METRIZABILITY VS. FRÉCHET-URYSHON PROPERTY TO APPEAR IN PROC. AMER. MATH. SOC.

B. CASCALES, J. KĄKOL, AND S.A. SAXON

ABSTRACT. In metrizable spaces, points in the closure of a subset A are limits of sequences in A; i.e., metrizable spaces are Fréchet-Uryshon spaces. The aim of this paper is to prove that metrizability and the Fréchet-Uryshon property are actually equivalent for a large class of locally convex spaces that includes (LF)-and (DF)-spaces. We introduce and study countable bounded tightness of a topological space, a property which implies countable tightness and is strictly weaker than the Fréchet-Uryshon property. We provide applications of our results to, for instance, the space of distributions $\mathfrak{D}'(\Omega)$. The space $\mathfrak{D}'(\Omega)$ is not Fréchet-Uryshon, has countable tightness, but its bounded tightness is uncountable. The results properly extend previous work in this direction.

1. INTRODUCTION

The tightness t(X) [resp., bounded tightness $t_b(X)$] of a topological space Xis the smallest infinite cardinal number m such that for any set A of X and any point $x \in \overline{A}$ (the closure in X) there is a set [resp., bounding set] $B \subset A$ for which $|B| \leq m$ and $x \in \overline{B}$. Recall that a subset B of X is bounding if every continuous real valued function on X is bounded on B. The notion of countable tightness arises as a natural weakening of the Fréchet-Urysohn notion. Recall that X is Fréchet-Urysohn if for every set $A \subset X$ and every $x \in \overline{A}$ there is a sequence in A which converges to x. Clearly,

 $Fréchet-Urysohn \Rightarrow$ countable bounded tightness \Rightarrow countable tightness. Franklin [9] recorded an example of a compact topological space with countable tightness, hence countable bounded tightness, which is not Fréchet-Urysohn.

In [5] Cascales and Orihuela introduced the class \mathfrak{G} of those locally convex spaces (lcs) $E = (E, \mathfrak{T})$ for which there is a family $\{A_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ of subsets in the topological dual E' of E (called its \mathfrak{G} -representation) such that:

(a)
$$E' = \bigcup \{A_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\};$$

(1) (b) $A_{\alpha} \subset A_{\beta}$ when $\alpha \leq \beta$ in $\mathbb{N}^{\mathbb{N}}$;

(c) in each A_{α} , sequences are \mathfrak{T} – equicontinuous.

In the set $\mathbb{N}^{\mathbb{N}}$ of sequences of positive integers the inequality $\alpha \leq \beta$ for $\alpha = (a_n)$ and $\beta = (b_n)$ means that $a_n \leq b_n$ for all $n \in \mathbb{N}$.

The class \mathfrak{G} is stable by the usual operations of countable type and contains many important spaces; e.g., all (LF)-spaces and the (DF)-spaces of Grothendieck. In [5] Cascales and Orihuela extended earlier results for (LM)and (DF)-spaces by showing that if $E \in \mathfrak{G}$, its precompact sets are metrizable and both E and E with its weak topology $\sigma(E, E')$ are angelic spaces. In a very recent paper [4] we advanced the study started in [5], characterizing those spaces

¹⁹⁹¹ Mathematics Subject Classification. 54E15 and 46A50.

The first-named author's research was supported by D.G.E.S. grant PB 98-0381, Spain.

in class \mathfrak{G} which have countable tightness when endowed with their weak topologies. We showed that quasibarrelled spaces in \mathfrak{G} have countable tightness for both the weak and original topologies [4, Theorem 4.8], a bold generalization of Kaplansky's classical theorem stating that the weak topology of metrizable spaces has countable tightness. On the other hand, we showed [4, Theorem 4.6] that for $E \in \mathfrak{G}$ the countable tightness of $(E, \sigma(E, E'))$ is equivalent to realcompactness of the weak dual $(E', \sigma(E', E))$.

The present article further advances our study of \mathfrak{G} : we show that in this class metrizability and the Fréchet-Urysohn property are actually equivalent, Theorem 2.2; moreover, we prove that for barrelled spaces E in \mathfrak{G} , metrizability and countable bounded tightness, as well as [E does not contain φ], are equivalent conditions, Theorem 2.5. These generalize earlier results of [11, 12, 14, 16] and have interesting applications. For example: The strong dual $E'_{\beta} := (E', \beta(E', E))$ of a regular (equivalently, locally complete) (LF)-space E has countable tightness provided E'_{β} is quasibarrelled, but E'_{β} is metrizable if and only if it is Fréchet-Uryshon, if and only if E'_{β} is quasibarrelled and $t_b(E'_{\beta}) \leq \aleph_0$. This applies to many concrete spaces, illustrated below for the space of distributions $\mathfrak{D}'(\Omega)$.

Our notation and terminology are standard and we take [2, 15] as our basic reference texts.

2. A CHARACTERIZATION OF METRIZABLE SPACES

First we obtain a Makarov-type result, cf. [2, 8.5.20], for spaces $E \in \mathfrak{G}$. Recall that an increasing sequence (A_n) of absolutely convex subsets of a lcs E is called *bornivorous* if for every bounded set B in E there exists A_m which absorbs the set B.

Lemma 1. Let $E \in \mathfrak{G}$ and let $\{A_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ be a \mathfrak{G} -representation of E. For $\alpha = (n_k) \in \mathbb{N}^{\mathbb{N}}$ put

$$C_{n_1\dots n_k} = \bigcup \{ A_\beta : \beta = (m_k) \in \mathbb{N}^{\mathbb{N}}, n_j = m_j, \ j = 1, 2, \dots k \},$$

 $k \in \mathbb{N}$. Then the sequence of polars

$$C_{n_1}^o \subset C_{n_1,n_2}^o \subset \cdots \subset C_{n_1,n_2,\dots,n_k}^o \subset \cdots$$

is bornivorous in E.

Proof. Assume that there exists a bounded set B in E such that $B \not\subset kC^o_{n_1...n_k}$ for every $k \in \mathbb{N}$. Then for every $k \in \mathbb{N}$ there exists $x_k \in B$ such that $k^{-1}x_k \notin C^o_{n_1...n_k}$. Therefore for every $k \in \mathbb{N}$ there exists $f_k \in C_{n_1...n_k}$ such that $|f_k(x_k)| > k$. Then for every $k \in \mathbb{N}$ there exists $\beta_k = (m_n^k)_n \in \mathbb{N}^{\mathbb{N}}$ such that $f_k \in A_{\beta_k}$, where $n_j = m_j^k$ for j = 1, 2, ..., k.

Define $a_n = \max\{m_n^k : k \in \mathbb{N}\}, n \in \mathbb{N}$, and $\gamma = (a_n) \in \mathbb{N}^{\mathbb{N}}$. Clearly $\gamma \geq \beta_k$ for every $k \in \mathbb{N}$. Therefore, by property (b) in the definition of the \mathfrak{G} -representation of E one gets $A_{\beta_k} \subset A_{\gamma}$, so $f_k \in A_{\gamma}$ for all $k \in \mathbb{N}$; by property (c) the sequence (f_k) is equicontinuous. Hence (f_k) is uniformly bounded on bounded sets in E, including B, a contradiction.

Recall that a lcs E is *barrelled* (resp. *quasibarrelled*) if every closed and absolutely convex subset of E which is absorbing (resp. absorbs every bounded set

of E) is a neighborhood of zero, or equivalently, if every weakly bounded (resp. strongly bounded) subset of E' is equicontinuous.

Along with the terminology of [19] a quasi-LB representation of a lcs F is a family $\{B_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ of Banach discs in F satisfying the following conditions:

(i)
$$F = \bigcup \{ B_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}} \};$$

(ii) $B_{\alpha} \subset B_{\beta}$ when $\alpha \leq \beta$ in $\mathbb{N}^{\mathbb{N}}$.

A lcs is called a *quasi-(LB)* space if it admits a quasi-(LB) representation. The class of quasi-(LB) spaces is a large class: It contains all (LF)-spaces as well as their strong duals, and it is stable by closed subspaces, separated quotients, countable direct sums and countable topological products, cf. [19].

Now, we refine some of our ideas in Theorem 4.8 of [4] giving the characterization below.

Lemma 2. For a quasibarrelled space E the following statements are equivalent:

- i) E is in \mathfrak{G} ;
- ii) $(E', \beta(E', E))$ is a quasi-LB space;
- iii) There is a family of absolutely convex closed subsets

$$\mathcal{F} := \{ D_{n_1, n_2, \dots, n_k} : k, n_1, n_2, \dots, n_k \in \mathbb{N} \}$$

of E satisfying

a) $D_{m_1,m_2,\ldots,m_k} \subset D_{n_1,n_2,\ldots,n_k}$, whenever $n_i \leq m_i$, $i = 1, 2, \ldots, k$; b) For every $\alpha = (n_k) \in \mathbb{N}^{\mathbb{N}}$ we have

 $D_{n_1} \subset D_{n_1,n_2} \subset \cdots \subset D_{n_1,n_2,\dots,n_k} \subset \cdots$

and the sequence is bornivorous;

- c) If $U_{\alpha} := \bigcup_{k} D_{n_1, n_2, \dots, n_k}$, $\alpha \in \mathbb{N}^{\mathbb{N}}$, then $\{U_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a basis of
 - neighborhoods of the origin in E.
- iv) E has a basis of neighborhoods of the origin $\{U_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ satisfying the decreasing condition

(2)
$$U_{\beta} \subset U_{\alpha} \text{ whenever } \alpha \leq \beta \text{ in } \mathbb{N}^{\mathbb{N}}.$$

Proof. Let us start by proving i) \Rightarrow ii). Fix a \mathfrak{G} -representation $\{A_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ of E. Since E is quasibarrelled, each A_{α} is equicontinuous. Thus $B_{\alpha} := A_{\alpha}^{oo}$ is strongly bounded and weakly compact (Alaoglu-Bourbaki), and thus is a $\beta(E', E)$ -Banach disc. Therefore $\{B_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a quasi-LB representation of $(E', \beta(E', E))$.

The implication ii) \Rightarrow iii) uses the ideas of Theorem 4.8 in [4]. If $(E', \beta(E', E))$ is quasi-LB, [19, Proposition 2.2] applies to ensure us of a quasi-LB representation $\{A_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ of $(E', \beta(E', E))$ with the extra property

(3) for every
$$\beta(E', E)$$
 – Banach disc $B \subset E'$ there is $\alpha \in \mathbb{N}^{\mathbb{N}}$
with $B \subset A_{\alpha}$.

The above argument and condition (3) imply that the \mathfrak{G} -representation $\{A_{\alpha} : \alpha \in \mathcal{G}\}$ $\mathbb{N}^{\mathbb{N}}$ } is a fundamental family of \mathfrak{T} -equicontinuous subsets of E'. Hence the family of polars $\{A^o_\alpha : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a basis of neighborhoods of the origin in E.

Given $k, n_1, n_2, \ldots, n_k \in \mathbb{N}$ we define $C_{n_1, n_2, \ldots, n_k}$ as we did in lemma 1 and taking polars we write

$$D_{n_1, n_2, \dots, n_k} := C^o_{n_1, n_2, \dots, n_k}$$

The family $\{D_{n_1,n_2,\ldots,n_k}: k, n_1, n_2, \ldots, n_k \in \mathbb{N}\}$ matches our requirements. Indeed: a) follows from the fact that $C_{n_1,n_2,\ldots,n_k} \subset C_{m_1,m_2,\ldots,m_k}$ whenever $n_i \leq m_i$, $i = 1, 2, \ldots, k$; b) is exactly the conclusion in lemma 1; c) may be verified thusly: for every $\alpha = (n_k) \in \mathbb{N}^{\mathbb{N}}$ we have

$$V_{\alpha} := \overline{\bigcup_{k=1}^{\infty} D_{n_1, n_2, \dots, n_k}}^{\sigma(E, E')} \subset (\bigcap_{k=1}^{\infty} C_{n_1, n_2, \dots, n_k})^o \subset A_{\alpha}^o.$$

Observe now that V_{α} is closed, absolutely convex and bornivorous, thus V_{α} is a neighborhood of the origin. Use b) again and [2, Proposition 8.2.27] to obtain that for every $\varepsilon > 0$

$$V_{\alpha} = \overline{\bigcup_{k=1}^{\infty} D_{n_1, n_2, \dots, n_k}}^{\sigma(E, E')} \subset (1+\varepsilon) \bigcup_{k=1}^{\infty} D_{n_1, n_2, \dots, n_k} = (1+\epsilon) U_{\alpha}.$$

Thus $\{U_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a basis of \mathfrak{T} -neighborhoods of the origin in E.

As iii) \Rightarrow iv) is obvious, it only remains to prove the implication iv) \Rightarrow i): if we take a basis of neighborhoods of the origin $\{U_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ satisfying (2) then the family of polars $\{U_{\alpha}^{o} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a \mathfrak{G} -representation of E.

Clearly, then, every barrelled space in \mathfrak{G} has a basis of 0-neighborhoods of size no more than \mathfrak{c} . Thus the reasoning of Proposition 1 of [18] gives the following partial positive solution to the (still open) barrelled countable enlargement (BCE) problem (cf. [18] and [2, Section 4.5]).

Corollary 2.1. [Assume the Continuum Hypothesis.] *Every barrelled space in* \mathfrak{G} *has a BCE, except those with the strongest locally convex topology.*

The previous lemmas naturally lead us to the characterization of metrizable spaces in class \mathfrak{G} , Theorem 2.2 below. This result non-trivially generalizes parts of [11, Theorem 5.1], [12, Theorem 2.1] and [16, Theorem 3].

We will need here the following notion introduced by Saxon and Ruess, respectively, cf. [2]: A lcs E is called *Baire-like* (resp. *b-Baire-like*) if for any increasing (and bornivorous) sequence (A_n) of absolutely convex closed subsets of E whose union is E there exists $m \in \mathbb{N}$ such that A_m is a neighborhood of zero in E. Every b-Baire-like (Baire-like) space is quasibarrelled (barrelled) and within metrizable spaces barrelledness and Baire-likeness are equivalent conditions.

Adapting an idea of Averbukh and Smolyanov, we proved [12, Proposition 1.2] that every Fréchet-Urysohn space is b-Baire-like (and bornological). We provide a direct proof below.

Theorem 2.2. For a space E in \mathfrak{G} the following statements are equivalent:

- i) E is metrizable;
- ii) E is Fréchet-Uryshon;
- iii) *E is b-Baire-like*.

Proof. The implication i) \Rightarrow ii) is clear and now we prove ii) \Rightarrow iii). Assume that there is in *E* an increasing and bornivorous sequence (*A_n*) of non-zero absolutely

4

convex sets and no A_n is a 0-neighborhood. Then for each 0-neighborhood Uand each $n \in \mathbb{N}$ there is $x_{U,n} \in U \setminus nA_n$, so 0 is in the closure of $\{x_{U,n}\}_U$ for each $n \in \mathbb{N}$. By assumption for each $n \in \mathbb{N}$ there is a sequence $\{U_n(k)\}_k$ of 0-neighborhoods such that $y_{k,n} := x_{U_n(k),n}$ converges to zero as k tends to infinity and

(4)
$$y_{k,n} \notin nA_n, n, k \in \mathbb{N}.$$

Take any sequence $x_n \in A_1$ of non-zero elements in E which converges to zero and put $A = \{y_{k,n} + x_n : k, n \in \mathbb{N}\}$. Then 0 is in the closure of A and by assumption there are two sequences (n_p) and (k_p) in \mathbb{N} such that $y_{k_p,n_p} + x_{n_p}$ converges to zero. Note that (n_p) is unbounded. Indeed, otherwise, there exists a constant subsequence $n_{p_r} := L$ of (n_p) . But then (k_{p_r}) must be unbounded; if not, it contains a subsequence (T) such that $y_{L,T} + x_L = 0$, so $y_{L,T} \in A_1 \subset TA_T$, a contradiction to condition (4). So (k_{p_r}) is unbounded. But then $y_{k_{p_r},L}$ converges to $-x_L$ (which is non-zero by assumption), a contradiction. We showed that indeed (n_p) is unbounded. Finally, $\{y_{k_p,n_p}\}_p \subset mA_m \subset n_pA_{n_p}$ for some $m \in \mathbb{N}$ and $n_p \geq m$. Again a contradiction to condition (4). This proves that E is b-Baire-like [and also bornological (take each $A_n = A$)].

Finally, we prove iii) \Rightarrow i). If *E* is b-Baire-like then *E* is quasibarrelled and therefore we can use Lemma 2 to produce a countable family

$$\mathcal{F} := \{ D_{n_1, n_2, \dots, n_k} : k, n_1, n_2, \dots, n_k \in \mathbb{N} \},\$$

as in iii) there. Since

$$D_{n_1} \subset D_{n_1,n_2} \subset \cdots \subset D_{n_1,n_2,\dots,n_k} \subset \cdots$$

is bornivorous for every $\alpha = (n_k) \in \mathbb{N}^{\mathbb{N}}$ we have $E = \bigcup_{k=1}^{\infty} kD_{n_1,n_2,\ldots,n_k}$ and, again, since E is b-Baire-like some D_{n_1,n_2,\ldots,n_m} is a neighborhood of the origin for certain $m \in \mathbb{N}$. Thus the family

$$\mathcal{U} := \{ D_{n_1, n_2, \dots, n_k} \in \mathcal{F} : D_{n_1, n_2, \dots, n_k} \text{ is } \mathfrak{T} - \text{neighborhood of } 0 \}$$

is a countable basis of neighborhoods of the origin for E.

N 7

The next corollary says in particular that the strong dual of a regular (LF)-space is metrizable if and only if it is Fréchet-Urysohn. A lcs E is an (LF)-space if Eis the inductive limit of an increasing sequence of Fréchet, i.e. metrizable and complete lcs.

Corollary 2.3. Let *E* be a locally complete quasi-LB space. Then the strong dual $(E', \beta(E', E))$ belongs to \mathfrak{G} and the following statements are equivalent:

- i) $(E', \beta(E', E))$ is metrizable;
- ii) $(E', \beta(E', E))$ is Fréchet-Uryshon;
- iii) $(E', \beta(E', E))$ is b-Baire-like.

Proof. Since *E* is locally complete then every \mathfrak{T} -bounded subset is contained in a Banach disc. Use [19, Proposition 2.2] to produce a quasi-LB representation of $\{A_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ of *E* with the extra property

(5) for every
$$\mathfrak{T}$$
 – bounded set $B \subset E$ there is $\alpha \in \mathbb{N}^{\mathbb{N}}$
with $B \subset A_{\alpha}$.

For each $\alpha \in \mathbb{N}^{\mathbb{N}}$ consider the polar $U_{\alpha} := A_{\alpha}^{o}$. The family $\{U_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a basis of neighborhoods of the origin in $(E', \beta(E', E))$ satisfying the decreasing condition (2) in iv) of Lemma 2. Hence the polars of U_{α} in E'' form a \mathfrak{G} -representation for $(E', \beta(E', E))$. Thus $(E', \beta(E', E))$ is in \mathfrak{G} and the equivalences here immediately follow from Theorem 2.2 above.

Since every quasibarrelled space $E \in \mathfrak{G}$ has countable tightness [4, Theorem 4.8], our Corollary applies as follows.

Corollary 2.4. Let E be a locally complete quasi-LB-space. If $(E', \beta(E', E))$ is quasibarrelled, then $t(E', \beta(E', E)) \leq \aleph_0$. In particular, if E is an (LF)-space which is locally complete (equivalently, regular) and $(E', \beta(E', E))$ is quasibarrelled, then $t(E', \beta(E', E)) \leq \aleph_0$.

Recall, that in [4] we provided an example of a Fréchet space for which its strong dual does not have countable tightness.

Now we will show that *bounded countable tightness* characterizes metrizability for barrelled spaces in class \mathfrak{G} . We need the following lemma,

Lemma 3. Let φ be an \aleph_0 -dimensional vector space endowed with the finest locally convex topology. Then $t(\varphi) \leq \aleph_0$ but $t_b(\varphi)$ is uncountable.

Proof. Since φ is an (LF)-space and the tightness of any (LF)-space is countable by [4, Corollary 4.3] we get that $t(\varphi) \leq \aleph_0$. On the other hand, since φ is nonmetrizable it is not a Fréchet-Urysohn space after Theorem 2.2 above. Therefore there exists a subset A in φ such that $0 \in \overline{A}$, but 0 is not the limit of a sequence in A. Assume now that there is a countable and bounding set $B \subset A$ such that $0 \in \overline{B}$. Since B is also bounded and every bounded set in φ is finite-dimensional, 0 belongs to the sequential closure of B which gives us the contradiction that finishes the proof.

Noting that a barrelled space is b-Baire-like if and only if it is Baire-like, we have the following generalization of Theorem 3 of [16].

Theorem 2.5. Let $E \in \mathfrak{G}$ be barrelled. The following five statements are equiva*lent:*

- i) E is metrizable;
- ii) E is Fréchet-Urysohn;
- iii) *E* is Baire-like;
- iv) $t_b(E) \leq \aleph_0$;
- v) E does not contain φ .

Proof. By Theorem 2.2, the first three conditions are equivalent. If E is metrizable, then clearly the bounded tightness of E is countable; i.e., iv) holds. If iv) holds, then E cannot contain φ by Lemma 3. If E does not contain φ then E is Baire-like by [17, Theorem 2.1].

We refer also the reader to [13] for more information concerning the Fréchet-Urysohn property and its relation with various barrelledness conditions.

As a consequence of last theorem we obtain for duals of quasi-LB spaces the following characterization.

Corollary 2.6. If a quasi-LB space E and its strong dual $(E', \beta(E', E))$ are both locally complete, then the following assertions are equivalent:

- (i) $(E', \beta(E', E))$ is metrizable;
- (ii) $(E', \beta(E', E))$ is quasibarrelled and $t_b((E', \beta(E', E))) \leq \aleph_0$.

Proof. The implication (i) \Rightarrow (ii) is obvious and the implication (ii) \Rightarrow (i) immediately follows from Theorem 2.5 applied to $(E', \beta(E', E))$. Indeed, Corollary 2.3 says that $(E', \beta(E', E))$ is in \mathfrak{G} ; beside this, as $(E', \beta(E', E))$ is locally complete and quasibarrelled it is barrelled, [2, 5.1.10], hence Theorem 2.5 applies and we are done.

If $\Omega \subset \mathbb{R}^n$ is an open set then the space of test functions $\mathfrak{D}(\Omega)$ is a complete Montel (LF)-space, so its strong dual, the space of distributions $\mathfrak{D}'(\Omega)$, is a quasi-complete ultrabornological (hence quasi-barrelled) non-metrizable space. We consequently have:

Corollary 2.7. If $\Omega \subset \mathbb{R}^n$ is an open set then $\mathfrak{D}'(\Omega)$ has countable tightness for the original and weak topologies but $t_b(\mathfrak{D}'(\Omega))$ is uncountable.

Proof. By Corollary 2.3 we have $\mathfrak{D}'(\Omega) \in \mathfrak{G}$. As $\mathfrak{D}'(\Omega)$ is quasi-barrelled, we can apply [4, Theorem 4.8] to obtain that $\mathfrak{D}'(\Omega)$ has countable tightness for the original and weak topologies. On the other hand, that $t_b(\mathfrak{D}'(\Omega))$ is uncountable follows now from the fact that $\mathfrak{D}'(\Omega)$ is non-metrizable and Corollary 2.6.

Prof. Bonet and the referee kindly point out that the same reasoning applies to the space $A(\Omega)$ of real analytic functions on Ω via the work [7, Theorem 1.6 and Proposition 1.7] of Domanski and Vogt, who also showed that this space, the subject of much recent attention, has no basis [8].

In addition, note that if $E \in \mathfrak{G}$, then any lcs which contains E as a dense subspace also belongs to \mathfrak{G} . Therefore Theorem 2.2 applies also to show the following, where, as usual, $C_p(X)$ denotes the space C(X) of continuous real functions on the topological space X endowed with the topology of pointwise convergence on X.

Corollary 2.8. The space $C_p(X)$ belongs to the class \mathfrak{G} if and only if X is countable (if and only if $C_p(X)$ is metrizable).

Proof. Indeed, $C_p(X)$ is a dense subspace of the product \mathbb{R}^X which is a Baire space [2, 1.2.13], hence b-Baire-like. If $C_p(X) \in \mathfrak{G}$, then $\mathbb{R}^X \in \mathfrak{G}$ and Theorem 2.2 applies.

This extends the main result of [14] which states that $C_p(X)$ is an (LM)-space if and only if X is countable. Let us remark that, alternatively, Corollary 2.8 can be proved from the fact that quasibarrelled spaces in class \mathfrak{G} have countable tightness, [4, Proposition 4.7]: indeed, if $C_p(X) \in \mathfrak{G}$, then its completion, the Baire space \mathbb{R}^X is also in \mathfrak{G} , and so we have that $t(\mathbb{R}^X) \leq \aleph_0$; but this is the case if and only if X is countable as the reader can easily check.

Let E be a locally convex space let us write $E_{\sigma} := (E, \sigma(E, E')), E'_{\sigma} := (E', \sigma(E', E))$. Note that when E'_{σ} is K-analytic (see [6, 10] for definition), then $t(E_{\sigma}) \leq \aleph_0$ because $(E'_{\sigma})^n$ is still K-analytic $n \in \mathbb{N}$ (hence Lindelöf), [1, Theorem II.1.1] tells us that $t(C_p(E'_{\sigma})) \leq \aleph_0$, and thus E_{σ} (as a subspace of $C_p(E'_{\sigma})$) has countable tightness.

Conversely, if $E \in \mathfrak{G}$ and $t(E_{\sigma}) \leq \aleph_0$ then E'_{σ} is *K*-analytic as we showed in [4, Theorem 4.6]. Corollary 2.8 allows us to provide now an example showing that $E \in \mathfrak{G}$ cannot be dropped when proving this implication. Indeed, let X be an uncountable Lindelöf P-space. Since X^n is Lindelöf for any $n \in \mathbb{N}$, [1, Theorem II.1.1] applies again to obtain that $t(C_p(X)) \leq \aleph_0$. By Corollary 2.8 the space $C_p(X)$ does not belong to \mathfrak{G} . Now if we assume that $F := C_p(X)'_{\sigma}$ is K-analytic, then F has an ordered family $\{A_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ of compact sets in F covering it, cf. [3, Corollary 1.2], i.e. satisfying conditions (a) and (b) in (1). Since X is a P-space (i.e., every G_{δ} set in X is open), every bounding set in X is finite and by [2, 10.1.20] the space $C_p(X)$ is barrelled. Hence every set A_{α} is equicontinuous, so condition (c) holds in (1) too, and consequently the space $C_p(X)$ belongs to \mathfrak{G} , which is a contradiction.

REFERENCES

- [1] A. V. Arkangel'skii, Topological Function Spaces, Kluwer Academic, Dordrecht, 1992.
- [2] P. Pérez Carreras and J. Bonet, *Barrelled locally convex spaces*, North-Holland Publishing Co., Amsterdam, 1987, Notas de Matemática [Mathematical Notes], 113.
- [3] B. Cascales, On K-analytic locally convex spaces, Arch. Math. (Basel) 49 (1987), 232-244.
- [4] B. Cascales, J. Kąkol, and S. A. Saxon, Weight of precompact subsets and tightness, To appear in J. Math. Anal. Appl., 2002.
- [5] B. Cascales and J. Orihuela, On compactness in locally convex spaces, Math. Z. 195 (1987), no. 3, 365–381.
- [6] G. Choquet, *Theory of capacities*, Ann. Inst. Fourier, Grenoble 5 (1953–1954), 131–295 (1955).
- [7] P. Domanski and D. Vogt, *Linear topological properties of the space of analytic functions on the real line*, pp. 113-132 in *Recent Progress in Functional Analysis*, K.D. Bierstedt et al, ed., North Holland Math. Studies 189, Amsterdam, 2001.
- [8] P. Domanski and D. Vogt, *The space of real analytic functions has no basis*, Studia Math. 142 (2001), 187-200.
- [9] S.P. Franklin, Spaces in which sequences suffice. II., Fund. Math. 61 (1967), 51-56.
- [10] J. E. Jayne and C. A. Rogers, *Analytic sets*, ch. K-analytic sets, pp. 1–181, Academic Press, 1980.
- [11] J. Kąkol and S. A. Saxon, *Montel* (*DF*)-spaces, sequential (*LM*)-spaces and the strongest locally convex topology, J. London Math. Soc., to appear.
- [12] J. Kąkol and S. A. Saxon, The Fréchet-Urysohn property, (LM)-spaces and the strongest locally convex topology, Math. Proc. Royal Irish Acad. (to appear), 2002.
- [13] J. Kąkol and S. A. Saxon. *The Fréchet-Urysohn view of weak and s-barrelledness*, Bull. Belgian Math. Soc. (To appear), 2002.
- [14] J. Kąkol and I. Tweddle, Spaces of continuous functions $C_p(X, E)$ as (LM)-spaces, Bull. Belgian Math. Soc. (To appear), 2002.
- [15] G. Köthe, Topological Vector Spaces I, Springer-Verlag, 1969.
- [16] P. P. Narayanaswami and S. A. Saxon, (*LF*)-spaces, quasi-Baire spaces and the strongest locally convex topology, Math. Ann. 274 (1986), no. 4, 627–641.
- [17] S. A. Saxon, Nuclear and product spaces, Baire-like spaces, and the strongest locally convex topology, Math. Ann. 197 (1972), 87–106.
- [18] S. A. Saxon, Metrizable barrelled countable enlargements, Bull. London Math. Soc. 31 (1999), 711–718.
- [19] M. Valdivia, Quasi-LB-spaces, J. London Math. Soc. (2) 35 (1987), no. 1, 149–168.

DEPARTAMENTO DE MATEMÁTICAS, FACULTAD DE MATEMÁTICAS, UNIVERSIDAD DE MURCIA, 30.100 ESPINARDO, MURCIA, SPAIN

E-mail address: beca@um.es

Faculty of Mathematics and Computer Science, A. Mickiewicz University, ul. Majetki 48/49,60-769 Poznań, Poland

E-mail address: kakol@amu.edu.pl

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF FLORIDA, P.O. BOX 118105., GAINESVILLE, FL 32611-8105. USA

E-mail address: saxon@math.ufl.edu