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ABSTRACT. In metrizable spaces, points in the closure of a subsetA are limits
of sequences inA; i.e., metrizable spaces are Fréchet-Uryshon spaces. The aim
of this paper is to prove that metrizability and the Fréchet-Uryshon property are
actually equivalent for a large class of locally convex spaces that includes(LF )-
and (DF )-spaces. We introduce and study countable bounded tightness of a
topological space, a property which implies countable tightness and is strictly
weaker than the Fréchet-Urysohn property. We provide applications of our re-
sults to, for instance, the space of distributionsD′(Ω). The spaceD′(Ω) is not
Fréchet-Urysohn, has countable tightness, but its bounded tightness is uncount-
able. The results properly extend previous work in this direction.

1. INTRODUCTION

The tightnesst(X) [resp.,bounded tightnesstb(X)] of a topological spaceX
is the smallest infinite cardinal numberm such that for any setA of X and any
point x ∈ A (the closure inX) there is a set [resp., bounding set]B ⊂ A for
which |B| ≤ m andx ∈ B. Recall that a subsetB of X is boundingif every
continuous real valued function onX is bounded onB. The notion of countable
tightness arises as a natural weakening of the Fréchet-Urysohn notion. Recall that
X is Fréchet-Urysohnif for every setA ⊂ X and everyx ∈ A there is a sequence
in A which converges tox. Clearly,

Fréchet-Urysohn⇒ countable bounded tightness⇒ countable tightness.
Franklin [9] recorded an example of a compact topological space with countable
tightness, hence countable bounded tightness, which is not Fréchet-Urysohn.

In [5] Cascales and Orihuela introduced the classG of those locally convex
spaces (lcs)E = (E,T) for which there is a family{Aα : α ∈ NN} of subsets in
the topological dualE′ of E (called itsG-representation) such that:

(a) E′ =
⋃
{Aα : α ∈ NN};

(b) Aα ⊂ Aβ whenα ≤ β in NN;

(c) in eachAα, sequences areT− equicontinuous.

(1)

In the setNN of sequences of positive integers the inequalityα ≤ β for α = (an)
andβ = (bn) means thatan ≤ bn for all n ∈ N.

The classG is stable by the usual operations of countable type and con-
tains many important spaces; e.g., all(LF )-spaces and the(DF )-spaces of
Grothendieck. In [5] Cascales and Orihuela extended earlier results for(LM)-
and(DF )-spaces by showing that ifE ∈ G, its precompact sets are metrizable
and bothE andE with its weak topologyσ(E,E′) are angelic spaces. In a very
recent paper [4] we advanced the study started in [5], characterizing those spaces
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in classG which have countable tightness when endowed with their weak topolo-
gies. We showed that quasibarrelled spaces inG have countable tightness for both
the weak and original topologies [4, Theorem 4.8], a bold generalization of Ka-
plansky’s classical theorem stating that the weak topology of metrizable spaces
has countable tightness. On the other hand, we showed [4, Theorem 4.6] that for
E ∈ G the countable tightness of(E, σ(E,E′)) is equivalent to realcompactness
of the weak dual(E′, σ(E′, E)).

The present article further advances our study ofG: we show that in this
class metrizability and the Fréchet-Urysohn property are actually equivalent, The-
orem 2.2; moreover, we prove that for barrelled spacesE in G, metrizability and
countable bounded tightness, as well as [E does not containϕ], are equivalent con-
ditions, Theorem 2.5. These generalize earlier results of [11, 12, 14, 16] and have
interesting applications. For example: The strong dualE′

β := (E′, β(E′, E)) of
a regular (equivalently, locally complete)(LF )-spaceE has countable tightness
providedE′

β is quasibarrelled, butE′
β is metrizable if and only if it is Fŕechet-

Uryshon, if and only ifE′
β is quasibarrelled andtb(E′

β) ≤ ℵ0. This applies to
many concrete spaces, illustrated below for the space of distributionsD′(Ω).

Our notation and terminology are standard and we take [2, 15] as our basic
reference texts.

2. A CHARACTERIZATION OF METRIZABLE SPACES

First we obtain a Makarov-type result, cf. [2, 8.5.20], for spacesE ∈ G. Recall
that an increasing sequence(An) of absolutely convex subsets of a lcsE is called
bornivorousif for every bounded setB in E there existsAm which absorbs the set
B.

Lemma 1. Let E ∈ G and let{Aα : α ∈ NN} be aG-representation ofE. For
α = (nk) ∈ NN put

Cn1...nk
=

⋃
{Aβ : β = (mk) ∈ NN, nj = mj , j = 1, 2, . . . k},

k ∈ N. Then the sequence of polars

Co
n1
⊂ Co

n1,n2
⊂ · · · ⊂ Co

n1,n2,...,nk
⊂ · · ·

is bornivorous inE.

Proof. Assume that there exists a bounded setB in E such thatB 6⊂ kCo
n1...nk

for everyk ∈ N. Then for everyk ∈ N there existsxk ∈ B such thatk−1xk 6∈
Co

n1...nk
. Therefore for everyk ∈ N there existsfk ∈ Cn1...nk

such that|fk(xk)| >
k. Then for everyk ∈ N there existsβk = (mk

n)n ∈ NN such thatfk ∈ Aβk
, where

nj = mk
j for j = 1, 2, . . . k.

Define an = max{mk
n : k ∈ N}, n ∈ N, andγ = (an) ∈ NN. Clearly

γ ≥ βk for everyk ∈ N. Therefore, by property (b) in the definition of theG-
representation ofE one getsAβk

⊂ Aγ , sofk ∈ Aγ for all k ∈ N; by property (c)
the sequence(fk) is equicontinuous. Hence(fk) is uniformly bounded on bounded
sets inE, includingB, a contradiction. �

Recall that a lcsE is barrelled (resp. quasibarrelled) if every closed and ab-
solutely convex subset ofE which is absorbing (resp. absorbs every bounded set



3

of E) is a neighborhood of zero, or equivalently, if every weakly bounded (resp.
strongly bounded) subset ofE′ is equicontinuous.

Along with the terminology of [19] a quasi-LB representation of a lcsF is a
family {Bα : α ∈ NN} of Banach discs inF satisfying the following conditions:

(i) F =
⋃
{Bα : α ∈ NN};

(ii) Bα ⊂ Bβ whenα ≤ β in NN.

A lcs is called aquasi-(LB) spaceif it admits a quasi-(LB) representation. The
class of quasi-(LB) spaces is a large class: It contains all(LF )-spaces as well
as their strong duals, and it is stable by closed subspaces, separated quotients,
countable direct sums and countable topological products, cf. [19].

Now, we refine some of our ideas in Theorem 4.8 of [4] giving the characteriza-
tion below.

Lemma 2. For a quasibarrelled spaceE the following statements are equivalent:

i) E is in G;
ii) (E′, β(E′, E)) is a quasi-LB space;

iii) There is a family of absolutely convex closed subsets

F := {Dn1,n2,...,nk
: k, n1, n2, . . . , nk ∈ N}

of E satisfying
a) Dm1,m2,...,mk

⊂ Dn1,n2,...,nk
, wheneverni ≤ mi, i = 1, 2, . . . , k;

b) For everyα = (nk) ∈ NN we have

Dn1 ⊂ Dn1,n2 ⊂ · · · ⊂ Dn1,n2,...,nk
⊂ · · ·

and the sequence is bornivorous;
c) If Uα :=

⋃
k

Dn1,n2,...,nk
, α ∈ NN, then{Uα : α ∈ NN} is a basis of

neighborhoods of the origin inE.
iv) E has a basis of neighborhoods of the origin{Uα : α ∈ NN} satisfying

the decreasing condition

(2) Uβ ⊂ Uα wheneverα ≤ β in NN.

Proof. Let us start by proving i)⇒ii). Fix a G-representation{Aα : α ∈ NN} of E.
SinceE is quasibarrelled, eachAα is equicontinuous. ThusBα := Aoo

α is strongly
bounded and weakly compact (Alaoglu-Bourbaki), and thus is aβ(E′, E)-Banach
disc. Therefore{Bα : α ∈ NN} is a quasi-LB representation of(E′, β(E′, E)).

The implication ii)⇒iii) uses the ideas of Theorem 4.8 in [4]. If(E′, β(E′, E))
is quasi-LB, [19, Proposition 2.2] applies to ensure us of a quasi-LB representation
{Aα : α ∈ NN} of (E′, β(E′, E)) with the extra property

for everyβ(E′, E)− Banach discB ⊂ E′ there isα ∈ NN

with B ⊂ Aα.
(3)

The above argument and condition (3) imply that theG-representation{Aα : α ∈
NN} is a fundamental family ofT-equicontinuous subsets ofE′. Hence the family
of polars{Ao

α : α ∈ NN} is a basis of neighborhoods of the origin inE.
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Givenk, n1, n2, . . . , nk ∈ N we defineCn1,n2,...,nk
as we did in lemma 1 and

taking polars we write
Dn1,n2,...,nk

:= Co
n1,n2,...,nk

The family{Dn1,n2,...,nk
: k, n1, n2, . . . , nk ∈ N} matches our requirements. In-

deed: a) follows from the fact thatCn1,n2,...,nk
⊂ Cm1,m2,...,mk

wheneverni ≤ mi,
i = 1, 2, . . . , k; b) is exactly the conclusion in lemma 1; c) may be verified thusly:
for everyα = (nk) ∈ NN we have

Vα :=
∞⋃

k=1

Dn1,n2,...,nk

σ(E,E′)

⊂ (
∞⋂

k=1

Cn1,n2,...,nk
)o ⊂ Ao

α.

Observe now thatVα is closed, absolutely convex and bornivorous, thusVα is a
neighborhood of the origin. Use b) again and [2, Proposition 8.2.27] to obtain that
for everyε > 0

Vα =
∞⋃

k=1

Dn1,n2,...,nk

σ(E,E′)

⊂ (1 + ε)
∞⋃

k=1

Dn1,n2,...,nk
= (1 + ε)Uα.

Thus{Uα : α ∈ NN} is a basis ofT-neighborhoods of the origin inE.
As iii)⇒iv) is obvious, it only remains to prove the implication iv)⇒i): if we

take a basis of neighborhoods of the origin{Uα : α ∈ NN} satisfying (2) then the
family of polars{Uo

α : α ∈ NN} is aG-representation ofE. �

Clearly, then, every barrelled space inG has a basis of0-neighborhoods of size
no more thanc. Thus the reasoning of Proposition 1 of [18] gives the following
partial positive solution to the (still open) barrelled countable enlargement (BCE)
problem (cf. [18] and [2, Section 4.5]).

Corollary 2.1. [Assume the Continuum Hypothesis.]Every barrelled space inG
has a BCE, except those with the strongest locally convex topology.

The previous lemmas naturally lead us to the characterization of metrizable
spaces in classG, Theorem 2.2 below. This result non-trivially generalizes parts of
[11, Theorem 5.1], [12, Theorem 2.1] and [16, Theorem 3].

We will need here the following notion introduced by Saxon and Ruess, respec-
tively, cf. [2]: A lcs E is calledBaire-like(resp.b-Baire-like) if for any increasing
(and bornivorous) sequence(An) of absolutely convex closed subsets ofE whose
union isE there existsm ∈ N such thatAm is a neighborhood of zero inE. Every
b-Baire-like (Baire-like) space is quasibarrelled (barrelled) and within metrizable
spaces barrelledness and Baire-likeness are equivalent conditions.

Adapting an idea of Averbukh and Smolyanov, we proved [12, Proposition 1.2]
that every Fŕechet-Urysohn space is b-Baire-like (and bornological). We provide a
direct proof below.

Theorem 2.2. For a spaceE in G the following statements are equivalent:

i) E is metrizable;
ii) E is Fréchet-Uryshon;

iii) E is b-Baire-like.

Proof. The implication i)⇒ii) is clear and now we prove ii)⇒iii). Assume that
there is inE an increasing and bornivorous sequence(An) of non-zero absolutely
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convex sets and noAn is a 0-neighborhood. Then for each0-neighborhoodU
and eachn ∈ N there isxU,n ∈ U \ nAn, so0 is in the closure of{xU,n}U for
eachn ∈ N. By assumption for eachn ∈ N there is a sequence{Un(k)}k of
0-neighborhoods such thatyk,n := xUn(k),n converges to zero ask tends to infinity
and

yk,n 6∈ nAn, n, k ∈ N.(4)

Take any sequencexn ∈ A1 of non-zero elements inE which converges to
zero and putA = {yk,n + xn : k, n ∈ N}. Then0 is in the closure ofA and
by assumption there are two sequences(np) and(kp) in N such thatykp,np + xnp

converges to zero. Note that(np) is unbounded. Indeed, otherwise, there exists a
constant subsequencenpr := L of (np). But then(kpr) must be unbounded; if not,
it contains a subsequence(T ) such thatyL,T + xL = 0, soyL,T ∈ A1 ⊂ TAT , a
contradiction to condition (4). So(kpr) is unbounded. But thenykpr ,L converges to
−xL (which is non-zero by assumption), a contradiction. We showed that indeed
(np) is unbounded. Finally,{ykp,np}p ⊂ mAm ⊂ npAnp for somem ∈ N and
np ≥ m. Again a contradiction to condition (4). This proves thatE is b-Baire-like
[and also bornological (take eachAn = A)].

Finally, we prove iii)⇒i). If E is b-Baire-like thenE is quasibarrelled and
therefore we can use Lemma 2 to produce a countable family

F := {Dn1,n2,...,nk
: k, n1, n2, . . . , nk ∈ N},

as in iii) there. Since

Dn1 ⊂ Dn1,n2 ⊂ · · · ⊂ Dn1,n2,...,nk
⊂ · · ·

is bornivorous for everyα = (nk) ∈ NN we haveE =
⋃∞

k=1 kDn1,n2,...,nk
and,

again, sinceE is b-Baire-like someDn1,n2,...,nm is a neighborhood of the origin
for certainm ∈ N. Thus the family

U := {Dn1,n2,...,nk
∈ F : Dn1,n2,...,nk

is T− neighborhood of0}

is a countable basis of neighborhoods of the origin forE. �

The next corollary says in particular that the strong dual of a regular(LF )-space
is metrizable if and only if it is Fŕechet-Urysohn. A lcsE is an(LF )-space ifE
is the inductive limit of an increasing sequence of Fréchet, i.e. metrizable and
complete lcs.

Corollary 2.3. LetE be a locally complete quasi-LB space. Then the strong dual
(E′, β(E′, E)) belongs toG and the following statements are equivalent:

i) (E′, β(E′, E)) is metrizable;
ii) (E′, β(E′, E)) is Fréchet-Uryshon;

iii) (E′, β(E′, E)) is b-Baire-like.

Proof. SinceE is locally complete then everyT-bounded subset is contained in
a Banach disc. Use [19, Proposition 2.2] to produce a quasi-LB representation of
{Aα : α ∈ NN} of E with the extra property

for everyT− bounded setB ⊂ E there isα ∈ NN

with B ⊂ Aα.
(5)
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For eachα ∈ NN consider the polarUα := Ao
α. The family{Uα : α ∈ NN} is a ba-

sis of neighborhoods of the origin in(E′, β(E′, E)) satisfying the decreasing con-
dition (2) in iv) of Lemma 2. Hence the polars ofUα in E′′ form aG-representation
for (E′, β(E′, E)). Thus(E′, β(E′, E)) is in G and the equivalences here imme-
diately follow from Theorem 2.2 above. �

Since every quasibarrelled spaceE ∈ G has countable tightness [4, Theorem
4.8], our Corollary applies as follows.

Corollary 2.4. Let E be a locally complete quasi-LB-space. If(E′, β(E′, E)) is
quasibarrelled, thent(E′, β(E′, E)) ≤ ℵ0. In particular, if E is an (LF)-space
which is locally complete (equivalently, regular) and(E′, β(E′, E)) is quasibar-
relled, thent(E′, β(E′, E)) ≤ ℵ0.

Recall, that in [4] we provided an example of a Fréchet space for which its strong
dual does not have countable tightness.

Now we will show thatbounded countable tightnesscharacterizes metrizability
for barrelled spaces in classG. We need the following lemma,

Lemma 3. Let ϕ be anℵ0-dimensional vector space endowed with the finest lo-
cally convex topology. Thent(ϕ) ≤ ℵ0 but tb(ϕ) is uncountable.

Proof. Sinceϕ is an(LF )-space and the tightness of any(LF )-space is countable
by [4, Corollary 4.3] we get thatt(ϕ) ≤ ℵ0. On the other hand, sinceϕ is non-
metrizable it is not a Fŕechet-Urysohn space after Theorem 2.2 above. Therefore
there exists a subsetA in ϕ such that0 ∈ A, but 0 is not the limit of a sequence
in A. Assume now that there is a countable and bounding setB ⊂ A such that
0 ∈ B. SinceB is also bounded and every bounded set inϕ is finite-dimensional,0
belongs to the sequential closure ofB which gives us the contradiction that finishes
the proof. �

Noting that a barrelled space is b-Baire-like if and only if it is Baire-like, we
have the following generalization of Theorem 3 of [16].

Theorem 2.5. Let E ∈ G be barrelled. The following five statements are equiva-
lent:

i) E is metrizable;
ii) E is Fréchet-Urysohn;

iii) E is Baire-like;
iv) tb(E) ≤ ℵ0;
v) E does not containϕ.

Proof. By Theorem 2.2, the first three conditions are equivalent. IfE is metrizable,
then clearly the bounded tightness ofE is countable; i.e., iv) holds. If iv) holds,
thenE cannot containϕ by Lemma 3. IfE does not containϕ thenE is Baire-like
by [17, Theorem 2.1]. �

We refer also the reader to [13] for more information concerning the Fréchet-
Urysohn property and its relation with various barrelledness conditions.

As a consequence of last theorem we obtain for duals of quasi-LB spaces the
following characterization.

Corollary 2.6. If a quasi-LB spaceE and its strong dual(E′, β(E′, E)) are both
locally complete, then the following assertions are equivalent:
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(i) (E′, β(E′, E)) is metrizable;
(ii) (E′, β(E′, E)) is quasibarrelled andtb((E′, β(E′, E))) ≤ ℵ0.

Proof. The implication (i)⇒(ii) is obvious and the implication (ii)⇒(i) immedi-
ately follows from Theorem 2.5 applied to(E′, β(E′, E)). Indeed, Corollary 2.3
says that(E′, β(E′, E)) is in G; beside this, as(E′, β(E′, E)) is locally complete
and quasibarrelled it is barrelled, [2, 5.1.10], hence Theorem 2.5 applies and we
are done. �

If Ω ⊂ Rn is an open set then the space of test functionsD(Ω) is a com-
plete Montel(LF )-space, so its strong dual, the space of distributionsD′(Ω), is
a quasi-complete ultrabornological (hence quasi-barrelled) non-metrizable space.
We consequently have:

Corollary 2.7. If Ω ⊂ Rn is an open set thenD′(Ω) has countable tightness for
the original and weak topologies buttb(D′(Ω)) is uncountable.

Proof. By Corollary 2.3 we haveD′(Ω) ∈ G. As D′(Ω) is quasi-barrelled, we
can apply [4, Theorem 4.8 ] to obtain thatD′(Ω) has countable tightness for the
original and weak topologies. On the other hand, thattb(D′(Ω)) is uncountable
follows now from the fact thatD′(Ω) is non-metrizable and Corollary 2.6. �

Prof. Bonet and the referee kindly point out that the same reasoning applies
to the spaceA(Ω) of real analytic functions onΩ via the work [7, Theorem 1.6
and Proposition 1.7] of Domanski and Vogt, who also showed that this space, the
subject of much recent attention, has no basis [8].

In addition, note that ifE ∈ G, then any lcs which containsE as a dense sub-
space also belongs toG. Therefore Theorem 2.2 applies also to show the following,
where, as usual,Cp(X) denotes the spaceC(X) of continuous real functions on
the topological spaceX endowed with the topology of pointwise convergence on
X.

Corollary 2.8. The spaceCp(X) belongs to the classG if and only ifX is count-
able (if and only ifCp(X) is metrizable).

Proof. Indeed,Cp(X) is a dense subspace of the productRX which is a Baire
space [2, 1.2.13], hence b-Baire-like. IfCp(X) ∈ G, thenRX ∈ G and Theo-
rem 2.2 applies. �

This extends the main result of [14] which states thatCp(X) is an(LM)-space
if and only if X is countable. Let us remark that, alternatively, Corollary 2.8 can be
proved from the fact that quasibarrelled spaces in classG have countable tightness,
[4, Proposition 4.7]: indeed, ifCp(X) ∈ G, then its completion, the Baire space
RX is also inG, and so we have thatt(RX) ≤ ℵ0; but this is the case if and only
if X is countable as the reader can easily check.

Let E be a locally convex space let us writeEσ := (E, σ(E,E′)), E′
σ :=

(E′, σ(E′, E)). Note that whenE′
σ is K-analytic (see [6, 10] for definition), then

t(Eσ) ≤ ℵ0 because(E′
σ)n is still K-analyticn ∈ N (hence Lindel̈of), [1, Theo-

rem II.1.1] tells us thatt(Cp(E′
σ)) ≤ ℵ0, and thusEσ (as a subspace ofCp(E′

σ))
has countable tightness.

Conversely, ifE ∈ G and t(Eσ) ≤ ℵ0 thenE′
σ is K-analytic as we showed

in [4, Theorem 4.6]. Corollary 2.8 allows us to provide now an example showing
thatE ∈ G cannot be dropped when proving this implication. Indeed, letX be an
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uncountable Lindelöf P -space. SinceXn is Lindelöf for anyn ∈ N, [1, Theorem
II.1.1] applies again to obtain thatt(Cp(X)) ≤ ℵ0. By Corollary 2.8 the space
Cp(X) does not belong toG. Now if we assume thatF := Cp(X)′σ is K-analytic,
thenF has an ordered family{Aα : α ∈ NN} of compact sets inF covering it,
cf. [3, Corollary 1.2], i.e. satisfying conditions (a) and (b) in (1). SinceX is a
P -space (i.e., everyGδ set inX is open), every bounding set inX is finite and by
[2, 10.1.20] the spaceCp(X) is barrelled. Hence every setAα is equicontinuous,
so condition (c) holds in (1) too, and consequently the spaceCp(X) belongs toG,
which is a contradiction.
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Amsterdam, 1987, Notas de Matemática [Mathematical Notes], 113.
[3] B. Cascales,OnK-analytic locally convex spaces, Arch. Math. (Basel)49 (1987), 232–244.
[4] B. Cascales, J. Ka̧kol, and S. A. Saxon,Weight of precompact subsets and tightness, To appear

in J. Math. Anal. Appl., 2002.
[5] B. Cascales and J. Orihuela,On compactness in locally convex spaces, Math. Z.195 (1987),

no. 3, 365–381.
[6] G. Choquet,Theory of capacities, Ann. Inst. Fourier, Grenoble5 (1953–1954), 131–295 (1955).
[7] P. Domanski and D. Vogt,Linear topological properties of the space of analytic functions on

the real line, pp. 113-132 inRecent Progress in Functional Analysis, K.D. Bierstedt et al, ed.,
North Holland Math. Studies189, Amsterdam, 2001.

[8] P. Domanski and D. Vogt,The space of real analytic functions has no basis, Studia Math.142
(2001), 187-200.

[9] S.P. Franklin,Spaces in which sequences suffice. II., Fund. Math.61 (1967), 51–56.
[10] J. E. Jayne and C. A. Rogers,Analytic sets, ch. K-analytic sets, pp. 1–181, Academic Press,

1980.
[11] J. Ka̧kol and S. A. Saxon,Montel (DF )-spaces, sequential(LM)-spaces and the strongest

locally convex topology, J. London Math. Soc., to appear.
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[13] J. Ka̧kol and S. A. Saxon.The Fŕechet-Urysohn view of weak and s-barrelledness, Bull. Belgian

Math. Soc. (To appear), 2002.
[14] J. Ka̧kol and I. Tweddle,Spaces of continuous functionsCp(X, E) as (LM)-spaces, Bull. Bel-

gian Math. Soc. (To appear), 2002.
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