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ABSTRACT. A topological space(T, τ) is said to be fragmented by a metric
d on T if each non-empty subset ofT has non-empty relatively open subsets
of arbitrarily smalld-diameter. The basic theorem of the present paper is the
following. Let(M, ρ) be a metric space withρ bounded and letD be an arbitrary
index set. Then for a compact subsetK of the product spaceMD the following
four conditions are equivalent:

(i) K is fragmented bydD, where, for eachS ⊂ D,

dS(x, y) = sup{ρ(x(t), y(t)) : t ∈ S};
(ii) For each countable subsetA of D, (K, dA) is separable;

(iii) The space(K, γ(D)) is Lindelöf, whereγ(D)is the topology of uniform
convergence on the family of countable subsets ofD;

(iv) (K, γ(D))N is Lindelöf.
The rest of the paper is devoted to applications of the basic theorem. Here are
some of them. A compact Hausdorff spaceK is Radon-Nikod́ym compact if,
and only if, there is a bounded subsetD of C(K) separating the points ofK
such that(K, γ(D)) is Lindelöf. If X is a Banach space andH is a weak∗-
compact subset of the dualX∗ which is weakly Lindel̈of, then(H, weak)N is

Lindelöf. Furthermore, under the same conditionspan(H)
‖ ‖

andcoH
w∗

are
weakly Lindel̈of . The last conclusion answers a question by Talagrand. Finally
we apply our basic theorem to certain classes of Banach spaces including weakly
compactly generated ones and the duals of Asplund spaces.

1. INTRODUCTION

The starting point of the present investigation is a theorem by one of us in [25],
namely, a Banach spaceX is an Asplund space if and only if its dualX∗ is Lindelöf
with respect to the topology of uniform convergence on bounded countable subsets
of X, theγ-topology. In the present paper, we show that this result is a special
case of a much more general theorem on function spaces and that it has interesting
consequences including a solution to a question by Talagrand.

This paper is organized as follows. After the introduction of Section 1, the basic
theorem and its important corollary are stated and proved in Section 2.

In Section 3, a new characterization of Radon-Nikodým compact spaces by the
Lindelöf property relative to theγ-topology is derived from the basic theorem. It
will be shown that Meyer’s characterization of compact scattered spaces [23] by
the Lindel̈of property with respect theGδ-topology is also a consequence of the
basic theorem.
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In Section 4, we use the Lindelöf property relative to theγ-topology to study
weakly Lindel̈of property of sets in dual Banach spaces. We show, for instance,
that the weak∗-closed convex hull of a weak∗-compact subset which is weakly
Lindelöf in a dual Banach space is again weakly Lindelöf. This solves a problem
of Talagrand in [32].

The theme of Section 4 is further expanded in Section 6 where it is proved,
in particular, that the norm closed linear span of a weak∗-compact subset in a dual
Banach space that is weakly Lindelöf is a WLD Banach space, as defined in Section
6. It should be noted here that each WLD Banach space is weakly Lindelöf and
more. Our approach depends on the existence of “projectional generators” shown
in Section 5. Our results on projectional generators also give a unified approach to
the existence of projectional resolutions of the identity for both weakly compactly
generated Banach spaces and dual of Asplund spaces.

In Section 7, we present several examples that illustrate the results of Sections 5
and 6

Our notation and terminology are standard and we take the books by Engelking
and Kelley, [10] and [20], as our references for topology. Compact spaces are usu-
ally refereed to by lettersK, H, . . . and our normed spacesX, Y , . . . are assumed
to be real. Given a topological spaceZ we letC(Z) (resp.Cb(Z)) denote the space
of real continuous (resp. real continuous uniformly bounded) functions defined on
Z. Given a Banach spaceX, BX denotes its closed unit ball andX∗ denotes its
dual space. WhenF is a subset ofX∗, we writeσ(X,F ) to denote the locally
convex topology (maybe non-Hausdorff) onX of pointwise convergence onF ;
σ(X,X∗) is the weak topology ofX andσ(X∗, X) is the weak∗ topology ofX∗.
Cb(Z) will be consider as Banach space endowed with the supremum norm.

2. FRAGMENTABILITY AND THE L INDELÖF PROPERTY FORγ(D)

We first gather definitions of the terms and notation necessary for stating the
main theorem of the present paper, Theorem 2.1. Recall that a topological space
is said to beLindelöf if each open cover of the space admits a countable subcover.
The following definition is due to Jayne and Rogers [19].

Definition 1. Let (Z, τ) be a topological space andρ a metric onZ. We say that
(Z, τ) is fragmented byρ (or ρ-fragmented ) if for each non-empty subsetC of
Z and for eachε > 0 there exists a non-emptyτ -open subsetU of Z such that
U ∩ C 6= ∅ andρ-diam(U ∩ C) ≤ ε.

It is easily checked that for(Z, τ) to beρ-fragmented, it is sufficient that each
τ -closed non-empty subset ofX has non-empty relativelyτ -open subsets of arbi-
trarily smallρ-diameter.

Let (M,ρ) be a metric space and letD be an arbitrary set. We shall writeτp(D)
(only τp if no ambiguity is likely) to denote the product topology of the spaceMD.
Assume henceforth thatρ is bounded, which can always be done without altering
the uniformity ofM . For any setS ⊂ D we define the pseudo-metricdS onMD

by the formula

(1) dS(x, y) = sup{ρ(x(t), y(t)) : t ∈ S}, for x, y ∈MD.

The metricdD will be simply denoted byd; the topology associated tod in MD is
the topology of uniform convergence onD. Letγ(D) denote the uniform topology
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onMD generated by the family of pseudo-metrics{dA : A ⊂ D, A countable},
i.e. the topology of uniform convergence on the family of countable subsets ofD.

The following notation is used in the proof of the next theorem. Let2N be the
space of all sequences of 0’s and 1’s and let2(N) be the set of all finite sequences
of 0’s and 1’s. For a givent ∈ 2(N), let |t| denote the length oft; for σ ∈ 2N and
n ∈ N, we writeσ|n = (σ(1), . . . , σ(n)) ∈ 2(N).

Theorem 2.1. Let (M,ρ) andD be as above, and letK be a compact subset of
(MD, τp). Then the following conditions are equivalent:

(a) The space(K, τp) is fragmented byd;
(b) For each countable subsetA ofD, (K, dA) is separable;
(c) The space(K, γ(D)) is Lindel̈of.

Proof.- (a)⇒(b) By Lemma 2.1 of [24],(K|A, τp(A)) is fragmented bydA. Since
MA is metrizable,(K|A, τp(A)) is compact metrizable; hence it has a countable
base. If(K, dA) is not separable, then there is an uncountable subsetQ of K|A
andε > 0 such thatdA(p, q) > ε wheneverp, q ∈ Q andp 6= q. We may assume
that no point ofQ is τp-isolated inQ since(K|A, τp(A)) has a countable base.
Since(K|A, τp(A)) is fragmented bydA, there is aτp(A)-open subsetU of K|A
such thatU ∩ Q 6= ∅ anddA-diam (U ∩ Q) < ε. HenceU ∩ Q is a singleton,
contradicting the fact that no point ofQ is τp(A)-isolated inQ. Hence(K, dA) is
separable.

(b)⇒(a) Suppose that(K, τp) is not fragmented byd. Then, for some non-
emptyτp-closed subsetC of K andε > 0, each non-emptyτp-open subset ofC
hasd-diameter greater thatε. By induction onn = |s|, s ∈ 2(N), we construct a
family {Us : s ∈ 2(N)} of non-empty relativelyτp-open subsets ofC and a family
{ts : s ∈ 2(N)} of points ofD, satisfying the following conditions:

(α) U∅ = C,
(β) for eachs, Us0

τp ∪ Us1
τp ⊂ Us,

(γ) ρ(x(ts), y(ts)) > ε for eachx ∈ Us0
τp andy ∈ Us1

τp .

Construction. (α) starts the induction fromn = 0. Next, for somen > 0, assume
that{Us : |s| < n} and{ts : |s| < n− 1} have been constructed. Fix ans ∈ 2(N)

with |s| = n− 1. By hypothesis, there arex, y ∈ Us, with d(x, y) > ε. Hence for
somets ∈ D, ρ(x(ts), y(ts)) > ε. By theτp-continuity of the map

(x′, y′) 7→ ρ(x′(ts), y′(ts))

there are relativelyτp-open neighborhoodsUs0 andUs1 of x andy, respectively,
so that(β) and(γ) are satisfied. This completes the construction. Note that(γ)
implies thatUs0

τp ∩ Us1
τp = ∅ for eachs ∈ 2(N).

For eachσ ∈ 2N, choosexσ ∈
⋂∞

n=1 Uσ|n
τp . If σ, σ′ ∈ 2N are two different

sequences, then for somen ∈ {0} ∪ N, σ|n = σ′|n andσ|(n + 1) 6= σ′|(n + 1).
Then by(γ) we haveρ(xσ(tσ|n), xσ′(tσ|n)) > ε. LettingA = {ts : s ∈ 2(N)}
we havedA(xσ, xσ′) > ε. Since2N is uncountable,(K, dA) is not separable, and
therefore(b) does not hold.

(c)⇒(b) This is clear because the topology associated todA is weaker thanγ(D)
wheneverA is a countable subset ofD.
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(a) & (b)⇒(c) Let U = {Uj : j ∈ J} be aγ(D)-open cover ofK and let
C = {A : A ⊂ D andA is countable}. Without loss of generality we may assume
that eachUj is of the form

Uj = U(xj , Aj , εj)
def= {y ∈ K : dAj (xj , y) < εj},

wherexj ∈ K, Aj ∈ C andεj > 0. For eachA ∈ C, let us define

U(A) = {Uj : j ∈ J, Aj ⊂ A} andU(A) =
⋃
{Uj : Uj ∈ U(A)}.

Then we have

(2) U =
⋃
{U(A) : A ∈ C} andK =

⋃
{U(A) : A ∈ C}.

Also if A ⊂ A′ thenU(A) ⊂ U(A′).

Weclaim thatK = U(A) for someA ∈ C.

Suppose for a moment this is true. Then since each member ofU(A) is dA-open
and since(K, dA) is separable by (b), there is a countable subfamily ofU(A)
(hence ofU) that coversK, which completes the proof.

The proof of the claim is by contradiction. So assume thatU(A) 6= K for each
A ∈ C. For eachA ∈ C, let

C(A) = K \ U(A) and C =
⋂ {

C(A)
τp : A ∈ C

}
.

We note thatC(A) ⊃ C(A′) wheneverA ⊂ A′. By compactness of(K, τp),
C 6= ∅, and now (a) tells us that(C, τp) is fragmented byd. So by Lemma 1.1 of
[24], there is a pointy ∈ C where the identity map(C, τp) → (C, d) is continuous.
The second equality in (2) ensures us thaty ∈ U(B) for someB ∈ C. SinceU(B)
is dB-open, for someε > 0, y ∈ U(y,B, ε) ⊂ U(B). Then for eachx ∈ C(B) =
K \U(B), x 6∈ U(y,B, ε) and so for somet ∈ B, ρ(x(t), y(t)) ≥ 2ε/3. For each
t ∈ B, let

(3) Dt = {x ∈ C(B) : ρ(x(t), y(t)) ≥ 2ε/3}.
Then from aboveC(B) =

⋃
{Dt : t ∈ B}.

LetV be aτp-open neighborhood ofy inK such thatd−diam (V τp∩C) ≤ ε/2.
Then we claim that, for somet ∈ B, Dt ∩ V ∩ C(A) 6= ∅ for eachA ∈ C. For,
otherwise, for eacht ∈ B there is anAt ∈ C such thatDt ∩ V ∩ C(At) = ∅.
SinceB is countable, the setE

def= B ∪
⋃
{At : t ∈ B} is also countable, and

Dt ∩ V ∩ C(E) = ∅ for all t ∈ B. Hence

∅ = (
⋃
{Dt : t ∈ B}) ∩ V ∩ C(E) = C(B) ∩ V ∩ C(E) = V ∩ C(E),

contradictingy ∈ C ⊂ C(E)
τp

.
Now fix a t ∈ B so thatDt ∩ V ∩ C(A) 6= ∅ for eachA ∈ C, and let

z ∈
⋂ {

Dt ∩ V ∩ C(A)
τp : A ∈ C

}
.

Thenz ∈ V τp ∩ C, and so

(4) d(z, y) ≤ ε/2.

On the other hand, sincez ∈ Dt
τp , it follows by (3) thatρ(z(t), y(t)) ≥ 2ε/3,

which contradicts (4). This completes the proof both of the claim and of the theo-
rem.
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It is well known that the product of two Lindelöf spaces is not in general Lin-
delöf again: indeed letZ = R and endow it with the topology for which a basis
is given by all the intervals[x, r), wherex, r ∈ R, x < r andr is a rational num-
ber; thenZ is a separable first-countable space that is Lindelöf and which is not
second-countable; moreoverZ × Z is not normal and therefore not Lindelöf, see
[10, pages 248-249].

Fortunately the Lindelöf property for the spaces(K, γ(D)) in Theorem 2.1 is
preserved under the countable power.

Corollary 2.2. LetK, M, D be as in Theorem 2.1. IfK satisfies one of the three
conditions of the theorem, then(K, γ(D))N is Lindel̈of. In particular,(K, γ(D))n

is Lindel̈of for eachn ∈ N.

Proof.- We may assume that the metricρ of the spaceM is bounded by 1. Let
ϕ : (MD)N → (MN)D be the map defined byϕ(ξ)(t)(j) = ξ(j)(t) for all
ξ ∈ (MD)N, t ∈ D, j ∈ N. Clearlyϕ is a homeomorphism when the product
topology is used throughout. Now the spaceMN is metrizable, and we use the

metricρ∞(m,m′) def=
∑

j∈N 2−jρ(m(j),m′(j)) for m,m′ ∈ MN. Let d∞ be the

metric on(MN)D given by

d∞(x, x′) def= sup{ρ∞(x(t), x′(t)) : t ∈ D} for x, x′ ∈ (MN)D.

We now show that ifK is fragmented byd thenϕ(KN) is fragmented byd∞. Let
ε > 0, let C be a non-empty subset ofKN and letπi : KN → K be thei-th
projection. Then by induction we can construct a decreasing sequenceV1 ⊃ V2 ⊃
. . . of non-empty relatively open subsets ofC such thatd-diamπj(Vj) < ε/2 for
eachj ∈ N. Choosek ∈ N so that2−k < ε/2, and letξ, ξ′ ∈ Vk. Then for each
t ∈ D,

ρ∞(ϕ(ξ)(t), ϕ(ξ′)(t)) ≤
∑
j≤k

2−jρ(ξ(j)(t), ξ′(j)(t)) +
∑

j≥k+1

2−j

<
∑
j≤k

2−jd(πj(ξ), πj(ξ′)) + ε/2 ≤ ε/2 + ε/2 = ε.

Thusϕ(Vk) is a non-empty relatively open subset ofϕ(C) with ρ∞-diameter not
greater thenε.

Hence by Theorem 2.1,ϕ(KN) is γ(D)-Lindelöf. So we finish the proof by
showing thatϕ maps(MD, γ(D))N homeomorphically onto((MN)D, γ(D)). Let
τ1, τ2 be the topologies of these two spaces respectively. Then a netξα in (MD)N

τ1-converges toξ ∈ (MD)N if and only if, (i) for eachj ∈ N and for each countable
setA ⊂ D, ρ(ξα(j)(t), ξ(j)(t)) → 0 uniformly in t ∈ A. On the other hand, the
netϕ(ξα) τ2-converges toϕ(ξ) if and only if, (ii) for each countableA ⊂ D,

ρ∞(ϕ(ξα)(t), ϕ(ξ)(t)) =
∑
j∈N

2−jρ(ξα(j)(t), ξ(j)(t)) → 0

uniformly in t ∈ A. The equivalence of statements (i) and (ii) can be seen by an
easy calculation similar to the one given above. Henceϕ is a τ1-τ2 homeomor-
phism.

As an immediate consequence of the foregoing, we obtain the following theo-
rem, the first part of which was mentioned in the introduction. It has been stated in
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[25] as Theorem B and C. The original proof is quite different and depends on the
technique of projections in Banach spaces.

Theorem 2.3. ([25]) A Banach spaceX is an Asplund space if and only if
(X∗, γ(BX)) is Lindel̈of. If this is the case, then(X∗, γ(BX))n is Lindel̈of for
eachn ∈ N.

Proof.- Note that(X∗, γ(BX))n is Lindelöf if and only if (BX∗ , γ(BX))n is Lin-
delöf, andX is an Asplund space if and only if(BX∗ ,weak∗) is fragmented by the
norm. Therefore the theorem follows from 2.1 and 2.2 by regarding(BX∗ ,weak∗)
as a compact subspace of([−1, 1]BX , τp).

3. APPLICATIONS TORN-COMPACT SPACES

LetK be a compact Hausdorff space and letD be a uniformly bounded subset
of C(K) andA ⊂ D, then we define the pseudo-metric onK by

dA(x, x′) = sup{|f(x)− f(x′)| : f ∈ A}, for x, x′ ∈ K.
We write againγ(D) to denote the uniform topology onK generated by the family
of pseudo-metrics{dA : A ⊂ D, A countable}. Observe that whenD separates the
points ofK, K embeds in[−m,m]D for somem > 0. Hence the topologyγ(D)
now defined is the one already given through the embeddingK ⊂ [−m,m]D, and
γ(D) is stronger than the original topology ofK. In particular the equivalences we
have seen in Theorem 2.1 and Corollary 2.2 remain true.

Theorem 3.1. Let K be a compact Hausdorff space and letD be a uniformly
bounded subset ofC(K). Then the following statements are equivalent.
(i) The space(K, dA) is separable for each countableA ⊂ D;
(ii) The space(K, γ(D)) is Lindel̈of;
(iii) The space(K, γ(D))N is Lindel̈of.

Proof.- From the remark above, the theorem is clear in caseD separates the points
of K. The general case can be reduces to this as follows. Letm = sup{‖f‖ :
f ∈ D} and letϕ : K → [−m,m]D be the map given byϕ(x)(f) = f(x) for

all x ∈ K andf ∈ D. ThenK ′ def= ϕ(K) is a compact Hausdorff space. For
eachf ∈ D, let f̂ ∈ C(K ′) be the map given bŷf(ϕ(x)) = f(x), and, for each
A ⊂ D, let Â = {f̂ : f ∈ A}. Then clearlyf 7→ f̂ is a one-to-one map ofD
ontoD̂ anddA(x, y) = dÂ(ϕ(x), ϕ(y)) for all x, y ∈ K. It follows that(K, dA) is
separable if, and only if,(K ′, dÂ) is separable. The last equality also implies that,
for eachx ∈ K, {y ∈ K : dA(x, y) < ε} = ϕ−1({z ∈ K ′ : dÂ(ϕ(x), z) < ε}).
Hence a subsetU of K is γ(D)-open if and only ifU = ϕ−1(U ′) for someγ(D̂)-
open subsetU ′ of K ′. From this it is straight forward to check that(K, γ(D))
(resp.(K, γ(D))N) is Lindelöf if, and only if, (K ′, γ(D̂)) (resp.(K ′, γ(D̂))N) is
Lindelöf. SinceD̂ separates the points ofK ′, the conclusion of the theorem is true
for D̂ andK ′. Hence the theorem is proved in general.

A compact Hausdorff space is said to beRadon-Nikod́ym compact(or RN com-
pact) if it is homeomorphic to a weak∗-compact subset of the dual of an Asplund
space,i.e. a dual Banach space with the RNP. It is shown in [24] that a com-
pact Hausdorff space is RN compact if and only if it is fragmented by a lower-
semicontinuous metric on the space. When(M,ρ) is a metric space (withρ



THE LINDELÖF PROPERTY IN BANACH SPACES STUDIA MATH.154, 1-3, 165-192 7

bounded) the metricd in Theorem 2.1 is clearlyτp lower semi-continuous. There-
fore, Theorem 2.1 provides the following characterization of RN-compact spaces.

Proposition 3.2. A compact Hausdorff space is RN compact if, and only if, it is
homeomorphic to a pointwise compact subsetK of [−1, 1]D, for some setD, such
that (K, γ(D)) is Lindel̈of.

Proof.- By Theorem 3.6 of [24] a compact space is RN compact if, and only if,K
is homeomorphic to a pointwise compact subsetK of [−1, 1]D, for some setD,
such that(K, dA) is separable for each countable subsetA ofD. An application of
Theorem 2.1 finishes the proof of the proposition.

In terms of spaces of continuous functions the proposition above can be restated
as follows.

Corollary 3.3. A compact Hausdorff spaceK is RN compact if, and only if, there
is a bounded subsetD of C(K) separating points ofK such that(K, γ(D)) is
Lindelöf. Moreover, if this is the case, then(K, γ(D))N is Lindel̈of.

Proof.- AssumeK is RN compact. By Proposition 3.2, we may assume thatK is
a subspace of([−1, 1]D, τp) for certain setD, with (K, γ(D)) Lindelöf; for every
d ∈ D let πd : [−1, 1]D → [−1, 1] be the projection defined byπd(x) = x(d),
x ∈ [−1, 1]D. If we let asD = {πd : d ∈ D}, thenD is a uniformly bounded
subset ofC(K) separating the points ofK and such that(K, γ(D)) is Lindelöf.
The last part follows from Theorem 3.1. Similar argument proves the converse.

For weakly compact subsets ofC(K), we have the following.

Corollary 3.4. Let K be a compact Hausdorff space and letH ⊂ C(K) be a
weakly compact (i.e. bounded andτp-compact) set. Then(K, γ(H))N is Lindel̈of.

Proof.- Given a countableA ⊂ H, A
τp ⊂ C(K) is τp(K)-metrizable and thus the

space(C(Aτp), dA
τp ) is separable. Hence,(K|Aτp , dA

τp ) is separable and(K, dA)
too. In view of Theorem 3.1, the proof is complete.

We need the following easy lemma that appears in [5] in a more general context.

Lemma 1. LetZ be a Lindel̈of space, and letH ⊂ C(Z) be equicontinuous. Then
(H, τp(Z)) is metrizable.

Proof. Let dH be the pseudo-metric onZ given by

dH(z, z′) = min{1, sup
h∈H

|h(z)− h(z′)|}.

SinceH is equicontinuous, thedH -topology is weaker than the given one onZ.
So(Z, dH) is Lindelöf and hence separable. LetD be a countabledH -dense sub-
set ofZ. Then sinceH is dH -equicontinuous, onH the topologies of pointwise
convergence onD and onZ coincide. Therefore(H, τp(Z)) is metrizable.

Given a subsetD of RK , let

F (D) =
⋃
{Aτp : A ⊂ D, A countable}.

Note that ifB is a countable subset ofF (D) then there is a countable subsetA of
D such thatB

τp ⊂ A
τp ⊂ F (D). In particular,F (F (D)) = F (D).

Recall that a topological spaceZ is said to becountably tight(resp. to be a
Fréchet-Urysohn space) if for each setS ⊂ Z and each pointx ∈ S there is



8 B. CASCALES, I. NAMIOKA, AND J. ORIHUELA

countable setA ⊂ S (resp. sequence(xn)n in S) such thatx ∈ A (resp. (xn)n

converges tox), see [2, pages 5 and 7]. In applying the results of the last section,
the following theorem of Arkhangel’skii ([2, Theorem II.1.1]) is very useful. We
quote a special case.

Theorem A. Let T be a topological space such that Tn is Lindelöf for each n ∈ N.
Then (C(T ), τp(T )) is countably tight.

Corollary 3.5. LetK be a compact space and letD be a bounded subset ofC(K)
such that(K, γ(D)) is Lindel̈of. Then the following properties hold:

(a) For any countable setA ⊂ D, A
τp (closure taken inRK) is γ(D)-equi-

continuous andτp-metrizable;
(b) F (D) = C(K, γ(D)) ∩Dτp , where the closure is taken inRK ;
(c) (F (D), τp) is a Fréchet-Urysohn space.

Proof.- (a) easily follows from the previous lemma: ifA ⊂ D is countable thenA
is γ(D)-equicontinuous; itsτp-closureA

τp in RK is againγ(D)-equicontinuous
and thereforeτp-metrizable after Lemma 1. This proves (a)

For (b), we first note that (a) impliesF (D) ⊂ C(K, γ(D))∩Dτp . Next we note
that (K, γ(D))n is Lindelöf for eachn ∈ N by Theorem 3.1. This fact implies
that (C(K, γ(D)), τp) is countably tight according to Theorem A. Therefore if
f ∈ C(K, γ(D))∩Dτp then there is a countable subsetA ofD such thatf ∈ Aτp .
Hencef ∈ F (D) which proves (b). The proof of (c) is similar: Suppose that
S ⊂ F (D) andf ∈ S

τp ∩ F (D). Then by the countable tightness, there is a
countable subsetB of S such thatf ∈ B

τp . Then as noted above, there is a
countable subsetA of D such thatB

τp ⊂ A
τp . In particularB

τp is τp-metrizable
by (a). Therefore there is a sequence inB (hence inS) thatτp-converges tof . This
proves (c).

Recall that a topological spaceT is said to bescatteredif each non-empty subset
of T has an isolated point, or equivalentlyT is fragmented by the (necessarily
lower-semicontinuous) trivial metricρ, whereρ(t, s) = 0 for t = s andρ(t, s) = 1
for t 6= s. It can be shown (cf. [30, Theorem 8.5.4]) that a compact Hausdorff
spaceK is scattered if and only if there is no continuous map fromK onto [0,1].
We remark that in the corollary above ifBC(K) ⊂ F (D) thenK is scattered.
For then,(BC(K), τp) is a Fŕechet-Urysohn space; on the other hand,(BC[0,1], τp)
is not Fŕechet-Urysohn, see [2, Lemma II.3.5], and consequentlyK cannot be
continuously mapped onto[0, 1].

Given a topological space(Z, T ), theGδ-topology associated toT is the topol-
ogy onZ whose basis is the family ofGδ-sets,{

⋂
n Un : Un ∈ T }; when no

confusion is likely we simply writeZ for the topological space and then refer to its
Gδ-topology.

Lemma 2. LetK be a compact Hausdorff space. Then theGδ-topology forK is
identical withγ(BC(K)) onK.

Proof.- Clearly theGδ-topology is stronger thanγ(BC(K)). Let a ∈ K, and letG
be aGδ-set containinga. ThenG =

⋂∞
n=1 Un where eachUn is open inK. For

eachn, let fn be a continuous functionfn : K → [0, 1] such thatfn(a) = 0, and
fn|K\Un

≡ 1. WriteA = {fn : n ∈ N}. ThenA is a countable subset ofBC(K),
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andx ∈ G wheneverdA(a, x) < 1, i.e.

a ∈ {x ∈ K : dA(a, x) < 1} ⊂ G.

This shows thatγ(BC(K)) is stronger than theGδ-topology and we are done.

Corollary 3.6 (Meyer, [23]). For a compact Hausdorff spaceK, let τδ denote its
Gδ-topology. Then the following statements are equivalent:

(a) K is scattered;
(b) (K, τδ) is Lindel̈of.
(c) (BCb(K,τδ), τp) is a Fréchet-Urysohn space.

Proof.- (a)⇔(b) RegardingK as a subset of([−1, 1]BC(K) , τp), we apply Theo-
rem 2.1. In this case the metricd is twice the trivial metric and the topology
γ(BC(K)) is theGδ-topology forK by the lemma above. (a)⇔(b) now follows.

Next assume (b), and we apply Corollary 3.5 to ourK andD
def= BC(K). The

hypotheses are satisfied by (b). Since theτp-closure ofD is [−1, 1]K , (b) of Corol-
lary 3.5 says thatF (D) = BCb(K,γ(D)) = BCb(K,τδ) and (c) of the same corollary
says that(BCb(K,τδ), τp) is a Fŕechet-Urysohn space. This is (c). If (c) holds, then
(BC(K), τp) is also a Fŕechet-Urysohn space. But as remarked above, this implies
(a).

We should comment here that topological spaces for whichGδ-sets are again
open are calledP-spaces. It is a very easy exercise to prove that ifZ is a Lin-
delöf P-space thenZn is Lindelöf for n ∈ N and so(C(Z), τp) has countable
tightness; it also follows from Lemma 1 that for such aZ the separable subsets of
(C(Z), τp) are metrizable, and hence(C(Z), τp) is Fŕechet-Urysohn, see also [2].
Our argument also shows the fact that, forK compact and scattered, the space of
all continuous functions onK endowed with itsGδ-topology isB1(K), the space
of τp-limits of sequences inC(K), and that all classes of Baire functions onK are
the same [22].

4. POINTWISE L INDELÖF SUBSETS OF SPACES OF CONTINUOUS FUNCTIONS

LetD be a dense subset of a compact HausdorffK and letH be bounded and
τp(D)-compact subset ofC(K). In this section, we investigate theτp(K)-Lindelöf
property ofH by means of theγ(D)-topology of the earlier sections. As applica-
tion we can prove the results mentioned in the introduction.

The following simple proposition enables us to extract information on
(H, τp(K)) from that on(H, γ(D)).

Proposition 4.1. LetK be a compact Hausdorff space,D a dense subsetK and
H a subsetC(K). If H is τp(K)-Lindelöf, thenγ(D) is stronger thanτp(K) on
H.

Proof.- Let f ∈ H, ε > 0, x ∈ K, and

U = {g ∈ H : |g(x)− f(x)| < ε}.

ThenU is aτp(K)-open neighborhood off in H, and it is sufficient to show that
U is aγ(D)-neighborhood off in H. For eachd ∈ D, let

Dd = {g ∈ H : |g(d)− f(d)| ≤ ε/2}.
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If g ∈
⋂
{Dd : d ∈ D}, then|g(x) − f(x)| ≤ ε/2 sincex ∈ D, and therefore

g ∈ U . It follows that
⋂
{Dd : d ∈ D} ⊂ U . Since eachDd is τp(K)-closed

andH is τp(K)-Lindelöf, there is a countable subsetA of D such that already⋂
{Dd : d ∈ A} ⊂ U , i.e. {g ∈ H : supd∈A |g(d)− f(d)| ≤ ε/2} ⊂ U . HenceU

is aγ(D)-neighborhood off in H and the proof is finished.

Corollary 4.2. Let K be a compact Hausdorff space,D a dense subsetK and
H a boundedτp(D)-compact subset ofC(K). If (H, τp(K)) is Lindel̈of, then
(H, τp(K))N is Lindel̈of.

Proof.- If H is τp(D)-compact andτp(K)-Lindelöf, then by [4, Theorem B]H
is fragmented by the supremum norm ofC(K), i.e. as a compact subsetH of
[−m,m]D for a suitablem, H is fragmented byd in the notation of Theorem 2.1.
According to Theorem 2.1 and Corollary 2.2,(H, γ(D))N is Lindelöf. By Proposi-
tion 4.1,γ(D) is stronger thanτp(K) onH and therefore(H, τp(K))N is Lindelöf
because it is a continuous image of the Lindelöf space(H, γ(D))N.

In [2, Problem IV.11.11] Arkhangel’skii asks the following question. LetK be
a compact Hausdorff space. If there exists aτp-Lindelöf subsetH of C(K) that
separates the points ofK, isK countably tight? The next corollary is an answer to
this question under a rather strong restriction onH.

Corollary 4.3. Let K be a compact Hausdorff space, andH a τp(K)-Lindelöf
bounded subset ofC(K) separating the points ofK. If H is τp(D)-compact for
some dense subsetD ⊂ K, thenK is countably tight.

Proof.- An application of Corollary 4.2 allows us to conclude that(H, τp(K))n is
Lindelöf for n ∈ N. Hence the spaceC(H, τp(K)) is countably tight by Theo-
rem A. The spaceK is homeomorphic to a subspace ofC(H, τp(K)) becauseH
separates the points ofK, and so the proof is done.

If X is a Banach space, thenBX∗∗ is always assumed to have the weak∗-
topology (=σ(X∗∗, X∗)) unless other topology is specified. AlsoX andBX are
considered as subspace/subset ofX∗∗ andBX∗∗ , respectively, by means of the
canonical embedding. Thus(X∗,weak∗) is a subspace of(C(BX∗∗), τp(BX)) and
(X∗,weak) is a subspace of(C(BX∗∗), τp(BX∗∗)). For a subsetS ofX∗, the weak

and weak∗closures ofS are respectively denoted byS
w

andS
w∗

. A particular case
of Corollary 4.2 is the following:

Corollary 4.4. LetX be a Banach space and letH be a weak∗-compact subset of
X∗ which is weakly Lindelöf. Then,(H,weak)N is Lindel̈of.

The next result gives the positive answer to a question posed by Talagrand that
appears in [32] asProblème4.5.

Theorem 4.5. LetX be a Banach space and letH be a weak∗-compact subset of
X∗ which is weakly Lindelöf. Then,

(a) co(H)
w∗

= co(H)
‖ ‖

;

(b) co(H)
w∗

is weakly Lindel̈of.

Proof.- If H is a weak∗-compact subset ofX∗ which is also weakly Lindelöf, then
(H,weak∗) is fragmented by the dual norm by Corollary E in [4]. The equality in
item (a) follows now from Theorem 2.3 in [24].
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Let us prove (b). As noted in the proof of (a),(H,weak∗) is fragmented by

the norm. Therefore if we letW = co(H)
w∗
, thenW is weak∗-compact and

(W,weak∗) is fragmented by the norm by [24, Theorem 2.5]. By embeddingW
into [−m,m]BX for a suitablem > 0, we see that(W,γ(BX)) is Lindelöf by The-
orem 2.1. Therefore the proof is finished once we show thatγ(BX) is stronger than
the weak-topology onW , or equivalently each memberx∗∗ of BX∗∗ is continuous
on (W,γ(BX)). So fix an elementx∗∗ in BX∗∗ . By Corollary 4.4,(H,weak)N is
Lindelöf, and therefore, by Theorem A,(C(H,weak), τp(H)) is countably tight.
SinceBX |H is τp(H)-dense inBX∗∗ |H ⊂ C(H,weak), there is a countable sub-
setA ⊂ BX such thatx∗∗|H is in theτp(H)-closure ofA|H . LetG be the convex
hull of H. Then by the linearity,x∗∗|W is in theτp(G)-closure ofA|W . By (a),
G is norm-dense inW andBX∗∗ |W is an equicontinuous family of functions on
(W, ‖ ‖). Henceτp(W ) andτp(G) coincide onBX∗∗ |W , and sox∗∗|W is in the
τp(W )-closure ofA|W . Finally,A|W is an equicontinuous family on(W,γ(BX))
and hencex∗∗|W , being in the pointwise closure ofA|W , is γ(BX)-continuous on
W .

Remark. In the theorem above as well as in the next corollary, the weak∗-closed

convex hull ofH (= co(H)
w∗

) can be replaced by the weak∗-closed absolutely
convex hull ofH. The proof is almost identical as above since [24, Theorem 2.5]
is actually stated for the weak∗-closed absolute convex hull case.

Corollary 4.6. LetX be a Banach space,H a weak∗-compact subset ofX∗ and
W its weak∗-closed convex hull. The following statement are equivalent

(a) (H, weak) is Lindel̈of;
(b) (H, weak)N is Lindel̈of;
(c) (W, weak) is Lindel̈of;
(d) (W, weak)N is Lindel̈of.

Proof.- The implications (a)⇒(b) and (c)⇒(d) both follow from Corollary 4.4. The
implications (b)⇒(a), (d)⇒(c) and (c)⇒(a) are obvious. And finally, the implica-
tion (a)⇒(c) is Theorem 4.5.

5. BANACH SPACES GENERATED BYRN-COMPACT SUBSETS

If X is either a weakly compactly generated Banach space or the dual of an
Asplund space, thenX is generated by an RN-compact subset in weak- or weak∗-
topology. We shall deal in this section with the class of Banach spaces generated
by RN-compact subsets with respect to a topology weaker than the weak topology.
Being more concrete, our framework is the following: for a Banach space(X, ‖ ‖)
we considerF ⊂ X∗ a norming subset(also called1-norming subset) for X, that
is, aQ-linear setF satisfying

(5) ‖x‖ = sup{| < x, f > | : f ∈ F ∩BX∗}.
If a bounded setH ⊂ X is σ(X,F )-compact and fragmented by the norm, then
(H,σ(X,F )) is an RN-compact set since the norm isσ(X,F )-lower semicontinu-

ous, and we will study the space generated by it, that is, the spaceY = span(H)
‖ ‖

.
The Banach spaceY thus obtained will be called aBanach space generated by an
RN-compact subset. In Section 7, we exhibit several examples of such Banach
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spaces. In order to show the main properties of spaces generated this way we shall
first see that these spaces admit projectional generators as defined below. Here our
main reference shall be [11]. IfA is a non-empty subset of a Banach spaceX,A⊥

denotes the subset{f ∈ X∗ : f(x) = 0 for all x ∈ A} of X∗.

Definition 2. Let X be a Banach space. A projectional generator onX is a
countable-valued mapϕ : F → 2X on a norming subsetF ⊂ X∗ such that
wheneverB ⊂ F is aQ-linear set, we have

(6) ϕ(B)⊥ ∩B ∩BX∗
w∗

= {0}

According to the method developed in [27], [25] and [11], the existence of a
projectional generator leads to the existence of aprojectional resolution of identity
(PRI for short) in the sense that follows. Given a Banach spaceX, the density
characterofX (denoted by densX) is defined to be the least cardinality of a dense
subset ofX. Let µ be the least ordinal such that|µ| = densX, where|µ| denotes
the cardinality of the ordinalµ. A PRI onX is a transfinite sequence{Pα : ω0 ≤
α ≤ µ} of linear projections inX satisfying the following conditions, whereα
andβ are arbitrary ordinals in[ω0, µ]. (a) ‖Pα‖ = 1; (b) densPα(X) ≤ |α|;
(c) PαPβ = PβPα = Pmin{α,β}; (d) For eachx ∈ X and each limit ordinal
α, Pβ(x) → Pα(x) in the norm asβ ↑ α. Next proposition gathers the main
properties of spaces with a projectional generator. In what follows “LUR norm”
stands for “locally uniformly rotund (or convex) norm”.

Each part of the following theorem is known, but they are not usually stated in
the form we prefer in the present paper. We record it here for reference.

Theorem 5.1. Let X be a Banach space with a projectional generator
ϕ : F → 2X . Then the following statements hold.

(a) X admits a PRI{Pα : ω0 ≤ α ≤ µ} such thatPα(X) has a projectional
generator for eachω0 ≤ α < µ;

(b) X admits an equivalent LUR norm;
(c) There is a linear continuous one-to-one operatorT : X → c0(Γ), for some

setΓ;
(d) The Banach spaceX is γ(X,F )-Lindelöf, whereγ(X,F ) is the topology

onX of uniform convergence on bounded countable subsets ofF .

Proof.- (a) With the projectional generatorϕ in X, a PRI{Pα : ω0 ≤ α ≤ µ} can
be constructed, based on pairs ofQ-linear subsets(Aα, Bα),Aα ⊂ X andBα ⊂ F
with ϕ(Bα) ⊂ Aα andBα norming forAα, see proposition 6.1.7 and remark 6.1.8

of [11]; so, we haveBα ∩BX∗
w∗
∩ A⊥α = {0} andPα is the projection fromX

ontoAα
‖ ‖

with kernelB⊥
α . The spaceP ∗

α(X∗) = Bα
w∗

is identified with the dual

of Pα(X) = Aα
‖ ‖

and thereforePα(X) also has a projectional generator defined
onBα by ϕα(f) = Pα(ϕ(f)), f ∈ Bα. These observations complete the proof of
(a).

(b) and (c) Here we use the induction argument encapsulated in [7, Theorem
VII.1.8]. Let P be the class of Banach spaces that admit a projectional genera-
tor. Then (a) shows that the hypothesis forP in [7, Theorem VII.1.8] is satisfied.
Therefore each memberX of P admits an equivalent LUR norm. If, in the proof of
[7, Theorem VII.1.8], one uses [11, Proposition 6.2.2.] instead of Theorem VII.1.6
of [7], then one can also conclude that each memberX of P has property (c).
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(d) The proof of Theorem A in [25] give us this result.

What remains of this section is devoted to proving that a Banach space generated
by an RN-compact subset has a projectional generator and therefore enjoys the
properties listed in Theorem 5.1

First we recall Simons’ lemma below, [31].

Lemma 3. Let (zn)n be a uniformly bounded sequence in`∞(C) and letW be its
convex hull. IfB is a subset ofC such that for every sequence of positive numbers
(λn)n with

∑∞
n=1 λn = 1 there isb ∈ B such that

(7) sup{
∞∑

n=1

λnzn(y) : y ∈ C} =
∞∑

n=1

λnzn(b),

then

(8) sup
b∈B

{lim sup
n→∞

zn(b)} ≥ inf{sup
C
w : w ∈W}.

A subset ofX∗ is said to betotal if its linear span is weak∗-dense inX∗. Clearly
a norming subset forX is a total subset ofX∗.

Definition 3. LetX be a normed space,C ⊂ X a set andF a total subset inX∗.
A subsetB ⊂ C is said to be anF -boundary forC if for everyf in F there is a
b ∈ B such thatf(b) = sup{f(x) : x ∈ C}.

In what follows, whenF is a total norm closed subspace ofX∗ we consider the
norm associated toF given by

pF (x) = sup{| < x, f > | : f ∈ F ∩BX∗},

for x ∈ X. Then the unit ball of(X, pF )∗ is the setF ∩BX∗
w∗

and(X, pF )∗ is

the subspaceH =
⋃∞

n=1 n(F ∩BX∗)
w∗

of X∗. ClearlyF ⊂ H.

Proposition 5.2. LetX be a normed space and letF be a total norm closed sub-
space ofX∗. LetC be a bounded subset ofX andB ⊂ C anF -boundary forC
such that(B, pF ) is separable. Then we have

(9) co(B)
pF = co(C)

σ(X,F )
.

Proof.- The proof is based on the ideas in [13](see also [12]). As we remarked, the

dual of (X, pF ) is the subspaceH =
⋃∞

n=1 nG
w∗

of X∗, whereG = BX∗ ∩ F ,
andF ⊂ H. Hence we have

co(B)
pF ⊂ co(C)

pF = co(C)
σ(X,H) ⊂ co(C)

σ(X,F )
.

Assume that the conclusion of the proposition is false. Then there exists an element

x0 ∈ co(C)
σ(X,F )\co(B)

pF . Then by the separation theorem, there is a functional
f ∈ H = (X, pF )∗ such that

f(x0) > α > sup{f(b) : b ∈ B}.

By scaling we may assume thatf ∈ Gw∗
. LetU = {g ∈ X∗ : g(x0) > α}. Then

U is convex weak∗-open andf ∈ G
w∗
∩ U ⊂ G ∩ Uw∗

. NowG
w∗

is equicon-
tinuous on(X, pF ) andB contains a countablepF -dense subsetD. Therefore in

G
w∗

the topology of pointwise convergence onB is identical with the topology of
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pointwise convergence onD, and the latter is pseudo-metrizable. It follows that
there is a sequence{zn : n ∈ N} in G ∩ U such thatlimn zn(b) = f(b) for each
b ∈ B. Our assumption ofF being norm-closed andB being anF -boundary ofC
implies that the sequence(zn)n satisfies the hypothesis of Lemma 3. Hence by (8),

α > sup
b∈B

f(b) ≥ inf{sup
c∈C

w(c) : w ∈ co({zn})}.

It follows thatα > supC w for somew ∈ co({zn}) ⊂ G ∩ U . In particular, since

w ∈ U , w(x0) > α > supC w. On the other hand, sincex0 ∈ co(C)
σ(X,F )

and,
being inF ,w isσ(X,F )-continuous,w(x0) ≤ supC w, contradicting the previous
inequality. This proves the proposition.

The pointwise limit of a sequence of real-valued continuous functions is called
a function of the first Baire class. More generally a functionf from a topological
spaceM into a normed spaceX is said to beof the first Baire classif there is a
sequence of continuous functionsfn : M → X such that(fn)n converges tof
in (XM , τp). A multivalued mapϕ from the topological spaceM to the space of
subsets of a topological spaceT is said to beuscoif ϕ(m) is a compact non-empty
subset ofT for eachm ∈ M and ifϕ is upper-semicontinuousin the sense that,
wheneverU is an open subset ofT , {m ∈M : ϕ(m) ⊂ U} is open inM .

Ideas in [14], see also [29], allow us to modify Jayne-Rogers’ selection theorem,
[19], to our situation below.

Theorem 5.3. LetM be a metric space,X a normed space andF a total norm
closed subspace ofX∗. LetH be a norm boundedσ(X,F )-compact subset ofX
which is fragmented by the normpF . If ψ is an usco map fromM to subsets of
(H,σ(X,F )), thenψ has a first Baire selectorf fromM into (X, pF ).

Proof.- If we identify (X, pF ) with a subspace of̀∞(F∩BX∗) andH with a weak∗

compact subset there, then we can apply the Remark 17 in [18] to obtain a selector
f of ψH which isσ-discrete and of the first Borel class fromF to `∞(B ∩ BX∗)
(see Corollary 7 in [18]). Such a selector as a map fromF into (X, pF ) is also
σ-discrete of the first Borel class, and by Theorems 1 and 2 of [29]f is first Baire
class fromF into (X, pF ) (see also [14] and the remarks in the introduction of
[29]).

We are now ready to prove below one of the main properties of the selectors
obtained above: the result that follows is a counterpart to the one stated as Theo-
rem 26 in [18], and it is in the setting of topologies of pointwise convergence on
total sets.

Theorem 5.4.LetX be a normed space and letF be a total norm closed subspace
ofX∗. LetH be a norm boundedσ(X,F )-compact subset ofX. LetψH : F →
2H be the multi-valued map given by

ψH(f) = {x ∈ H : f(x) = sup
H
f}.

ThenψH has a selector of the first Baire class from(F, ‖ ‖) into (X, pF ) if, and
only if, (H,σ(X,F )) is fragmented bypF . Moreover, iff : F → H is such a
selector ofψH , then we have

(10) co(H)
σ(X,F )

= co(f(F ))
pF
.
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Proof.- The arguments here are similar to the ones in [18, Theorem 26]. First it
is easy to check thatψH is an usco-map from(F, ‖ ‖) into compact subsets of
(H,σ(X,F )). If (H,σ(X,F )) is fragmented bypF , then, by Theorem 5.3,ψH

has a first Baire class selectorf : (F, ‖ ‖) → (X, pF ). Conversely assume that
such a selectorf exists. LetS be a‖ ‖-closed and‖ ‖-separable subspace ofF ,
and consider the quotient normed space(X/S⊥, ‖ ‖S). Recall that the dual of

(X/S⊥, ‖ ‖S) is isometric withS
w∗

and henceS is a norm closed total subspace
of (X/S⊥, ‖ ‖S)∗. LetπS : X → X/S⊥ be the canonical quotient map and letpS

be the norm onX/S⊥ given by

(11) pS(πS(x)) = pS(x) def= sup{|g(x)| : g ∈ S ∩BX∗}

for eachx ∈ X. ThenπS(H) is a‖ ‖S-bounded,σ(X/S⊥, S)-compact subset of
X/S⊥, andπS(f(S)) is anS-boundary forπS(H). Now let fk : F → X be a
sequence of‖ ‖− pF continuous maps such that for eachg ∈ F, fk(g) → f(g) in
pF . For each subsetA of F , let

Φ(A) =
∞⋃

k=1

fk(A).

Thenf(A‖ ‖) ⊂ Φ(A)
pF andΦ(A) is countable wheneverA is. If D is a ‖ ‖-

dense countable subset ofS, thenf(S) = f(D‖ ‖) ⊂ Φ(D)
pF . Hencef(S) is

pF -separable and soπS(f(S)) is pS-separable. It follows from Proposition 5.2
that

(12) co(πS(f(S)))
pS = co(πS(H))

σ(X/S⊥,S)
.

This shows in particular that, wheneverS is a‖ ‖-separable‖ ‖-closed subspace
of F , πS(H) is pS-separable and henceH is pS-separable. RegardingH as a
τp-compact subset of[−m,m]F∩BX∗ with an appropriatem > 0, we see from
Theorem 2.1 that(H,σ(X,F )) is fragmented bypF .

Finally we show that (10) is a consequence of (12). For this it is sufficient to
prove that for eachu ∈ X, there is a‖ ‖-separable‖ ‖-closed subspaceS of F
such that

(13) pS-dist(πS(u), co(πS(f(S))) ≥ pF -dist(u, co(f(S))).

For if u ∈ co(H)
σ(X,F )

and ifS is chosen as above, then since

πS(u) ∈ πS(co(H))
σ(X/S⊥,S)

we have, by (12),0 = pS-dist(πS(u), co(πS(f(S))) ≥ pF -dist(u, co(f(S))).
Henceu ∈ co(f(S))

pF ⊂ co(f(F ))
pF . This shows that the left side of (10) is

contained in the right side. The reverse inclusion is obvious.
To prove (13), letu ∈ X. For each countable subsetM of X, let α(M) be a

countable subset ofF ∩BX∗ such that, for eachx ∈M ,

pF (u− x) = sup{|g(u− x)| : g ∈ α(M)}.

Inductively we define a sequenceA1 ⊂ A2 ⊂ . . . of countable subsets ofF as
follows: letg0 be an arbitrary non-zero element ofF and letA1 = {qg0 : q ∈ Q}.
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Assuming thatAn has been defined, let

An+1 = spanQ(α(coQ(Φ(An))) ∪An),

where spanQ(C) (resp. coQ(C)) denotes the set of all linear (resp. convex) combi-

nations of elements ofC with rational coefficients. LetS =
⋃∞

n=1An
‖ ‖

.
Before showing thisS satisfies (13), we note that ify ∈ coQ(Φ(An)) then

pF (u− y) = sup{|g(u− y)| : g ∈ α(coQ(Φ(An)))} ≤ pS(u− y) ≤ pF (u− y).

HencepF (u− y) = pS(u− y). Now by the definition ofΦ,

co(f(S)) ⊂ co(Φ(
∞⋃

n=1

An)

pF

) ⊂ coQ(
∞⋃

n=1

Φ(An))

pF

=
∞⋃

n=1

coQ(Φ(An))

pF

.

Let x ∈ cof(S) andε > 0 be arbitrary. Then there is ay ∈ coQ(Φ(An)) for some
n such thatpS(x− y) ≤ pF (x− y) < ε. Then

pS(πS(u)− πS(x)) = pS(u− x) ≥ pS(u− y)− ε = pF (u− y)− ε ≥

≥ pF (u− x)− 2ε ≥ pF -dist(u, cof(S))− 2ε.

Sincex ∈ f(S) andε > 0 are arbitrary, we obtain (13).

Remark In the setting of Theorem 5.4, (12) is now true wheneverS is a ‖ ‖-
closed subspace ofF . This can be seen by applying Theorem 5.4 to the normed

spaceX/S⊥, the total subspaceS of (X/S⊥)∗ = S
w∗

, theσ(X/S⊥, S)-compact
setπS(H) and the selectorπS ◦ f |S for the usco mapψS : S → 2πS(H). This
remark is important in the proof of the next theorem.

Theorem 5.5. LetX be a Banach space,F a norming subset ofX∗ and letH be
a boundedσ(X,F )-compact subset ofX fragmented by the norm ofX. Then the

Banach spaceY = span(H)
‖ ‖

has a projectional generator.

Proof.- We first prove the caseX = Y . SinceH is bounded,σ(X,F ) and

σ(X,F ‖ ‖) coincide onH. Hence we may assume thatF is a‖ ‖-closed norming
subspace. LetψH : F → 2H be the set-valued map given byψH(g) = {x ∈ H :
g(x) = supH g} for eachg ∈ F . Then by Theorem 5.4,ψH admits a selector
f : F → H of the first Baire class from(F, ‖ ‖) into (X, ‖ ‖). Let {fk} be a
sequence of continuous maps:(F, ‖ ‖) → (X, ‖ ‖) such thatfk(g) → f(g) in the
norm for eachg ∈ F , and we define the countable-valued mapϕ : F → 2X by
ϕ(g) = {fk(g) : k ∈ N}. We prove thatϕ is a projective generator (cf. Defini-

tion 2). So letB be aQ-linear subset ofF , and letg ∈ ϕ(B)⊥ ∩B ∩BX∗
w∗

. We
must show thatg = 0.

Let S = B
‖ ‖ ⊂ F , let πS : X → X/S⊥ be the quotient map and letpS be the

norm defined onX/S⊥ by (11). Sinceg ∈ S ∩BX∗
w∗

, g defines apS-continuous
linear functionalg onX/S⊥ by the formula:g(πS(x)) = g(x) for eachx ∈ X.

Now by the definition ofϕ, f(S) = f(B‖ ‖) ⊂ ϕ(B)
‖ ‖

. Sinceg vanishes on
ϕ(B), it also vanishes onf(S), and henceg vanishes onπS(f(S)). By the remark
following the last theorem, (12) is valid forS and henceπS(H) ⊂ co(πS(f(S))

pS .
Therefore by continuityg vanishes onπS(H), i.e. g vanishes onH. SinceX is the
norm-closed span ofH, g = 0.
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The general case is proved by applying the special case above to the Banach
spaceY and the norming subspaceF |Y for Y . Note thatH is aσ(Y, F |Y )-compact
subset ofY and it is fragmented by the norm ofY .

Corollary 5.6. LetX be a Banach space,F a norming subset ofX∗,H a bounded
subset ofX which isσ(X,F )-compact and fragmented by the norm ofX, and let

Y = span(H)
‖ ‖

. Then,

(a) (Y, γ(X,F )) is Lindel̈of;
(b) Y has a PRI;
(c) Y has an equivalent LUR norm.

Proof.- This is a straightforward consequence of Theorem 5.1 and Theorem 5.5.

Another property of spaces generated by RN-compact sets is the following. For
this, we need one more definition. Let(Z, τ) be a topological space andρ a metric
on Z. Then(Z, τ) is said to beσ-fragmented byρ if for eachε > 0, Z can be
written asZ =

⋃
{Zn : n ∈ N} with eachZn having the property that, whenever

C is a non-empty subset ofZn, there exists aτ -open subsetU of Z such thatU ∩C
is non-empty and ofρ-diameter less thanε.

Theorem 5.7. LetX be a Banach space,F a norming subset ofX∗,H a bounded
subset ofX which is σ(X,F )-compact fragmented by the norm ofX and let

Y = span(H)
‖ ‖

. Then,(Y, σ(X,F )) is σ-fragmented by the norm.

Proof.- The proof analogous to the one given for weakly compactly generated in

[15]. Indeed,W = co(H)
σ(X,F )

= co(H)
‖ ‖

isσ(X,F )-compact and fragmented
by the norm, [6, 4.1, 5.2 and 5.3]. Lemmas 2.1 and 2.2 [24] gives us thatW −
W is againσ(X,F )-compact and fragmented by the norm. We now haveY =⋃∞

n=1 n(W −W )
‖ ‖

and becauseF is norming, the norm inY is σ(X,F )-lower
semi-continuous and Lemma 2.3 in [15] gives us the conclusion.

We can gather all the information that we have obtained so far in the following:

Theorem 5.8. LetX be a Banach space,F a norming subset ofX∗,H a bounded

subset ofX which isσ(X,F )-compact and letY = span(H)
‖ ‖

. The following
statements are equivalent,

(a) (H,σ(X,F )) is fragmented by the norm;
(b) (Y, σ(X,F )) is σ-fragmented by the norm;
(c) (H, γ(X,F )) is Lindel̈of;
(d) (Y, γ(X,F )) is Lindel̈of.

Proof.- (a)⇒(b) is the previous result. (b)⇒(a) follows from Lemma 3.1.1 in [16].
(a)⇒(d) is the item (a) of Corollary 5.6. (d)⇒(c) is obvious and (c)⇒(a) is also
the implication (c)⇒(a) in Theorem 2.1.

In terms of compact sets embedded in cubes, the theorem above can be rephrased
as:

Theorem 5.9. LetK ⊂ [−1, 1]D ⊂ `∞(D) be aτp-compact set. The following
statements are equivalent

(a) (K, τp) is fragmented by the norm;

(b) (span(K)
‖ ‖
, τp) is σ-fragmented by the norm;
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(c) (K, γ(D)) is Lindel̈of;

(d) (span(K)
‖ ‖
, γ(D)) is Lindel̈of.

6. BANACH SPACES GENERATED BYL INDELÖF SUBSETS

In this section we study Banach spaces which are Lindelöf in weak topology.
Main tools are again the projectional generators. Beyond Theorem 6.1 below, that
gives a quite general way of deciding when a Banach space is weakly Lindelöf,
here we take advantage of the scope of the results in Section 4 and the main re-
sults in [4] to prove that a Banach spaceX generated by a weakly Lindelöf subset
which isσ(X,F )-compact with respect to some norming subspaceF ⊂ X∗, is
weakly Lindel̈of. We need the following definition. For each setΓ, let Σ(Γ) be
the subspace of̀∞(Γ) consisting of allu ∈ `∞(Γ) with {γ : u(γ) 6= 0} at most
countable. A compact Hausdorff spaceK is said to beCorsonif, for someΓ, K
can be embedded inΣ(Γ) as a pointwise compact subset.

Definition 4 ([1]). A Banach spaceX is said to be Weakly Lindelöf Determined
(WLD for short) if there is a bounded one-to-one linear mapT : X∗ → `∞(Γ), for
some setΓ, which isσ(X∗, X)-pointwise continuous and such thatT (X∗) ⊂ Σ(Γ)

It was established in [26] that a Banach space is WLD if, and only if, its dual unit
ball with the weak∗ topology is Corson compact. Note that WCG Banach spaces
and hence separable Banach spaces are WLD. It is known that a WLD Banach
space isγ(BX∗)-Lindelöf, [25] and renormable by a LUR norm, [34] and [21].
A Banach spaceX or more generally a convex subsetM of X is said to have
propertyC (after Corson) if each collection of relatively closed convex subsets of
M with empty intersection has a countable subcollection with empty intersection.
If (M,weak) is Lindelöf, thenM has propertyC since closed convex sets inX are
also weak-closed. It is shown in [28] that the Banach spaceX has the propertyC
if and only if, wheneverA ⊂ X∗ andf ∈ Aw∗

, there is a countable subsetC of A

such thatf ∈ coA
w∗
. This fact is crucial in the proof of the next theorem.

Theorem 6.1. LetX be a Banach space with a projectional generator. IfX has
propertyC, thenX is WLD, i.e.(BX∗ ,weak∗) is Corson compact.

Proof.- Let ϕ : F → 2X be a projectional generator onX, whereF is a norm-
ing subspace forX. ThenX admits a PRI constructed as we have recalled in the
Proposition 5.1. Let{Pα : ω0 ≤ α ≤ µ} be this PRI Since propertyC is sta-
ble under taking closed subspaces, eachPα(X) has propertyC and a projectional
generator. Now, by a standard induction process on the density character of the
Banach space, we may assume that X admits a PRI{Pα : ω0 ≤ α ≤ µ}, with µ a
limit ordinal, such that, for eachω0 ≤ α < µ, Pα(X) is WLD; that is, there is a
one-to-one norm one operator

Tα : P ∗
α(X∗) → `∞(Γα) with Tα(P ∗

α(X∗)) ⊂ Σ(Γα)

which is weak∗-pointwise continuous. Assume that{Γα : ω0 ≤ α < µ} is a
disjoint family. Then we define

Γ = Γω0 ∪
⋃
{Γα+1 : ω0 ≤ α < µ}

andT : X∗ → `∞(Γ) by the formulas

(Tf)(n) = Tω0(P
∗
ωo

(f))(n) if n ∈ Γω0 = N
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(Tf)(γ) = Tα+1(P ∗
α+1(f)− P ∗

α(f))(γ) if γ ∈ Γα+1, ω0 ≤ α < µ.

ClearlyT is bounded linear and weak∗-pointwise continuous. We claim thatT (X∗)
⊂ Σ(Γ). To prove it, we will see that the set{α ∈ [ω0, µ) : P ∗

α+1(f)−P ∗
α(f) 6= 0}

is at most countable for eachf ∈ X∗. Assume on the contrary that this is not
the case and takef ∈ X∗ so that this set is uncountable. Recall that the fam-
ily {Bα : α < µ} is a long sequences of increasingQ-linear subsets ofF with

P ∗
α(X∗) = Bα

w∗
for eachα < µ. Also for each limit ordinalβ ≤ µ and

f ∈ X∗, weak∗-limα↑β P
∗
α(f) = P ∗

β (f), andP ∗
µ = Id. Let ∆ = {α ∈ [ω0, µ) :

P ∗
α+1(f)−P ∗

α(f) 6= 0}. Then∆ is an uncountable subset of[ω0, µ) which is well-
ordered under the inherited ordering. Therefore there is an order-isomorphismϕ
from [0, ω1) onto an initial segment of∆. Let η = supϕ([0, ω1)) ≤ µ. Then
P ∗

η (f) =weak∗-limγ↑ω1 P
∗
ϕ(γ)(f) and therefore

P ∗
η (f) ∈

⋃
γ<ω1

P ∗
ϕ(γ)(f)

w∗

.

SinceX has propertyC, there is a sequenceγ1 < γ2 < . . . in [0, ω1) such that

P ∗
η (f) ∈ co(

∞⋃
i=1

P ∗
ϕ(γi)

(f))

w∗

.

Let ξ = ϕ(supi γi) ∈ ∆. Thenξ < η ≤ µ. Since for eachi, Pϕ(γi)(f) ∈
Bϕ(γi)

w∗
⊂ Bξ

w∗
, we haveP ∗

η (f) ∈ Bξ
w∗

. It follows thatP ∗
η (f) is a fixed point

of P ∗
α for all α ≥ ξ. Hence ifξ ≤ α < η, thenP ∗

η (f) = P ∗
αP

∗
η (f) = P ∗

α(f) by the
property of PRI:PηPα = Pmin{η,α}. In particular,P ∗

ξ+1(f) = P ∗
η (f) = P ∗

ξ (f),
contradictingξ ∈ ∆. HenceT (X∗) ⊂ Σ(Γ).

To see thatT is one-to-one, letT (f) = 0 for an f ∈ X∗. ThenP ∗
ω0

(f) =
0, andP ∗

α+1(f) = P ∗
α(f) = 0 for all α ∈ [ω0, µ). Then by a straightforward

(transfinite) induction,P ∗
α(f) = 0 for all α ∈ [ω0, µ), and hencef =weak∗-

limα↑µ P
∗
α(f) = 0.

A combination of Theorem 5.5 and Theorem 6.1 gives us the following:

Corollary 6.2. LetX be a Banach space,F a norming subset ofX∗,H a bounded
subset ofX which isσ(X,F )-compact fragmented by the norm ofX and letY =

span(H)
‖ ‖

. If Y has propertyC, thenY is WLD.

As mentioned earlier, a WLD Banach space is weakly Lindelöf, but its converse
is not true;cf. [21, p. 514]. In [21, p. 521], Mercourakis and Negrepointis have
asked if this converse is true in dual Banach spaces. The affirmative answer to this
question is contained in [25] where it is shown that ifX is an Asplund space then
X∗ is weakly Lindel̈of if and only if (BX∗∗ ,weak∗) is Corson compact,i.e. X∗

is WLD. Recall that Edgar had observed earlier [9] thatX is an Asplund space
wheneverX∗ is weakly Lindel̈of. The next two corollaries are generalizations of
the result in [25] just mentioned. The first one is a special case of the previous
corollary.
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Corollary 6.3. Let X be an Asplund space,H a subset ofX∗ which is weak∗-

compact and letY = span(H)
‖ ‖

. If Y has propertyC thenY is WLD. In par-
ticular, if X is an Asplund space, thenX∗ is WLD if and only if it has property
C.

A combination of most of the results in this paper and the main result in [4]
finally allows us to prove.

Corollary 6.4. Let X be a Banach space,H a subset ofX∗ which is weak∗-

compact and weakly Lindelöf. Then, the space generated byH, Y = span(H)
‖ ‖

,
is WLD. In particularY is weakly Lindel̈of.

Proof.- By the remark following Theorem 4.5, we know that the weak∗-closed
absolute convex hull ofH, sayW , is also weakly Lindel̈of. Hence by Corollary E

of [4], (W,weak) is fragmented by the norm. Furthermore,Y = span(W )
‖ ‖

=⋃∞
n=1 nW

‖ ‖
has propertyC by Proposition 2 in [28]. Hence by Corollary 6.2,Y is

WLD, and since a closed subspace of a WLD Banach space is again WLD ([21]),
the corollary follows.

Remark 6.5. Let us remark that the statementY being weakly Lindel̈of in the pre-
vious Corollary can be proved more directly using Proposition 4.1, Corollary 5.6

and Theorem 4.5. With the notation above we know thatZ
def= span(H) =⋃∞

n=1 nW is weakly Lindel̈of, because it is a countable union of weakly Lindelöf
subsets. Therefore by Proposition 4.1,γ(X∗, X) is stronger than the weak topol-

ogy onZ. On the other hand,Y = Z
‖ ‖

is Lindelöf with respect toγ(X∗, X)
by Corollary 5.6, sinceH is weak∗-compact and(H,weak) is fragmented by the
norm. Consequently,Y will be weakly Lindel̈of if we can prove thatγ(X∗, X) is
stronger than the weak topology onY . For this, it is sufficient to prove that for
eachx∗∗ ∈ X∗∗ the restrictionx∗∗|Y is γ(X∗, X)-continuous. We know from
above thatx∗∗|Z is γ(X∗, X)-continuous. This means that for eachε > 0 there is
aγ(X∗, X)-open neighborhoodU ⊂ X∗ of the origin such that

(14) |x∗∗(g)| < ε for each g ∈ U ∩ Z.

NowU is also‖ ‖-open and thereforeU ∩ Z‖ ‖ = U ∩ Y ‖ ‖ ⊃ U ∩ Y . Therefore
the‖ ‖-continuity ofx∗∗ and (14) imply that|x∗∗(f)| ≤ ε for everyf ∈ U ∩ Y .
This means thatx∗∗ is γ(X∗, X)-continuous onY , which concludes the proof.

7. EXAMPLES OF SPACES GENERATED BYRN COMPACT SUBSETS

As mentioned at the beginning of Section 5, in this section we give several exam-
ples of Banach spaces generated by an RN-compact subset. By Theorem 5.5, these
spaces possess all the properties stated in Theorem 5.1. Also by Corollary 6.2, for
these spaces being WLD is equivalent to having propertyC.

Example A. Spaces with 1-norming Markusevich basis.

Let us recall that aMarkusevich basisor M-Basisof a Banach spaceX is a
subset{(xi, fi) : i ∈ I} of X ×X∗ such that

(a) span{xi : i ∈ I}‖ ‖
= X;

(b)
⋂

i∈I Kernel(fi) = {0};
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(c) fj(xi) = δij , i, j ∈ I.

Let us consider the subspaceF
def= span{fi} which is a total subspace inX∗ after

condition (b). IfK
def= {xi : i ∈ I}∪{0} then it is easy to see thatK is aσ(X,F )-

compact that is fragmented by the norm. Indeed,{xi : i ∈ I} is aσ(X,F )-discrete
set with0 as its unique limit point. WhenF is norming, the M-basis is then called a
norming M-basis. Therefore any Banach space with norming M-basis is generated
by an RN-compact subset. Theσ-fragmentability of spaces with a norming M-
basis was first proved in the paper [17]; here, it is a consequence of Theorem 5.8.

Example B. Spaces of continuous functions.

LetK be a compact space andD a dense subset ofK. If H ⊂ C(K) is τp(D)-
compact, uniformly bounded, fragmented by the supremum norm and separates the
points ofK, thenC(K) is generated by an RN-compact set. Indeed, in this case
the norming subspace ofC(K)∗ isF = span{δx : x ∈ D} and we observe that for
everyn = 1, 2, . . . the set

Hn def= {f1 · f2 · · · · · fn : fi ∈ H, i = 1, 2, . . . , n}

is σ(C(K), F )-compact and fragmented by the norm after Lemmas 2.1 and 2.2
in [24]. Now, W =

⋃∞
n=1(1/n)Hn ∪ {0} is alsoσ(C(K), F )-compact andσ-

fragmented by the norm, hence fragmented, [16, Theorem 4.1]. On the other hand,

the Stone-Weierstrass theorem gives us the equalityspan(W )
‖ ‖

= C(K) and so
C(K) is generated by aσ(C(K), F )-compact subset fragmented by the norm.

Example C. Spaces of continuous functions defined on solid compact spaces and
on compact spaces defined trough adequate families of sets.

Let I be a set and consider the cube[0, 1]I with the product topology. Given
x ∈ [0, 1]I let us write

supp(x) def= {i ∈ I : x(i) 6= 0}

and

F(I) = {x ∈ [0, 1]I : supp(x) is finite}.
We claim that ifK ⊂ [0, 1]I is a compact subset such thatK ∩F(I) is dense in

K (i.e.K is a special type ofValdivia compactspace), thenC(K) is generated by
an RN-compact subset. Indeed, let us writeD = K∩F(I) andπi : [0, 1]I → [0, 1]
to denote the canonical projection onto thei-th coordinate, for eachi ∈ I. Without
loss of generality we can, and do, assume that for eachi ∈ I there isx ∈ K
such thatπi(x) 6= 0, because otherwise we can remove from the index setI the
elementi that is not needed to embedK in [0, 1]I . Observe that{πi : i ∈ I}
is τp(D)-discrete and that eachτp(D)-neighborhood of0 must contains all but
at most finitely many{πi : i ∈ I}; therefore{πi : i ∈ I} ∪ {0} is τp(D)-
compact,‖ ‖∞-fragmented and separating the points ofK. We use now Example B
to conclude thatC(K) is generated by an RN-compact subset.

A compact spaceK ⊂ [0, 1]I is said to be solid if wheneverx ∈ K andy ∈
[0, 1]I are such that eitheryi = xi or yi = 0, for every i ∈ I, theny ∈ K.
Obviously, ifK ⊂ [0, 1]I is solid, thenK ∩ F(I) is dense inK and therefore
C(K) is generated by a RN-compact after our former reasoning.
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A particular situation to which we can apply the above is when we deal with
compact spaces defined through adequate families of sets. Following Talagrand,
[33], if I is a non empty set, a familyA of subsets ofI is calledadequateif

(a) If A ∈ A andB ⊂ A, thenB ∈ A;
(b) {i} ∈ A, for everyi ∈ I;
(c) If A ⊂ I and every finite subset ofA belongs toA, thenA ∈ A.

If A is an adequate family inI, then

K
def= {χA : A ∈ A}

is a solid compact space. ThenC(K) is also generated by a RN-compact sub-
sets. Talagrand produced in [33, Théor̀eme 4.3] an example of a compact space
K defined through an adequate family of sets that is not Eberlein compact: the
correspondingC(K) then does not contain aτp(K)-compact subset separating
the points ofK, even though it contains aτp(D)-compact set (for certain dense
D ⊂ K), ‖ ‖∞-fragmented subset separating the points ofK.

Example D. Spaces of Bochner integrable functions.

Let (X, ‖ ‖) be a Banach space andF ⊂ X∗ a norming subspace. It was
stated in [6, Corollary 4.3] that ifσ(X,F )-separable compact subsets ofX are
‖ ‖-separable then theσ(X,F )-compact (norm bounded) subsetsH of X are‖ ‖-
fragmented; this is indeed a consequence of the equivalence between the first two
statements in Theorem 2.1: writeD = F ∩BX∗ and considerH ⊂ [−1, 1]D; given
A ⊂ D countable the setH|A ⊂ [−1, 1]A is compact and metrizable, therefore
separable; then there is aσ(X,F )-compact and separableS ⊂ H such thatS|A =
H|A; the restriction map[−1, 1]D → [−1, 1]A is continuous for the corresponding
uniform metrics and thereforeH|A is dA-separable, becauseS is dD-separable (S
is ‖ ‖-separable).

The above observation is useful in finding more compact spaces “living” in Ba-
nach spaces and fragmented by the norm without being necessarily weakly com-
pact.

Given a probability space(Ω,Σ, µ) we will denote byLp(µ,X), 1 ≤ p <
+∞, the Banach space ofµ-strongly measurableX-valuedp-Bochner integrable
functionsf : Ω −→ X normed by

‖ f ‖p= (
∫

Ω
‖ f ‖p dµ)

1
p

The dualLp(µ,X)∗ of Lp(µ,X) is a space of weak∗ measurable functions and
the spaceLq(µ,X∗), 1 = 1

p + 1
q , which can be identified isometrically with a sub-

space ofLp(µ,X)∗, is a norming subspace. Soσ′ = σ(Lp(µ,X), Lq(µ,X∗)) is
a Hausdorff topology which is weaker than the weak topology ofLp(µ,X); these
two topologies coincide if, and only if,X∗ has the RNP [8, IV.1.1]. It was shown
in [6, Example E] that everyσ′-separable compact subset ofLp(µ,X) is norm
separable. Therefore, everyσ′-compact subset ofLp(µ,X) is fragmented by the
norm. Thus we can apply the results in sections 5 and 6 to say for instance that if

H ⊂ Lp(µ,X) is σ′-compact then the spaceY = span(H)
‖ ‖p

has a PRI. This
result is related to the main result of [3] which asserts the existence of a bounded

one-to-one operator fromspan(H)
σ′

into somec0(Γ) which isσ′-pointwise con-
tinuous.



THE LINDELÖF PROPERTY IN BANACH SPACES STUDIA MATH.154, 1-3, 165-192 23

REFERENCES

[1] S. Argyros and S. Mercourakis,On weakly Lindel̈of Banach spaces, Rocky Mountain J. Math.
23 (1993), no. 2, 395–446.

[2] A.V. Arkhangel’skii, Topological function spaces, Kluwer Academic Publishers, Dor-
drecht/Boston/London, 1992.
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