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ABSTRACT. A topological spacdT, ) is said to be fragmented by a metric
d on T if each non-empty subset @f has non-empty relatively open subsets
of arbitrarily smalld-diameter. The basic theorem of the present paper is the
following. Let (M, p) be a metric space withbounded and leD be an arbitrary
index set. Then for a compact subgef the product spac/” the following
four conditions are equivalent:

(i) K isfragmented bylp, where, for eacl$ C D,

ds(z,y) = sup{p(x(t),y(t)) : t € S}
(i) For each countable subsdtof D, (K,d.) is separable;
(iii) The space(K,~(D)) is Lindelbf, wherev(D)is the topology of uniform
convergence on the family of countable subset®pf

(iv) (K,~(D))Nis Lindelf.
The rest of the paper is devoted to applications of the basic theorem. Here are
some of them. A compact Hausdorff spakeis Radon-Nikogfm compact if,
and only if, there is a bounded subdetof C'(K') separating the points ot
such that(K,v(D)) is Lindebf. If X is a Banach space and is a weak-
compact subset of the dual* which is weakly Lindebf, then (H, weak™ is

Lindeldf. Furthermore, under the same conditirqunar(H)H ! andcod”” are
weakly Lindebf . The last conclusion answers a question by Talagrand. Finally
we apply our basic theorem to certain classes of Banach spaces including weakly
compactly generated ones and the duals of Asplund spaces.

1. INTRODUCTION

The starting point of the present investigation is a theorem by one of us in [25],
namely, a Banach spacdgis an Asplund space if and only if its du&l* is Lindelof
with respect to the topology of uniform convergence on bounded countable subsets
of X, the y-topology. In the present paper, we show that this result is a special
case of a much more general theorem on function spaces and that it has interesting
consequences including a solution to a question by Talagrand.

This paper is organized as follows. After the introduction of Section 1, the basic
theorem and its important corollary are stated and proved in Section 2.

In Section 3, a new characterization of Radon-Nikmdcompact spaces by the
Lindelof property relative to the-topology is derived from the basic theorem. It
will be shown that Meyer's characterization of compact scattered spaces [23] by
the Lindebf property with respect thé&/s-topology is also a consequence of the
basic theorem.
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In Section 4, we use the Lind#lproperty relative to the-topology to study
weakly Lindebf property of sets in dual Banach spaces. We show, for instance,
that the weak-closed convex hull of a wedkcompact subset which is weakly
Lindelof in a dual Banach space is again weakly LiridelThis solves a problem
of Talagrand in [32].

The theme of Section 4 is further expanded in Section 6 where it is proved,
in particular, that the norm closed linear span of a Weakmpact subset in a dual
Banach space that is weakly Lindéls a WLD Banach space, as defined in Section
6. It should be noted here that each WLD Banach space is weakly binaiedl
more. Our approach depends on the existence of “projectional generators” shown
in Section 5. Our results on projectional generators also give a unified approach to
the existence of projectional resolutions of the identity for both weakly compactly
generated Banach spaces and dual of Asplund spaces.

In Section 7, we present several examples that illustrate the results of Sections 5
and 6

Our notation and terminology are standard and we take the books by Engelking
and Kelley, [10] and [20], as our references for topology. Compact spaces are usu-
ally refereed to by letter&’, H, ...and our normed spacés, Y, ...are assumed
to be real. Given a topological spaZeve letC(Z) (resp.Cy(Z)) denote the space
of real continuous (resp. real continuous uniformly bounded) functions defined on
Z. Given a Banach spack, By denotes its closed unit ball anki* denotes its
dual space. Whelf' is a subset ofX*, we write o(X, F') to denote the locally
convex topology (maybe non-Hausdorff) an of pointwise convergence oR;

o(X, X*) is the weak topology oK ando(X*, X) is the weak topology of X *.
Cy»(Z) will be consider as Banach space endowed with the supremum norm.

2. FRAGMENTABILITY AND THE LINDELOF PROPERTY FORy(D)

We first gather definitions of the terms and notation necessary for stating the
main theorem of the present paper, Theorem 2.1. Recall that a topological space
is said to beLindelof if each open cover of the space admits a countable subcover.
The following definition is due to Jayne and Rogers [19].

Definition 1. Let(Z, ) be a topological space angla metric onZ. We say that
(Z,7) is fragmented by (or p-fragmented) if for each non-empty subgébf
Z and for eache > 0 there exists a non-emptyopen subselV of Z such that
UNC # pandp-diamU NC) < e.

It is easily checked that farZ, 7) to be p-fragmented, it is sufficient that each
7-closed non-empty subset &f has non-empty relatively-open subsets of arbi-
trarily small p-diameter.

Let (M, p) be a metric space and [Btbe an arbitrary set. We shall writg(D)
(only 7, if no ambiguity is likely) to denote the product topology of the spate.
Assume henceforth thatis bounded, which can always be done without altering
the uniformity of M. For any setS ¢ D we define the pseudo-metrig on M
by the formula

1) ds(z,y) = sup{p(x(t),y(t)) : te S}, forz,ye MP.

The metricdp will be simply denoted byl; the topology associated thin M ? is
the topology of uniform convergence @h Let~ (D) denote the uniform topology
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on M P generated by the family of pseudo-metrigsy : A C D, A countablg,

i.e. the topology of uniform convergence on the family of countable subsdts of
The following notation is used in the proof of the next theorem. 4"ebe the

space of all sequences of 0’s and 1’s and2(& be the set of all finite sequences

of 0’s and 1’s. For a given € 2, let |t| denote the length of, for o € 2N and

n € N, we writea|n = (0(1),...,0(n)) € 2N,

Theorem 2.1. Let (M, p) and D be as above, and lgt” be a compact subset of
(MP 7). Then the following conditions are equivalent:

(a) The spacé K, 7,) is fragmented by;

(b) For each countable subsétof D, (K, d,) is separable;

(c) The spacég K, ~y(D)) is Lindebf.

Proof.- (a)=(b) By Lemma 2.1 of [24]( K| 4, 7,(A)) is fragmented byl4. Since
M# is metrizable( K| 4, 7,(A)) is compact metrizable; hence it has a countable
base. If(K,d4) is not separable, then there is an uncountable supst K| 4
ande > 0 such thati4(p, q) > € whenevep, ¢ € @ andp # ¢q. We may assume
that no point of@ is 7,-isolated in@ since (K|, 7,(A4)) has a countable base.
Since (K| 4, 1,(A)) is fragmented byl 4, there is ar,(A)-open subsel/ of K| 4
such thatU N Q # () andds-diam (U N Q) < e. HenceU N Q is a singleton,
contradicting the fact that no point 6f is 7,,(A)-isolated inQ. Hence(K,d4) is
separable.

(b)=(a) Suppose thatk,7,) is not fragmented byl. Then, for some non-
empty7,-closed subset’ of K ande > 0, each non-empty,-open subset of’
hasd-diameter greater that By induction onn = |s|, s € 2(Y), we construct a
family {U, : s € 2N} of non-empty relativelyr,-open subsets af’ and a family
{t, : s € 20N} of points of D, satisfying the following conditions:

(a) Up=C,

(B) foreachs, Uy UUg " C Us,

(7) p(x(ts),y(ts)) > e foreachz € Uy andy € Uy, "

Construction. («) starts the induction from = 0. Next, for some: > 0, assume
that{U, : |s| < n} and{t, : |s| < n — 1} have been constructed. Fix are 2()
with |s| = n — 1. By hypothesis, there are y € Us, with d(z,y) > . Hence for
somet, € D, p(z(ts), y(ts)) > €. By ther,-continuity of the map

(@', y') = p(a'(ts), 4/ (ts))

there are relatively,-open neighborhoods, andUy; of = andy, respectively,
so that() and(v) are satisfied. This completes the construction. Note (that
implies thatlU,, * N Uy, * = 0 for eachs € 20V,

For eachs € 2N, chooser, € (2, U,p,,*. If 0,0 € 2N are two different
sequences, then for somec {0} UN, o|n = o'|n ando|(n + 1) # o'|(n + 1).
Then by () we havep(z, (ty)n), Tor (ton)) > €. Letting A = {t, : s € 2V}
we haved(z,,z,) > e. Since2 is uncountable( /X, d 1) is not separable, and
therefore(b) does not hold.

(c)=(b) This is clear because the topology associatelt tis weaker thar (D)
wheneverA is a countable subset @i.
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(@) & (b)=(c) Letd = {U; : j € J} be a~v(D)-open cover of and let
C={A: A cC DandA is countablé. Without loss of generality we may assume
that eaclU; is of the form

def
Uj = Ulzj, Ajre5) = {y € K« da;(z5,y) <ej},

wherez; € K, A; € C ande; > 0. For eachd € C, let us define
UA) ={U;:j € J, Aj C A} andU(A) = | {U; : U; e U(A)}.
Then we have
2) U=|J{u): Acctandk = {U(4): Aec}.
Alsoif A c A'thenU(A) c U(A').
We claim that K’ = U(A) for someA € C.

Suppose for a moment this is true. Then since each memldétf is d 4-open
and since(K,dy) is separable by (b), there is a countable subfamily/of)
(hence ot/) that coversk, which completes the proof.

The proof of the claim is by contradiction. So assume th@t) # K for each
A € C. Foreachd € C, let

C(A) = K\ U(A) andczﬂ{m”’:Aec}.

We note thatC'(4) D C(A’) wheneverA C A’. By compactness ofK, 7,),
C # 0, and now (a) tells us thdt, 7,,) is fragmented byl. So by Lemma 1.1 of
[24], there is a poiny € C where the identity mapC, 7,,) — (C, d) is continuous.
The second equality in (2) ensures us that U (B) for someB € C. SinceU(B)
is dg-open, for some > 0,y € U(y, B,e) C U(B). Then for eachr € C(B) =
K\U(B),z ¢ U(y, B,e) and so for some € B, p(x(t),y(t)) > 2¢/3. For each
t € B, let

©) Dy ={z € C(B) : p(x(t), y(t)) = 2¢/3}.
Then from above’(B) = | J{D; : t € B}.
LetV be ar,-open neighborhood gfin K such thatl—diam (V" NC) < /2.

Then we claim that, for somee B, D, NV N C(A) # () for eachA € C. For,

otherwise, for eachh € B there is and; € C such thatD, N V N C(A;) = 0.

Since B is countable, the set ' B U U{A: : t € B} is also countable, and

DNV NC(E)=0forallt € B. Hence
b=(J{Di:te BYNVNC(E)=C(B)NVNC(E)=VNC(E),

contradictingy € C c C(E) ".
Now fix at € B sothatD; NV N C(A) # 0 for eachA € C, and let

zeﬂ{DmeC(A)p;Aec}.
Thenz e V> N C, and so

(4) d(z,y) <e/2.

On the other hand, since € D;”, it follows by (3) thatp(z(t),y(t)) > 2¢/3,
which contradicts (4). This completes the proof both of the claim and of the theo-
rem.l
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It is well known that the product of two Lindé&l spaces is not in general Lin-
delbf again: indeed leZ = R and endow it with the topology for which a basis
is given by all the intervalge, r), wherez, r € R, x < r andr is a rational num-
ber; thenZ is a separable first-countable space that is Ligidahd which is not
second-countable; moreovgrx Z is not normal and therefore not Lindé¢) see
[10, pages 248-249].

Fortunately the Lindélf property for the space@s, (D)) in Theorem 2.1 is
preserved under the countable power.

Corollary 2.2. Let K, M, D be as in Theorem 2.1. K satisfies one of the three
conditions of the theorem, théii, v(D))" is Lindebf. In particular, (K, y(D))"
is Lindebf for eachn € N.

Proof.- We may assume that the metpoof the spacel/ is bounded by 1. Let
o+ (MPYN — (MNP be the map defined by(&)(t)(5) = £(5)(t) for all

¢ € (MP)Nt € D,j € N. Clearlyy is a homeomorphism when the product
topology is used throughout. Now the spat®' is metrizable, and we use the

Metric poo (m, m’) & Yien 277 p(m(4),m'(4)) for m,m’ € M". Letd., be the

metric on(M™)P given by
doo (2, 7') & sup{pec(z(t), 2 () : t € D} for z,2’ € (MNP,

We now show that if" is fragmented byl thenp(KY) is fragmented byl,,. Let
e > 0, let C be a non-empty subset & and letr; : KN — K be thei-th
projection. Then by induction we can construct a decreasing seqlifgenod’s D

. of non-empty relatively open subsets@fsuch thatl-diamm;(V;) < ¢/2 for
eachj € N. Choosek € N so that2™* < £/2, and let¢, ¢’ € V;.. Then for each
te D,

poe(P(E) (1), 0(€)D) = D _27pE((BE G + 3 27

j<k j>k+1

<Y 27d(mi(8), mi(E) +e/2< /24 /2=
J<k
Thus¢(Vy) is a non-empty relatively open subsetfC) with p..-diameter not
greater then.

Hence by Theorem 2.15(K") is v(D)-Lindelof. So we finish the proof by
showing thatp maps(M P, v(D))Y homeomorphically ont¢(M™N)P ~(D)). Let
71, T2 be the topologies of these two spaces respectively. Theng met A/ P )N
ri-convergestq € (MP)Nifand onlyif, (i) for eachj € N and for each countable
setA C D, p(&a(j)(t),€(4)(t)) — 0 uniformly int € A. On the other hand, the
nety(&,) me-converges ta(¢) if and only if, (ii) for each countablel C D,

Poo(p(€a) (1), () () = D277 p(€a(4) (), £() (1)) — O
jEN
uniformly in¢ € A. The equivalence of statements (i) and (ii) can be seen by an
easy calculation similar to the one given above. Hepds a ;-2 homeomor-
phism. 1

As an immediate consequence of the foregoing, we obtain the following theo-
rem, the first part of which was mentioned in the introduction. It has been stated in
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[25] as Theorem B and C. The original proof is quite different and depends on the
technique of projections in Banach spaces.

Theorem 2.3. ([25]) A Banach spaceX is an Asplund space if and only if
(X*,v(Bx)) is Lindebf. If this is the case, the(X™*,~(Bx))" is Lindebf for
eachn € N.

Proof.- Note that(X*,v(Bx))™ is Lindebf if and only if (Bx+,v(Bx))™ is Lin-
deldf, and X is an Asplund space if and only (B x~, weak') is fragmented by the
norm. Therefore the theorem follows from 2.1 and 2.2 by regar@ihg- , weak')
as a compact subspace(6f 1, 1)5x, 7). I

3. APPLICATIONS TORN-COMPACT SPACES

Let K be a compact Hausdorff space andilebe a uniformly bounded subset
of C(K)andA C D, then we define the pseudo-metric &nby

da(z,2") = sup{|f(z) — f(2')|: fe A}, forz,2’ € K.

We write againy(D) to denote the uniform topology dii generated by the family
of pseudo-metric§d4 : A C D, A countablg. Observe that wheP separates the
points of K, K embeds if{—m, m]” for somem > 0. Hence the topology (D)
now defined is the one already given through the embedHing [—m, m]”, and
~(D) is stronger than the original topology &f. In particular the equivalences we
have seen in Theorem 2.1 and Corollary 2.2 remain true.

Theorem 3.1. Let K be a compact Hausdorff space and Ietbe a uniformly
bounded subset @f (K'). Then the following statements are equivalent.

(i) The spacd K, d ) is separable for each countable C D;

(i) The spacg K, ~(D)) is Lindebf;

(iii) The spaceg K, y(D))N is Lindebf.

Proof.- From the remark above, the theorem is clear in daseparates the points
of K. The general case can be reduces to this as followsmilet sup{|| f] :

f € D}andlety : K — [-m,m]” be the map given by(z)(f) = f(x) for
alz € Kandf € D. ThenK’ def »(K) is a compact Hausdorff space. For
eachf € D, let f € C(K’) be the map given by (¢(z)) = f(z), and, for each
Ac D,letA={f: f e A}. Thenclearlyf — f is a one-to-one map ab
ontoD andd(z,y) = d 4(¢(x), p(y)) forall z,y € K. Itfollows that(K,d.) is
separable if, and only if,X’, d ;) is separable. The last equality also implies that,
foreachz € K, {y € K : da(z,y) <e} = ¢ '({z € K’ : dj(p(2),2) < }).
Hence a subséf of K is~(D)-open if and only ifrU' = ¢! (U") for somey(D)-
open subset’ of K’. From this it is straight forward to check thék, (D))
(resp. (K,~(D))N) is Lindebf if, and only if, (K’, v(D)) (resp.(K’,~(D))N) is
Lindelof. SinceD separates the points &f’, the conclusion of the theorem is true
for D andK’. Hence the theorem is proved in generhl.

A compact Hausdorff space is said toRadon-Niko§tm compactor RN com-
pact) if it is homeomorphic to a we&lcompact subset of the dual of an Asplund
space,i.e. a dual Banach space with the RNP. It is shown in [24] that a com-
pact Hausdorff space is RN compact if and only if it is fragmented by a lower-
semicontinuous metric on the space. WH@d, p) is a metric space (withp
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bounded) the metrid in Theorem 2.1 is clearly, lower semi-continuous. There-
fore, Theorem 2.1 provides the following characterization of RN-compact spaces.

Proposition 3.2. A compact Hausdorff space is RN compact if, and only if, it is
homeomorphic to a pointwise compact sulbdsasf [—1, 1]°, for some seD, such
that (K, (D)) is Lindebf.

Proof.- By Theorem 3.6 of [24] a compact space is RN compact if, and onky if,
is homeomorphic to a pointwise compact sub&eof [—1, 1], for some seD,
such tha( K, d4) is separable for each countable subsetf D. An application of
Theorem 2.1 finishes the proof of the propositidn.

In terms of spaces of continuous functions the proposition above can be restated
as follows.

Corollary 3.3. A compact Hausdorff spadé is RN compact if, and only if, there
is a bounded subsdb of C(K) separating points of< such that(K,~(D)) is
Lindelof. Moreover, if this is the case, thék, (D))" is Lindebf.

Proof.- AssumeK is RN compact. By Proposition 3.2, we may assume fas

a subspace off—1,1]”, 7,,) for certain setD, with (K, v(D)) Lindelof; for every

d € Dletrg : [-1,1]P — [~1,1] be the projection defined by;(z) = =(d),

r € [-1,1]P. If we letasD = {r, : d € D}, thenD is a uniformly bounded
subset ofC'(K) separating the points df and such thatK,v(D)) is Lindelof.
The last part follows from Theorem 3.1. Similar argument proves the convkrse.

For weakly compact subsets 6f K'), we have the following.

Corollary 3.4. Let K be a compact Hausdorff space and lét C C(K) be a
weakly compact (i.e. bounded angcompact) set. Thef¥(, v(H))" is Lindebf.

Proof.- Given a countablel ¢ H, A ¢ C(K) is 7,(K)-metrizable and thus the
space(C(A™), d») is separable. HencéK |, d») is separable and, d )
too. In view of Theorem 3.1, the proof is complete.

We need the following easy lemma that appears in [5] in a more general context.

Lemma 1. Let Z be a Lindedf space, and lelf C C(Z) be equicontinuous. Then
(H,1p(2)) is metrizable.

Proof. Let diy be the pseudo-metric o given by
dg(z,2') = min{1, sup |h(z) — h(z)|}.
heH

Since H is equicontinuous, théy-topology is weaker than the given one @n
So(Z,dy) is Lindelof and hence separable. LBtbe a countablé-dense sub-
set of Z. Then sinceH is dg-equicontinuous, ot the topologies of pointwise
convergence o and onZ coincide. Therefor¢H, 7,,(Z)) is metrizable.l

Given a subseb of RX, let
F(D)=|J{A™: A c D, Acountablg.
Note that if B is a countable subset éf(D) then there is a countable subskbf
D such thatB™ c A ¢ F(D). In particular,F(F(D)) = F(D).

Recall that a topological spacg is said to becountably tight(resp. to be a
Fréchet-Urysohn spagef for each setS C Z and each point: € S there is



8 B. CASCALES, I. NAMIOKA, AND J. ORIHUELA

countable setd C S (resp. sequencgr,), in S) such thatr € A (resp. (x,,)n
converges ta), see [2, pages 5 and 7]. In applying the results of the last section,
the following theorem of Arkhangel’skii ([2, Theorem 11.1.1]) is very useful. We
guote a special case.

Theorem A. LetT be a topological space such that T" is Lindelof for eachn € N.
Then (C(T'), 7,(T")) is countably tight.

Corollary 3.5. Let K be a compact space and [Btbe a bounded subset 6f K)
such that( K, v(D)) is Lindebf. Then the following properties hold:

(a) For any countable setl ¢ D, A" (closure taken ifRX) is v(D)-equi-
continuous and;,-metrizable;

(b) F(D) = C(K,~(D)) N D™, where the closure is taken &*;

(c) (F(D), ) is a Fréchet-Urysohn space.

Proof.- (a) easily follows from the previous lemma: 4f C D is countable themt
is y(D)-equicontinuous; its;-closureA™ in R¥ is againy(D)-equicontinuous
and therefore,-metrizable after Lemma 1. This proves (a)

For (b), we first note that (a) implieS(D) ¢ C(K,~(D))ND™. Next we note
that (K, (D))" is Lindelof for eachn € N by Theorem 3.1. This fact implies
that (C(K,~(D)), 7,) is countably tight according to Theorem A. Therefore if
f € C(K,v(D))NnD"™ then there is a countable subsebf D such thatf € A™.
Hencef € F(D) which proves (b). The proof of (c) is similar: Suppose that
S c F(D)andf € S n F(D). Then by the countable tightness, there is a
countable subseB of S such thatf € B™. Then as noted above, there is a
countable subset of D such thatB™ < A™. In particularB™ is 7,-metrizable
by (a). Therefore there is a sequencéifhence inS) thatr,-converges t¢. This
proves (c).1

Recall that a topological spa@eis said to bescatteredf each non-empty subset
of T has an isolated point, or equivalentlyis fragmented by the (necessarily
lower-semicontinuous) trivial metrig, wherep(t, s) = 0 for ¢t = sandp(t,s) = 1
for t # s. It can be showndf. [30, Theorem 8.5.4]) that a compact Hausdorff
spaceK is scattered if and only if there is no continuous map frehonto [0,1].
We remark that in the corollary above B¢ (xy C F(D) then K is scattered.
For then,(B¢ k), 7p) is @ Fechet-Urysohn space; on the other haiigly 1), 7p)
is not Féchet-Urysohn, see [2, Lemma 11.3.5], and consequehtlgannot be
continuously mapped onto, 1].

Given a topological spadeZ, 7'), the Gs-topology associated t@ is the topol-
ogy on Z whose basis is the family af's5-sets,{(,, U, : U, € 7}; when no
confusion is likely we simply writeZ for the topological space and then refer to its
Gs-topology.

Lemma 2. Let K be a compact Hausdorff space. Then dhgtopology forK is
identical withy (B¢ (k) on K.

Proof.- Clearly theGs-topology is stronger tham(Bc (k). Leta € K, and letG
be aGs-set containing:. ThenG = (2, U,, where eaclt,, is open inK. For
eachn, let f,, be a continuous functiofi, : K — [0, 1] such thatf,,(a) = 0, and
folk\w, = 1. Write A = {f,, : n € N}. ThenA is a countable subset &f (),
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andz € G whenever s(a,z) < 1,i.e.
a€{x e K :dyla,x) <1} CG.
This shows that/(B¢ (k) is stronger than thé's-topology and we are donk.

Corollary 3.6 (Meyer, [23]) For a compact Hausdorff spade, let 75 denote its
Gs-topology. Then the following statements are equivalent:

(a) K is scattered,;
(b) (K,7s) is Lindebf.
(©) (Be, (k) Tp) is @ Fréchet-Urysohn space.

Proof.- (a)=(b) RegardingK as a subset of—1, 1]%¢t) 7,), we apply Theo-
rem 2.1. In this case the metritis twice the trivial metric and the topology
v(Be(k)) is the Gs-topology for K by the lemma above. (&)(b) now follows.

Next assume (b), and we apply Corollary 3.5 to édrand D def Beky. The

hypotheses are satisfied by (b). Sincethelosure ofD is [-1, 1]¥, (b) of Corol-

lary 3.5 says that'(D) = B¢,k ~(p)) = Be,(k ) and (c) of the same corollary
says that B¢, (k ), 7p) is @ Fechet-Urysohn space. This is (c). If (c) holds, then
(Be(xks 7p) is also a Fechet-Urysohn space. But as remarked above, this implies
(@).1

We should comment here that topological spaces for whigtsets are again
open are calledP-spaces It is a very easy exercise to prove that4fis a Lin-
delof P-space ther” is Lindelf for n € N and so(C(Z),7,) has countable
tightness; it also follows from Lemma 1 that for sucly dhe separable subsets of
(C(Z),1p) are metrizable, and hen¢€'(Z), 7,,) is Frechet-Urysohn, see also [2].
Our argument also shows the fact that, forcompact and scattered, the space of
all continuous functions o’ endowed with it37s-topology isB; (K ), the space
of 7,-limits of sequences if’(K), and that all classes of Baire functions Bnare
the same [22].

4. POINTWISE LINDELOF SUBSETS OF SPACES OF CONTINUOUS FUNCTIONS

Let D be a dense subset of a compact Hausd&réind letH be bounded and
7,(D)-compact subset @' (K). In this section, we investigate thg( K )-Lindelof
property of H by means of the/(D)-topology of the earlier sections. As applica-
tion we can prove the results mentioned in the introduction.

The following simple proposition enables us to extract information on
(H,7,(K)) from that on(H, v (D)).

Proposition 4.1. Let K be a compact Hausdorff spacB, a dense subsdt” and
H asubseC(K). If H is 7,(K)-Lindelof, theny (D) is stronger thanr,(K’) on
H.

Proof.-Letf € H, ¢ >0, z € K, and

U={geH:lg(x) - flx)] <e}.

ThenU is ar,(K)-open neighborhood of in H, and it is sufficient to show that
U is ay(D)-neighborhood off in H. For eachl € D, let

Da={gecH:lg(d) - fd)] <e/2}.
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If g € N{Dy : d € D}, then|g(x) — f(z)| < /2 sincex € D, and therefore
g € U. ltfollows that(\{Dy : d € D} C U. Since eachD, is 7,(K)-closed
and H is 7,(K)-Lindelof, there is a countable subsétof D such that already
({Dq:de A}y C U,ie.{g € H : supge |g(d) — f(d)| <e/2} C U. HenceU
is ay(D)-neighborhood off in H and the proof is finished.

Corollary 4.2. Let K be a compact Hausdorff spac®, a dense subset and
H a boundedr,(D)-compact subset of (K). If (H,7,(K)) is Lindebf, then
(H,7,(K))Nis Lindebf.

Proof.- If H is 7,(D)-compact andr, (K )-Lindelof, then by [4, Theorem BH
is fragmented by the supremum norm@tK), i.e. as a compact subséf of
[—m,m]P for a suitablem, H is fragmented byl in the notation of Theorem 2.1.
According to Theorem 2.1 and Corollary 2(2{, (D))" is Lindef. By Proposi-
tion 4.1,7(D) is stronger tham, (K ) on H and thereforé H, 7,,(K))" is Lindelof
because it is a continuous image of the Liridespace( H, v(D))N. 1

In [2, Problem IV.11.11] Arkhangel'skii asks the following question. Eébe
a compact Hausdorff space. If there exists,d.indelof subsetH of C'(K) that
separates the points &f, is K countably tight? The next corollary is an answer to
this question under a rather strong restrictionfon

Corollary 4.3. Let K be a compact Hausdorff space, ailla 7,(K)-Lindelof
bounded subset @f(K) separating the points ok'. If H is 7,(D)-compact for
some dense subsBtC K, thenK is countably tight.

Proof.- An application of Corollary 4.2 allows us to conclude tiat, 7,(K))" is
Lindelof for n € N. Hence the spac€(H, 7,(K)) is countably tight by Theo-
rem A. The spacés is homeomorphic to a subspace®fH, 7,(K)) because?
separates the points &f, and so the proof is dond.

If X is a Banach space, theBy«« is always assumed to have the weak
topology (=o(X**, X*)) unless other topology is specified. AlsbandBx are
considered as subspace/subsefX¢f and Bx««, respectively, by means of the
canonical embedding. Thyx *, weak') is a subspace ¢{C'(Bx++), 7,(Bx)) and
(X, weak) is a subspace @ (Bx« ), 7,( Bx++)). For a subsef of X*, the weak

and weakclosures ofS are respectively denoted [}/’ ands" . A particular case
of Corollary 4.2 is the following:

Corollary 4.4. Let X be a Banach space and I&t be a weak-compact subset of
X* which is weakly Lindéif. Then,(H,weak" is Lindebf.

The next result gives the positive answer to a question posed by Talagrand that
appears in [32] aBrobleme4.5.

Theorem 4.5. Let X be a Banach space and |&t be a weak-compact subset of
X* which is weakly Lind&if. Then,

(@) co(H)w* = co(H)II H;

(b) co(H)" is weakly Lindebf.
Proof.- If H is a weaK-compact subset oX * which is also weakly Lindélf, then
(H,weak) is fragmented by the dual norm by Corollary E in [4]. The equality in
item (a) follows now from Theorem 2.3 in [24].
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Let us prove (b). As noted in the proof of (a)H,weak) is fragmented by

the norm. Therefore if we letV = co(H)", “then W is weak- -compact and
(W, weak) is fragmented by the norm by [24, Theorem 2.5]. By embeddiing
into [—m, m|Bx for a suitablen > 0, we see thatiV, v(Bx)) is Lindekf by The-
orem 2.1. Therefore the proof is finished once we showthBty ) is stronger than
the weak-topology oV, or equivalently each membet* of Bx«« is continuous
on (W,~v(Bx)). So fix an element** in Bx««. By Corollary 4.4,(H, weak" is
Lindelof, and therefore, by Theorem AC'(H, weak), 7,,(H)) is countably tight.
SinceBx |y is 7,(H)-dense inBx«| g C C(H,weak), there is a countable sub-
setA C By such that**| is in ther,(H )-closure ofA|y. Let G be the convex
hull of H. Then by the linearityz**|y is in ther,(G)-closure ofA|y,. By (a),
G is norm-dense iV and By« |y is an equicontinuous family of functions on
(W.]l ). Hencer,(W) and,(G) coincide onBx«- |y, and sox**|y is in the
7,(W)-closure ofA|y,. Finally, A|y is an equicontinuous family ofiV, v(Bx))
and hence:** |y, being in the pointwise closure of|yy, is v(Bx )-continuous on
w.l1

Remark. In the theorem above as well as in the next corollary, the Wwebdsed

convex hull of H (= co(H)w*) can be replaced by the weaklosed absolutely
convex hull ofH. The proof is almost identical as above since [24, Theorem 2.5]
is actually stated for the wedaiclosed absolute convex hull case.

Corollary 4.6. Let X be a Banach spacd/ a weaK-compact subset of* and
W its weaK-closed convex hull. The following statement are equivalent

(@) (H, weak) is Lindebf;

(b) (H, weak)N is Lindebf;

(c) (W, weak) is Lindebf;

(d) (W, weak)N is Lindebf.

Proof.- The implications (a}>(b) and (c}-(d) both follow from Corollary 4.4. The
implications (b}=-(a), (d)=(c) and (c}-(a) are obvious. And finally, the implica-
tion (a)=(c) is Theorem 4.51

5. BANACH SPACES GENERATED BYRN-COMPACT SUBSETS

If X is either a weakly compactly generated Banach space or the dual of an
Asplund space, theX is generated by an RN-compact subset in weak- or fveak
topology. We shall deal in this section with the class of Banach spaces generated
by RN-compact subsets with respect to a topology weaker than the weak topology.
Being more concrete, our framework is the following: for a Banach spacé ||)
we consider” C X* anorming subsetalso calledl-norming subsétfor X, that
is, aQ-linear setl" satisfying

(5) ||| = sup{| <@, f>]: f€FnBx-}
If a bounded seHH C X is o(X, F')-compact and fragmented by the norm, then
(H,o(X, F))is an RN-compact set since the norna{sX, F')-lower semicontinu-

ous, and we will study the space generated by it, that is, the épacepar(H)” |
The Banach spacg thus obtained will be called Banach space generated by an
RN-compact subsetin Section 7, we exhibit several examples of such Banach
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spaces. In order to show the main properties of spaces generated this way we shall
first see that these spaces admit projectional generators as defined below. Here our
main reference shall be [11]. A is a non-empty subset of a Banach spaced -
denotes the subs¢f € X*: f(x) =0forallz € A} of X*.

Definition 2. Let X be a Banach space. A projectional generator &nis a
countable-valued map : F — 2% on a norming subsef C X* such that
wheneveB C F'is aQ-linear set, we have

(6) o(B)Y: NBnBx-" = {0}

According to the method developed in [27], [25] and [11], the existence of a
projectional generator leads to the existence piogectional resolution of identity
(PRI for short) in the sense that follows. Given a Banach spacéhe density
characterof X (denoted by denks) is defined to be the least cardinality of a dense
subset ofX. Let u be the least ordinal such thgt| = densX, where|u| denotes
the cardinality of the ordingk. A PRI on X is a transfinite sequende®, : wy <
a < p} of linear projections inX satisfying the following conditions, whewke
and s are arbitrary ordinals ifwg, u]. (@) ||Pa|| = 1; (b) dend, (X) < |af;

(¢) PuPs = PgPo = Puin{a,p; (d) For eache € X and each limit ordinal

a, Pg(x) — P,(z) in the norm as3 1T «. Next proposition gathers the main
properties of spaces with a projectional generator. In what follows “LUR norm”
stands for “locally uniformly rotund (or convex) norm”.

Each part of the following theorem is known, but they are not usually stated in
the form we prefer in the present paper. We record it here for reference.

Theorem 5.1. Let X be a Banach space with a projectional generator
¢ : F — 2% Then the following statements hold.

(@) X admits a PRKP, : wp < a < u} such thatP, (X) has a projectional
generator for eaclyy < o < p;

(b) X admits an equivalent LUR norm;

(c) Thereis alinear continuous one-to-one operaior X — ¢o(I"), for some
setl’;

(d) The Banach spac® is v(X, F)-Lindebf, wherey(X, F) is the topology
on X of uniform convergence on bounded countable subsdfts of

Proof.- (a) With the projectional generatarin X, a PRI{P, : wy < a < u} can
be constructed, based on pairgpfinear subset§A,, B, ), A, C X andB, C F
with ¢(B,) C A, andB, norming forA,,, see proposition 6.1.7 and remark 6.1.8

of [11]; so, we haveB, N B~ N AL = {0} and P, is the projection fromX
OntOTa" I with kernel B The spacé’’(X*) = B, is identified with the dual

of P, (X) = Ta“ I and thereforeP,, (X)) also has a projectional generator defined
on B, by oo (f) = P.(¢(f)), f € Bs. These observations complete the proof of
(a).

(b) and (c) Here we use the induction argument encapsulated in [7, Theorem
VII.1.8]. Let P be the class of Banach spaces that admit a projectional genera-
tor. Then (a) shows that the hypothesis fin [7, Theorem VI11.1.8] is satisfied.
Therefore each membgf of P admits an equivalent LUR norm. If, in the proof of
[7, Theorem VI1.1.8], one uses [11, Proposition 6.2.2.] instead of Theorem VII.1.6
of [7], then one can also conclude that each menibef P has property (c).
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(d) The proof of Theorem A in [25] give us this resulk.

What remains of this section is devoted to proving that a Banach space generated
by an RN-compact subset has a projectional generator and therefore enjoys the
properties listed in Theorem 5.1

First we recall Simons’ lemma below, [31].

Lemma 3. Let(z,), be a uniformly bounded sequence(C) and letlW be its
convex hull. IfB is a subset of ' such that for every sequence of positive numbers
(An)n With 02 '\, = 1 there isb € B such that

(7 Sup{z Anzn(y) 1y € C} = Z Anzn(b),
n=1 n=1
then
(8) sup{lim sup z,,(b)} > inf{supw : w € W}.
beB n—oo c

A subset ofX* is said to beotal if its linear span is wedkdense inX*. Clearly
a norming subset fok is a total subset ok ™.

Definition 3. Let X be a normed spacé; C X a set andF’ a total subset inX*.
A subsetB C C'is said to be anF'-boundary forC' if for every f in F there is a
b € B such thatf(b) = sup{f(z) : x € C}.

In what follows, whenF is a total norm closed subspaceXf we consider the
norm associated té' given by

pr(z) =sup{| <z, f >|: f € FN Bx~},

for x € X. Then the unit ball of X, pr)* is the setF' N Bx- ’ and(X,pr)* is
the subspacél = |J;, n(F N Bx+) of X*. ClearlyF C H.
Proposition 5.2. Let X be a normed space and |étbe a total norm closed sub-

space ofX*. LetC be a bounded subset af and B C C an F-boundary forC'
such that( B, pr) is separable. Then we have

(X,F)

9) co(B)"" = co(C)’

Proof.- The proof is based on the ideas in [13](see also [12]). As we remarked, the
dual of (X, pr) is the subspac& = |J -, nG" of X*, whereG = Bx-NF,
andF' C H. Hence we have

coB)"" c co0)” = co(C)’ X c coay .
Assume that the conclusion of the proposition is false. Then there exists an element
xo € co(C)U(X’F) \co(B)"". Then by the separation theorem, there is a functional
f € H=(X,pr)* such that

f(zo) > a >sup{f(b) : b € B}.

By scaling we may assume thate G LetU = {g € X*: g(xp) > a}. Then
U is convex weakopen andf € G* NU ¢ GNU" . NowG" is equicon-
tinuous on(X, pr) and B contains a countabler-dense subsdb. Therefore in
G the topology of pointwise convergence Bnis identical with the topology of
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pointwise convergence aR, and the latter is pseudo-metrizable. It follows that
there is a sequende,, : n € N} in G N U such thalim,, z,(b) = f(b) for each
b € B. Our assumption of' being norm-closed anB being anF'-boundary ofC
implies that the sequence,, ),, satisfies the hypothesis of Lemma 3. Hence by (8),

a > sup f(b) > inf{supw(c) : w € co({z,})}.
beB ceC

It follows thata > sups w for somew € co({z,}) C GNU. In particular, since

w € U, w(xg) > a > supgsw. On the other hand, sincg) € co(C)J(X’F) and,

being inF', wis o (X, F')-continuousw(xy) < sup- w, contradicting the previous
inequality. This proves the propositidh.

The pointwise limit of a sequence of real-valued continuous functions is called
a function of the first Baire class. More generally a functfofiom a topological
spacelM into a normed spacé is said to beof the first Baire clas#f there is a
sequence of continuous functiotfis : M — X such that(f,,), converges tof
in (XM,Tp). A multivalued mapp from the topological spac#/ to the space of
subsets of a topological spafés said to bauscoif ¢(m) is a compact non-empty
subset ofl" for eachm € M and if ¢ is upper-semicontinuous the sense that,
whenevelU is an open subset @f, {m € M : ¢(m) C U} is open iniM.

Ideas in [14], see also [29], allow us to modify Jayne-Rogers’ selection theorem,
[19], to our situation below.

Theorem 5.3. Let M be a metric spaceX a normed space anél’ a total norm
closed subspace df*. Let H be a norm bounded (X, F')-compact subset of
which is fragmented by the norpy. If ¢ is an usco map fromd/ to subsets of
(H,o(X, F)), theny has a first Baire selectof from M into (X, pr).

Proof.- If we identify (X, pr) with a subspace df°(F'NBx~) andH with a weak
compact subset there, then we can apply the Remark 17 in [18] to obtain a selector
f of ¥ which isc-discrete and of the first Borel class frafto ¢>°(B N Bx+)

(see Corollary 7 in [18]). Such a selector as a map fi@rmto (X, pr) is also
o-discrete of the first Borel class, and by Theorems 1 and 2 of f{29ffirst Baire

class fromF into (X, pr) (see also [14] and the remarks in the introduction of
[29]). 1

We are now ready to prove below one of the main properties of the selectors
obtained above: the result that follows is a counterpart to the one stated as Theo-
rem 26 in [18], and it is in the setting of topologies of pointwise convergence on
total sets.

Theorem 5.4. Let X be a normed space and IBtbe a total norm closed subspace
of X*. Let H be a norm bounded (X, F')-compact subset of. Letyy : FF —
2H pe the multi-valued map given by

Vu(f) = {z € H: f(z) = sup f}

Thenvy g has a selector of the first Baire class frdif, || ||) into (X, pr) if, and
only if, (H,o(X, F)) is fragmented byr. Moreover, iff : ' — H is such a
selector ofyy7, then we have

(10) co(H)” ™" = co(F(F))""
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Proof.- The arguments here are similar to the ones in [18, Theorem 26]. First it
is easy to check thaty is an usco-map fromiF, || ||) into compact subsets of
(H,o(X,F)). If (H,o(X,F)) is fragmented by, then, by Theorem 5.3/

has a first Baire class selectfr: (F,|| ||) — (X,pr). Conversely assume that
such a selectof exists. LetS be a|| ||-closed and| ||-separable subspace bf

and consider the quotient normed sp&d&/ S+, || ||s). Recall that the dual of

(X/S*, | ||s) is isometric withS“ and hences is a norm closed total subspace
of (X/S+, | |ls)*. Letms : X — X/S* be the canonical quotient map andgt
be the norm onX /S~ given by

(11) ps(ms(z)) = pg(z) < sup{lg(x)| : g € SN Bx-}

for eachr € X. Thenrs(H) is a|| ||s-boundedg (X /S, S)-compact subset of
X/S+, andws(f(S)) is anS-boundary forrg(H). Now let f, : ' — X be a
sequence of || — pr continuous maps such that for eack F, fi(g) — f(g)in
pr. For each subset of F, let

o(A) = | fiu(A).
k=1

Thenf(Z|| ”) c ®(A)"" and®(A) is countable whenevet is. If D is a|| |-

dense countable subset 8f then f(S) = f(ﬁH ”) c ®(D)"". Hencef(S) is
pr-separable and sog(f(S)) is ps-separable. It follows from Proposition 5.2
that

1

(12) colms(F(8)" = co(ms ()" /",
This shows in particular that, whenevgris a|| ||-separablé| ||-closed subspace
of ', mg(H) is ps-separable and hendé is pg-separable. Regarding as a
Tp,-compact subset df-m, m]FNBx= with an appropriaten > 0, we see from
Theorem 2.1 thatH, o (X, F)) is fragmented by .

Finally we show that (10) is a consequence of (12). For this it is sufficient to
prove that for eachv € X, there is &| ||-separablé| ||-closed subspac€ of F'
such that

(13) ps-dist(mg(u),co(ms(f(S))) > pp-dist(u,co(f(S5))).

———o(X,F)

Forif u € co(H) and if S is chosen as above, then since

— 0 (X/St,8
ns(u) € mg(co(H)) /)
we have, by (12)0 = pg-dist(mwg(u),co(ms(f(S))) > pr-dist(u,co(f(S))).
Henceu € co(f(S))"" c co(f(F))’". This shows that the left side of (10) is
contained in the right side. The reverse inclusion is obvious.

To prove (13), letx € X. For each countable subskf of X, let «(M) be a

countable subset df N Bx+ such that, for each € M,

pr(u—x) = sup{lg(u — )| : g € a(M)}.

Inductively we define a sequeneg C A, C ... of countable subsets df as
follows: let gy be an arbitrary non-zero elementBfand letA; = {qgo : ¢ € Q}.
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Assuming that4,, has been defined, let

Apy1 = spar@(a(cq@(é(An))) U An),
where spag(C) (resp. cg(C)) denotes the set of all linear (resp. convex) combi-

nations of elements df' with rational coefficients. Let = | J;~, AnH I

Before showing this5 satisfies (13), we note thatjfe cop(®(A,,)) then
pr(u—y) =sup{lg(u —y)| : g € a(coy(®(An)))} < Ps(u—y) < pr(u—1y).
Hencepr(u — y) = pg(u — y). Now by the definition ofb,

PF

co(f(8)) € co(@((J An) ) C cog( ] (4n))
n=1

n=1

PFr 123

= | cop(®(4,))
n=1

Letz € cof(S) ande > 0 be arbitrary. Then there isiac cog(P(A,,)) for some
n such thapg(x — y) < pp(x —y) < e. Then

ps(ms(u) —ms(x)) = ps(u—x) 2 ps(u—y) —e =pr(u—y) —c =
> pp(u—x) — 2 > pp-dist(u, cof(S)) — 2e.
Sincex € f(S) ande > 0 are arbitrary, we obtain (13}

Remark In the setting of Theorem 5.4, (12) is now true whene¥eis a || |-
closed subspace df. This can be seen by applying Theorem 5.4 to the normed
spaceX /S, the total subspacs of (X/S+)* = 5, theo(X/S*, S)-compact
setrg(H) and the selectors o f|g for the usco mapps : S — 27s(H), This
remark is important in the proof of the next theorem.

Theorem 5.5. Let X be a Banach spacéd; a horming subset ok * and letH be
a boundedr (X, F')-compact subset of fragmented by the norm df. Then the

Banach spacé” = spaifH )” | has a projectional generator.

Proof.- We first prove the cas& = Y. Since H is bounded,sc(X, F') and

o(X, 7 H) coincide onH. Hence we may assume thats a|| ||-closed norming
subspace. Lepy : ' — 2/ be the set-valued map given by;(¢g) = {z € H :
g(x) = supy g} for eachg € F. Then by Theorem 5.4); admits a selector
f + F — H of the first Baire class front#, || ||) into (X, | ||). Let{fx} be a
sequence of continuous mag#, || ||) — (X, | ||) such thatfx(g9) — f(g) inthe
norm for eachy € F, and we define the countable-valued map F — 2% by
v(g) = {fx(9) : k € N}. We prove thatp is a projective generatocf Defini-
tion 2). So letB be aQ-linear subset of”, and letg € o(B)* N BN BX*w*. We
must show thagy = 0.

LetS = Bl C F,letng : X — X/S* be the quotient map and lgt be the

norm defined onX/S+ by (11). Sincegy € SN Bx-" , g defines ag-continuous
linear functionalg on X/S+ by the formula:g(rs(x)) = g(z) for eachz € X.

Now by the definition ofp, f(S) = f(§H ”) C go(B)” I, Sinceg vanishes on
»(B), it also vanishes offi(.S), and henc@ vanishes omrg(f(S)). By the remark
following the last theorem, (12) is valid fat and hencerg(H) c co(ms(f(S))"”.
Therefore by continuity vanishes omrg(H ), i.e. g vanishes orf{. SinceX is the
norm-closed span aff, g = 0.
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The general case is proved by applying the special case above to the Banach
spaceY” and the norming subspaééy- for Y. Note thatH is ac (Y, F'|y)-compact
subset oft” and it is fragmented by the norm &f. 1

Corollary 5.6. Let X be a Banach spacé; a norming subset oX*, H a bounded
subset ofX which iso (X, F')-compact and fragmented by the normXfand let

spanjH)H | . Then,
(@) (Y,v(X, F)) is Lindebf;
(b) Y has a PRI,
(c) Y has an equivalent LUR norm.

Proof.- This is a straightforward consequence of Theorem 5.1 and Theorerk 5.5.

Another property of spaces generated by RN-compact sets is the following. For
this, we need one more definition. LEf, 7) be a topological space amch metric
on Z. Then(Z, ) is said to bes-fragmented by if for eache > 0, Z can be
written asZ = | J{Z,, : n € N} with eachZ,, having the property that, whenever
C'is a non-empty subset ¢f,, there exists a-open subsdl’ of Z such thaly NC
is non-empty and of-diameter less than

Theorem 5.7. Let X be a Banach spacé; a norming subset ok*, H a bounded
subset ofX which is o(X, F')-compact fragmented by the norm &f and let

= spar(H)H | . Then,(Y,o(X, F)) is o-fragmented by the norm.
Proof.- The proof analogous to the one given for weakly compactly generated in

[15]. Indeed WV = co(H)U(X’F) = co(H)H lis o(X, F')-compact and fragmented
by the norm, [6, 4.1, 5.2 and 5.3]. Lemmas 2.1 and 2.2 [24] gives udthat
W is againo (X, F) compact and fragmented by the norm. We now h&ve-

U, n(W — W) I and becausé’ is norming, the norm irt” is o (X, F')-lower
semi-continuous and Lemma 2.3 in [15] gives us the concludion.

We can gather all the information that we have obtained so far in the following:

Theorem 5.8. Let X be a Banach spacé; a norming subset ok *, H a bounded

subset ofX which iso (X, F')-compact and let” = spanjH)|| |
statements are equivalent,

(@) (H,o(X, F))is fragmented by the norm;

(b) (Y,0(X, F)) is o-fragmented by the norm;

(c) (H,v(X, F)) is Lindebf;

(d) (Y,~(X, F)) is Lindebf.

Proof.- (a)=(b) is the previous result. (B}(a) follows from Lemma 3.1.1 in [16].
(a)=-(d) is the item (a) of Corollary 5.6. (e}(c) is obvious and (e}-(a) is also
the implication (cx-(a) in Theorem 2.1

The following

In terms of compact sets embedded in cubes, the theorem above can be rephrased
as:

Theorem 5.9. Let K C [-1,1]P C ¢°°(D) be at,-compact set. The following
statements are equivalent

(a) (K, 1p) is fragmented by the norm;
(b) (span{K)| | , Tp) IS o-fragmented by the norm;
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(c) (K,~(D)) is Lindebf;
d) (spar&)' ! ~(D)) is Lindebf.

6. BANACH SPACES GENERATED BYLINDELOF SUBSETS

In this section we study Banach spaces which are Lisfdal weak topology.
Main tools are again the projectional generators. Beyond Theorem 6.1 below, that
gives a quite general way of deciding when a Banach space is weakly &fndel
here we take advantage of the scope of the results in Section 4 and the main re-
sults in [4] to prove that a Banach spakegenerated by a weakly Lindiflsubset
which is o (X, F')-compact with respect to some norming subspBce X*, is
weakly Lindebf. We need the following definition. For each d&tlet (I") be
the subspace o (I") consisting of alk € ¢°°(I") with {~ : u(y) # 0} at most
countable. A compact Hausdorff spakeis said to beCorsonif, for somel’, K
can be embedded i(I") as a pointwise compact subset.

Definition 4 ([1]). A Banach spac« is said to be Weakly Lind&l Determined
(WLD for short) if there is a bounded one-to-one linear Miiap X ™ — ¢°°(T"), for
some sef’, which iso (X *, X')-pointwise continuous and such thatx ™) c X(I")

It was established in [26] that a Banach space is WLD if, and only if, its dual unit
ball with the weak topology is Corson compact. Note that WCG Banach spaces
and hence separable Banach spaces are WLD. It is known that a WLD Banach
space isy(Bx-)-Lindeldf, [25] and renormable by a LUR norm, [34] and [21].

A Banach spaceX or more generally a convex subskf of X is said to have
propertyC (after Corson) if each collection of relatively closed convex subsets of
M with empty intersection has a countable subcollection with empty intersection.
If (M,weak is Lindeldf, then)M has property since closed convex sets ¥ are

also weak-closed. It is shown in [28] that Ehe Banach spad®as the propert¢

if and only if, wheneverd ¢ X* andf € A" , there is a countable subsgtof A
such thatf € coA" . This fact is crucial in the proof of the next theorem.

Theorem 6.1. Let X be a Banach space with a projectional generatorXltas
propertyC, thenX is WLD, i.e.(Bx+, weak) is Corson compact.

Proof.- Let ¢ : F — 2X be a projectional generator o%i, whereF is a norm-

ing subspace foX. ThenX admits a PRI constructed as we have recalled in the
Proposition 5.1. Le{P, : wo < o < u} be this PRI Since propert§ is sta-

ble under taking closed subspaces, eB¢hX) has property and a projectional
generator. Now, by a standard induction process on the density character of the
Banach space, we may assume that X admits a{PRI: wp < « < u}, with p a

limit ordinal, such that, for eachy < o < p, P,(X) is WLD; that is, there is a
one-to-one norm one operator

T, : PX(X*) — £2(D,) with Tp (P*(X*)) € B(Ta)

which is weakK-pointwise continuous. Assume thfif, : wg < a < p}isa
disjoint family. Then we define

P:PwOUU{Fa—i-l two < a < pl
andT : X* — ¢>°(T") by the formulas
(Tf)(n) = Tuo (P2, (£))(n) if n € Ty =N
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(TH() = Tarr(Pea (f) = PE()() i v €Tay1,wo < a < p.
ClearlyT is bounded linear and we&lpointwise continuous. We claim that X ™)
C X(I'). To prove it, we will see that the sétv € [wo, i) : P, (f)—Px(f) # 0}
is at most countable for each € X*. Assume on the contrary that this is not
the case and takg¢ € X* so that this set is uncountable. Recall that the fam-
ily {B, : @ < u}is along sequences of increasi@glinear subsets of” with
Pi(X*) = Faw* for eacha < p. Also for each limit ordinal3 < p and
f e X*, weak-limyys Py(f) = P5(f), andP; =1d. LetA = {a € [wo, p) :
Py (f)—=P;(f) # 0}. ThenA is an uncountable subset[afy, 1) which is well-
ordered under the inherited ordering. Therefore there is an order-isomorphism
from [0,w;) onto an initial segment oAA. Letn = sup ¢([0,w1)) < p. Then
Py(f) =weakK-lim,,, P;(W)( f) and therefore

PyHe U P&w(f)w :

y<wi

SinceX has property, there is a sequeneg < 73 < ... in [0,w;) such that

*

P (f) € collJ P,y (1))
=1

Let{ = ¢(sup;v:) € A. Then{ < n < pu. Since for each, P, (f) €

Bo(y) T B we haveP;(f) € Be". It follows that P () is a fixed point
of P forall o > &. Hence if§ < a < n, thenP; (f) = Py P, (f) = Py (f) by the
property of PRI:P, Py = Puin{y.ay- In particular,P7 (f) = Py (f) = P¢(f),
contradictingl € A. HenceT'(X*) c X(I).

To see thafl’ is one-to-one, lef’(f) = 0 foranf € X*. ThenP (f) =
0, andP} (f) = P;(f) = Oforall a € [wo, ). Then by a straightforward
(transfinite) induction,P}(f) = 0 for all & € [wo, 1), and hencef =weak-
limy, P2(f) = 0. 1

A combination of Theorem 5.5 and Theorem 6.1 gives us the following:

Corollary 6.2. Let X be a Banach spacé, a norming subset ok *, H a bounded
subset ofX which iso (X, F')-compact fragmented by the normXfand letY =

spar{H)H I 1f v has propertyC, thenY” is WLD.

As mentioned earlier, a WLD Banach space is weakly Ligfjdlut its converse
is not true;cf. [21, p. 514]. In [21, p. 521], Mercourakis and Negrepointis have
asked if this converse is true in dual Banach spaces. The affirmative answer to this
guestion is contained in [25] where it is shown thakifis an Asplund space then
X* is weakly Lindebf if and only if (Bx+«,weak') is Corson compaci,e. X*
is WLD. Recall that Edgar had observed earlier [9] thais an Asplund space
wheneverX* is weakly Lindebf. The next two corollaries are generalizations of
the result in [25] just mentioned. The first one is a special case of the previous
corollary.
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Corollary 6.3. Let X be an Asplund spacd{ a subset ofX* which is weak-

compact and let” = spar(H)|| |1 v has propertyC thenY is WLD. In par-
ticular, if X is an Asplund space, theki* is WLD if and only if it has property

C.

A combination of most of the results in this paper and the main result in [4]
finally allows us to prove.

Corollary 6.4. Let X be a Banach spacelf a subset ofX* which is weak-

compact and weakly Lind&f. Then, the space generateddyY = spar(H)” H,

is WLD. In particularY” is weakly Lindedf.

Proof.- By the remark following Theorem 4.5, we know that the wealosed
absolute convex hull off, sayW, is also weakly Lindeif. Hence by Corollary E

of [4], (W, weak) is fragmented by the norm. Furthermoié,= spar{iV)
U2, nW” | has property by Proposition 2 in [28]. Hence by Corollary 6 ¥,is
WLD, and since a closed subspace of a WLD Banach space is again WLD ([21]),

the corollary follows. 1

Remark 6.5. Let us remark that the stateménteing weakly Lindedf in the pre-
vious Corollary can be proved more directly using Proposition 4.1, Corollary 5.6

and Theorem 4.5. With the notation above we know tHafs spartH) =
U,Z, nW is weakly Lindebf, because it is a countable union of weakly Liriifel
subsets. Therefore by Proposition 4y1X*, X) is stronger than the weak topol-

ogy onZ. On the other handy = Z! I'is Lindewsf with respect toy(X*, X)
by Corollary 5.6, sincéd is weak-compact and H, weak) is fragmented by the
norm. Consequentlyy” will be weakly Lindebf if we can prove that/(X*, X) is
stronger than the weak topology an For this, it is sufficient to prove that for
eachz™ € X** the restrictionz™*|y is y(X™, X)-continuous. We know from
above that:**|; is v(X™*, X)-continuous. This means that for each- 0 there is
a~v(X*, X)-open neighborhooti C X* of the origin such that

(14) |z**(g)| < e foreach ge UNZ.

Now U is also|| ||-open and therefor& N ZI =AY ' s Uny. Therefore
the|| ||-continuity ofz** and (14) imply thatz**(f)| < e foreveryf e UNY.
This means that** is ~(X™*, X)-continuous ort’, which concludes the proof

7. EXAMPLES OF SPACES GENERATED BYRN COMPACT SUBSETS

As mentioned at the beginning of Section 5, in this section we give several exam-
ples of Banach spaces generated by an RN-compact subset. By Theorem 5.5, these
spaces possess all the properties stated in Theorem 5.1. Also by Corollary 6.2, for
these spaces being WLD is equivalent to having propérty

Example A. Spaces with 1-norming Markusevich basis.

Let us recall that aMarkusevich basi®r M-Basisof a Banach spacg is a
subset{(z;, f;) : i € I} of X x X* such that

(@) spadz; : i € I}” I X;
(b) Mic; Kernel fi) = {0};
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(©) fi(z;) = dij,i,5 € 1.
Let us consider the subspaﬁlﬁ_\déf spar f;} which is a total subspace iK* after
condition (b). If K f {z;:i e I}U{0} thenitis easyto see thatis ac(X, F)-
compact that is fragmented by the norm. Indded,: i € I} isaoc (X, F')-discrete
set with0 as its unique limit point. Whe#' is norming, the M-basis is then called a
norming M-basis Therefore any Banach space with norming M-basis is generated

by an RN-compact subset. Thefragmentability of spaces with a norming M-
basis was first proved in the paper [17]; here, it is a consequence of Theorem 5.8.

Example B. Spaces of continuous functions.

Let K be a compact space atla dense subset &f. If H C C(K) is 7,(D)-
compact, uniformly bounded, fragmented by the supremum norm and separates the
points of K, thenC(K) is generated by an RN-compact set. Indeed, in this case
the norming subspace 6f( K)* is F' = spar{d, : x € D} and we observe that for
everyn = 1,2,... the set

def ;
H™ :e {fl'fZ' .fn;fieH,zzl,Q,...,n}

is o(C(K), F)-compact and fragmented by the norm after Lemmas 2.1 and 2.2
in [24]. Now, W = (J-2,(1/n)H™ U {0} is alsoo(C(K), F)-compact and-
fragmented by the norm, hence fragmented, [16, Theorem 4.1]. On the other hand,
the Stone-Weierstrass theorem gives us the eqlsﬂ'my(W)H - C(K) and so

C(K) is generated by a(C(K), F')-compact subset fragmented by the norm.

Example C. Spaces of continuous functions defined on solid compact spaces and
on compact spaces defined trough adequate families of sets.

Let I be a set and consider the cule1]’ with the product topology. Given
x € [0,1]! let us write

supp(z) e {iel:x(i)#0}
and
F(I) = {z € [0,1)! : supp(z) is finite}.

We claim that ifK” C [0, 1)7 is a compact subset such th&én F (1) is dense in
K (i.e. K is a special type o¥aldivia compacspace), thed (K) is generated by
an RN-compact subset. Indeed, let us wite= K N.F(I) andr; : [0, 1)1 — [0,1]
to denote the canonical projection onto thi coordinate, for eache I. Without
loss of generality we can, and do, assume that for éaehl there isz € K
such thatr;(x) # 0, because otherwise we can remove from the index ské
element; that is not needed to embed in [0,1]. Observe thaf{r; : i € I}
is 7,(D)-discrete and that each),(D)-neighborhood of) must contains all but
at most finitely many{w; : ¢« € I}; therefore{r; : i € I} U {0} is 7,(D)-
compact]| ||~-fragmented and separating the pointgofWe use now Example B
to conclude tha€ (K) is generated by an RN-compact subset.

A compact spacéd’ C [0,1]! is said to be solid if whenever ¢ K andy ¢
[0,1]7 are such that eithey; = z; or y; = 0, for everyi € I, theny € K.
Obviously, if K c [0,1)! is solid, thenK N F(I) is dense inK and therefore
C(K) is generated by a RN-compact after our former reasoning.



22 B. CASCALES, I. NAMIOKA, AND J. ORIHUELA

A particular situation to which we can apply the above is when we deal with
compact spaces defined through adequate families of sets. Following Talagrand,
[33], if I is a non empty set, a family of subsets of is calledadequatef

(@) If Ae AandB C A, thenB € A;

(b) {i} € A, for everyi € I,

(c) If A c I and every finite subset of belongs ta4, thenA € A.
If Ais an adequate family ih, then

K {xa:AeA}
is a solid compact space. ThéH K) is also generated by a RN-compact sub-
sets. Talagrand produced in [33,8deme 4.3] an example of a compact space
K defined through an adequate family of sets that is not Eberlein compact: the
corresponding”(K) then does not contain 8,( K )-compact subset separating
the points ofK’, even though it contains g,(D)-compact set (for certain dense
D C K), || ||-fragmented subset separating the point&of

Example D. Spaces of Bochner integrable functions.

Let (X, || ||) be a Banach space afd C X* a norming subspace. It was
stated in [6, Corollary 4.3] that i (X, F')-separable compact subsetsXfare
|| ||-separable then the( X, F')-compact (norm bounded) subséisf X are|| |-
fragmented; this is indeed a consequence of the equivalence between the first two
statements in Theorem 2.1: wrife= F'N By- and consideH C [—1,1]”; given
A C D countable the setl|4 C [~1,1]" is compact and metrizable, therefore
separable; then there isd X, F')-compact and separabfeC H such thatS|4 =
H| 4; the restriction map—1, 1] — [—1, 1]* is continuous for the corresponding
uniform metrics and thereforH | 4 is d 4-separable, becausgis dp-separable§
is || ||-separable).

The above observation is useful in finding more compact spaces “living” in Ba-
nach spaces and fragmented by the norm without being necessarily weakly com-
pact.

Given a probability spacé, ¥, 1) we will denote byLP(u, X), 1 < p <
+00, the Banach space gfstrongly measurabl& -valuedp-Bochner integrable
functionsf : 2 — X normed by

I £ 1= /Q | 1P d)?

The dualLP(p, X)* of LP(u, X) is a space of wedkmeasurable functions and
the spacd.?(u, X*), 1 = | + 1, which can be identified isometrically with a sub-
space ofL.”(u, X)*, is a norming subspace. $6 = o(LP(u, X), LY (u, X*)) is
a Hausdorff topology which is weaker than the weak topologgif:, X ); these
two topologies coincide if, and only if{* has the RNP [8, IV.1.1]. It was shown
in [6, Example E] that every’-separable compact subset B(, X) is norm
separable. Therefore, evesy-compact subset af?(u, X) is fragmented by the
norm. Thus we can apply the results in sections 5 and 6 to say for instance that if

H C LP(u,X) is o’-compact then the spadé = spanjH)|| > has a PRI. This
result is related to the main result of [3] which asserts the existence of a bounded

one-to-one operator frompar{H)  into somecy(I') which is o’-pointwise con-
tinuous.
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