.

Corolario (Resto de Landau)

Si
$$f:(a,b)\longrightarrow \mathbb{R}$$
 de clase $\mathscr{C}^{n+1}(a,b)$ y $x,x_0\in (a,b)$, entonces $f(x)=P_n(f,x;x_0)+o(|x-x_0|^n)$, donde P_n es el polinomio de Taylor de grado n de f en x_0 .

Resto de Landau y desarrollos limitados

Forma de Landau para el resto y desarrollos limitados.

Corolario (Resto de Landau)

Si
$$f:(a,b)\longrightarrow \mathbb{R}$$
 de clase $\mathscr{C}^{n+1}(a,b)$ y $x,x_0\in (a,b)$, entonces $f(x)=P_n(f,x;x_0)+o(|x-x_0|^n)$, donde P_n es el polinomio de Taylor de grado n de f en x_0 .

$$f(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n + o(|x - x_0|^n)$$
 es el desarrollo limitado de orden n para f en el punto x_0 .

Resto de Landau y desarrollos limitados

Forma de Landau para el resto y desarrollos limitados.

Corolario (Resto de Landau)

Si
$$f:(a,b)\longrightarrow \mathbb{R}$$
 de clase $\mathscr{C}^{n+1}(a,b)$ y $x,x_0\in (a,b)$, entonces $f(x)=P_n(f,x;x_0)+o(|x-x_0|^n)$, donde P_n es el polinomio de Taylor de grado n de f en x_0 .

$$f(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n + o(|x - x_0|^n)$$

es el desarrollo limitado de orden n para f en el punto x_0 .

Proposición (Unicidad del desarrollo limitado)

El desarrollo limitado de orden n en un punto es único.

Demostración: OCW Proposición 4.3.6 pág. 155.

Operaciones con desarrollos limitados

Sean f y g funciones de clase \mathscr{C}^n definidas en sendos entornos de los puntos x_0 e y_0 y derivables n veces en dichos puntos.

- Si y₀ = x₀ entonces el desarrollo limitado de orden n de f + g en x₀ se obtiene sumando los desarrollos limitados de f y g, agrupando los términos convenientemente tanto en la parte polinómica de grado no superior a n como en la parte del resto de Landau.
- Si $y_0 = x_0$ entonces el desarrollo limitado de orden n de $f \cdot g$ en x_0 se obtiene multiplicando los desarrollos limitados de orden n de f y g, agrupando los términos convenientemente...
- Si $y_0 = x_0$ y $g(x_0) \neq 0$ entonces el desarrollo limitado de orden n de f/g en x_0 se obtiene dividiendo los desarrollos limitados de f y g, agrupando los términos convenientemente...

Operaciones con desarrollos limitados

- El desarrollo limitado de orden n-1 de f' se obtiene derivando formalmente el desarrollo limitado de orden n de f y bajando el orden del resto de Landau en una unidad.
- Si f(x₀) = y₀ y la función g ∘ f está definida en un entorno de x₀ y admite un desarrollo limitado en x₀ entonces tal desarrollo se obtiene sustituyendo formalmente el desarrollo de f en el de g, y agrupando los términos convenientemente tanto en la parte polinómica de grado no superior a n como en la parte del resto de Landau.

[derivadas19.wxmx] Un poco de experimentación para entender como el desarrollo limitado de una función, obtenida operando con otras, está relacionado con los desarrollos limitados de aquellas.

Aplicaciones de la fórmula de Taylor

 Calcular el valor aproximado de una función en un punto usando polinomios de Taylor con resto.

Ejemplos: Valores aproximados

de e, de $\log 1.5$, de $\log 5$ y de $\sin 31^{\rm o}$ con error $< 10^{-3}$

- [derivadas13.wxmx]
- Que Cálculo de límites mediante desarrollos limitados.

Ejemplos: Límites

$$\lim_{x \to 0} \frac{x - \tan x}{x - \sin x} \quad \lim_{x \to 0} \frac{x - \tan x}{(1 + x)^x - 1 - \sin^2 x}$$

- [derivadas12.wxmx] Agilizar los cálculos.
- **§** Funciones analíticas. También hay funciones no analíticas: $f(x) := \exp(-1/x^2)$ si $x \ne 0$ y f(0) = 0.
 - [derivadas16.wxmx]

Aplicaciones de la fórmula de Taylor

O Determinación de máximos y mínimos.

Corolario (Condición suficiente de extremo)

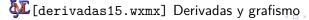
Sean $f:(a,b)\subset\mathbb{R}\longrightarrow\mathbb{R}$ n-1 veces derivable en (a,b) y $x_0\in(a,b)$. Sea $f'(x_0)=f^{(2)}(x_0)=\cdots=f^{(n-1)}(x_0)=0$ y que existe $f^{(n)}(x_0)\neq 0$.

- Si n es par: en x_0 hay un máximo relativo si $f^{(n)}(x_0) < 0$ o un mínimo relativo si $f^{(n)}(x_0) > 0$.
- Si n es impar: no hay extremo relativo en x_0 .

Demostración: OCW Corolario 4.3.9 pág. 160

Ejemplo: Optimización

Extremos de $f: \mathbb{R} \longrightarrow \mathbb{R}$ dada por $f(x) = e^x + e^{-x} + 2\cos x$.



Aplicaciones de la fórmula de Taylor

O Demostración de desigualdades

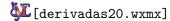
Ejemplo: Desigualdades

Pruebe que
$$\frac{x}{\operatorname{sen} x} < \frac{\tan x}{x}$$
 si $x \in (0, \pi/2)$

[derivadas14.wxmx] La designaldad es equivalente a probar que $f(x) := \tan x \sin x - x^2 > 0$ si $x \in (0, \pi/2)$. El grafismo puede ayudar a visualizar la propiedad: con los teoremas se obtiene la prueba.

Ejemplo: Desigualdades

Pruebe que $0 \le \tan x - \sin x \le 3x^3$ si $x \in [0, \pi/4]$.



Definición (Convexidad global)

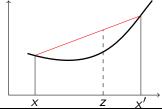
Sea $f: I \longrightarrow \mathbb{R}$ una función definida en un intervalo I.

1 I se dice convexa en I si para todo $x, x' \in I$ se verifica

$$f((1-t)x + tx') \le (1-t)f(x) + tf(x').$$

② f se dice cóncava en I si para todo $x, x' \in I$ se verifica

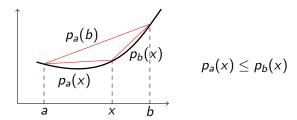
$$f((1-t)x + tx') \ge (1-t)f(x) + tf(x').$$



$$z = (1 - t)x + tx'$$

Las siguientes funciones, definidas en \mathbb{R} , son convexas:

- f(x) = ax + b para todo a, b.
- $f(x) = x^2$.
- **3** f(x) = |x|.
 - Otra formulación equivalente de la convexidad



Las funciones convexas son continuas en los puntos del interior

Proposición (Otra formulación de la convexidad global)

Sea $f: I \longrightarrow \mathbb{R}$ definida en el intervalo abierto I. Las siguientes afirmaciones son equivalentes:

- f es convexa.
- 2 Para cada colección finita x_1, x_2, \ldots, x_n de puntos en I, cualesquiera que sean los reales t_1, t_2, \ldots, t_n tales que

$$t_i \geq 0$$
 $\sum_{i=1}^n t_i = 1$

se verifica

$$f(\sum_{i=1}^n t_i x_i) \leq \sum_{i=1}^n t_1 f(x_i)$$

Proposición (Convexidad global para funciones derivables)

Sea $f: I \longrightarrow \mathbb{R}$ una función derivable en el intervalo abierto I. Las siguientes afirmaciones son equivalentes:

- f es convexa.
- f' es una función creciente en I.
- Para cada punto de I la gráfica de la función f está situada por encima de la recta tangente correspondiente a dicho punto.

Además, si f es dos veces derivable en I, se verifica que f es convexa si y sólo si $f'' \ge 0$ en I.

La demostración en OCW Corolario 4.4.5

Inspirado en esta proposición se introduce el concepto de convexidad local para funciones derivables.

Definición (Convexidad local)

Sea $f: I \longrightarrow \mathbb{R}$ una función definida en el intervalo I derivable en $x_0 \in I$.

- ① Diremos que f es convexa en x_0 si existe $\delta > 0$ tal que si $x \in B(x_0, \delta) \cap I$ entonces se verifica que $f(x) \geq f(x_0) + f'(x_0)(x x_0)$.
- ② Diremos que f es cóncava en x_0 si existe $\delta > 0$ tal que si $x \in B(x_0, \delta) \cap I$ entonces se verifica que $f(x) \leq f(x_0) + f'(x_0)(x x_0)$.
- ① Diremos que x_0 es un punto de inflexión si existe $\delta > 0$ tal que si $x \in B(x_0, \delta) \cap I$ entonces se verifica que $f(x) < f(x_0) + f'(x_0)(x x_0)$ para $x < x_0$ y $f(x) > f(x_0) + f'(x_0)(x x_0)$ para $x > x_0$.

Proposición (Convexidad local y derivadas)

Sea $f: I \longrightarrow \mathbb{R}$ donde I es un intervalo abierto. Sea $x_0 \in I$ y supongamos que f es derivable en un entorno de x_0 y que existe $f''(x_0)$.

- Si $f''(x_0) > 0$ entonces f es convexa en x_0 .
- ② Si $f''(x_0) < 0$ entonces f es cóncava en x_0 .
- 3 Si x_0 es un punto de inflexión entonces $f''(x_0) = 0$.

Demostración en OCW Proposición 4.4.7. Esta referencia y el Corolario 4.3.9 sirve también para la demostración del corolario que viene a continuación.

Fórmula de Taylor y comportamiento local

Corolario (Condición de extremo revisada)

Sean $f:(a,b)\subset\mathbb{R}\longrightarrow\mathbb{R}$ y $x_0\in(a,b)$. Supongamos que f es n veces derivable en (a,b) siendo

$$f'(x_0) = f^{(2)}(x_0) = \dots = f^{(n-1)}(x_0) = 0$$
 y que existe $f^{(n)}(x_0) \neq 0$.

- Si n es par y
 - $f^{(n)}(x_0) < 0$ entonces f presenta en x_0 un máximo relativo y f es cóncava en un entorno de x_0
 - si $f^{(n)}(x_0) > 0$ entonces f presenta en x_0 un mínimo relativo y f es convexa en un entorno de x_0
- ② Si n es impar, entonces f no tiene extremo relativo en x_0 y caso de ser $n \ge 3$ en x_0 hay un punto de inflexión.

Aplicaciones de la convexidad

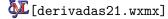
Por su propia definición, es natural que la convexidad sea útil en la demostración de desigualdades y en optimización.

Ejemplo: Desigualdades

Demuestre que se verifican

$$x \log 2 \ge \log(1+x^2)$$
 si $x \in [0,1]$ (1)

$$x \log 2 \le \log(1+x^2)$$
 si $x \in [1,4]$ (2)



Ejemplo: Optimización y desigualdades

Sea la función $f:(0,1)\longrightarrow \mathbb{R}$ definida por $f(x)=(1-x)^{(1-x)}x^x$. Estudie y dibuje la función. Determine sus extremos. Demuestre que $(1-x)^{(1-x)}x^x < (1-x)^2 + x^2$.

[derivadas22.wxmx]

Ejemplo: Convexidad y optimización

- Pruebe que la función $f(x) = x \log x$ es estrictamente convexa en $(0, \infty)$.
- ② Si x, y, a, b son reales positivos pruebe que $x \log \frac{x}{a} + y \log \frac{y}{b} \ge (x + y) \log \frac{x + y}{a + b}$ siendo la desigualdad estricta, salvo que $\frac{x}{a} = \frac{y}{b}$.
- ① Determine el valor mínimo de $x_1^{x_1} x_2^{x_2} \dots x_n^{x_n}$ bajo la condición $x_1 + x_2 + \dots + x_n = S$, siendo S > 0 una constante dada.

Convexidad global Convexidad local Aplicaciones de la convexidad

J. M. Mira; B. Cascales y S. Sánchez-Pedreño http://ocw.um.es/ciencias/analisis-matematico-i-2009