THE BIRKHOFF INTEGRAL AND THE PROPERTY OF BOURGAIN

B. CASCALES AND J. RODRGUEZ

ABSTRACT. In this paper we study the Birkhoff integral of functiofis. 2 — X de-

fined on a complete probability spa¢@, 3, 1) with values in a Banach spacé. We
prove that iff is bounded then its Birkhoff integrability is equivalent to the fact that the set
of compositions off with elements of the dual unit balf; = {(z*, f) : =* € Bx~»}

has the Bourgain property. A non necessarily bounded fungtisrshown to be Birkhoff
integrable if, and only if,Z; is uniformly integrable and has the Bourgain property. As

a consequence it turns out that the range of the indefinite integral of a Birkhoff integrable
function is relatively norm compact. We characterize the weak Radon-§kquoperty

in dual Banach spaces via Birkhoff integrable Radon-Ngkodlierivatives. We also point

out that a recently introduced notion of unconditional Riemann-Lebesgue integrability co-
incides with the notion of Birkhoff integrability. Some other applications are given.

1. INTRODUCTION

Our concern here is to study the Birkhoff integral. Birkhoff integrability lies strictly
between Bochner and Pettis integrability. We link Birkhoff integrability with the Bourgain
property —a measurability notion— and then we succeed in replacing Pettis integrability
by Birkhoff integrability in some classical results. We stress that the Birkhoff integral is:
a) more restrictive than the Pettis integral and then closer to the Bochner intégrat;as
restrictive as the Bochner integral because every Riemann integrable function is Birkhoff
integrable;c) a bit more tangible than the Pettis integral because it is defined using a limit
(as the classical integrals are defined) instead of a barycentric formula.

Throughout this pap€i, >, 1) is a complete probability space afd, || - ||) is a real
Banach space. The starting point of our investigation goes back to the beautiful paper by
Birkhoff [1], dated in 1935, in which he studied the integration of functibns? — X.
Birkhoff's idea was to extend, to the setting of Banach-valued functiéin€chet’s elegant
interpretation of the Lebesgue integralFor some reason or other the approaches used by
Fréchet and Birkhoff in setting up an integral were almost passed over.

Fréechet considers in [4] functions: 2 — R and for each partitiolr of €2 into count-
ably many set$A,,) of X assigns a relativepperandlower integral by the expressions

J*(f,T) = sup f(An) p(Ay) and J.(f,T) = inf f(An) u(An),
respectively, assuming both series are well defined and absolutely convergent. One has the
inequality J,.(f,T") < J*(f,I") wheneverJ.(f,T') andJ*(f,I") are defined. Therefore
the intersection of the “relative integral ranges”

J.(f,T) <z < J(f,1),

for variablel is not empty. This intersection is a single paitif, and only if, f is Lebesgue
integrable and: = [, f du. Fréchet presented his approach to the Lebesgue integral with
the following sentence, [4, page 249]:
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2 B. CASCALES AND J. RODRGUEZ

This way of presenting the theory of integration due to M. Lebesgue has
the advantage, over the way M. Lebesgue presented his theory himself,
that is very much close to the views of Riemann-Darboux to which many
students are familiar with.

Fréchet'’s views inspired Birkhoff to give the following definition in [1, Definition 3]:

Definition 1. Letf : Q@ — X be a function. Ifl" is a partition ofQ2 into countably many
sets(4,,) of X, the functionf is called summable with respectToif the restrictionf| 4,
is bounded whenevet(A,,) > 0 and the set of sums

JUT) = { 3 F b)) : 1 € An} @

is made up of unconditionally convergent series. The funcfi@said integrable if for
everye > 0 there is a partition[' = (A,) of Q in X for which f is summable and

| - ||l-diam(J(f,T)) < e.

When f is integrable according to the previous definition, then the Birkhoff integral
(B) Jq, f du of fis the only point in the intersection

ﬂ{co(J(f,P)) : [ is summable with respect 0},

[1, Theorem 12]. As said at the beginning of the introduction, it has been known for long
that

f Bochner integrable = f Birkhoff integrable = f Pettis integrable

and none of the reverse implications holds in general, see [1], [14] and [15 Birkhoff
integrable ther{ B) fQ fdu= (Pettis)fQ f dp and both integrals are, from now onwards,
simply written asf, f du. The first example of a Pettis integrable function which is not
Birkhoff integrable was obtained by Phillips [15, Example 10.2]. When the range space
is separable, Birkhoff and Pettis integrability are the same [14].

The Bourgain property, Definition 3 in Section 2, is a nice tool of measurability for
families of functions widely studied over the years, see amongst others [7, 12, 16] and the
references therein. IF ¢ R has the Bourgain property, thefis stable, see [19, 9-5-4].
While speaking about boundedunction f : 2 — X, its Bochner integrability is equiv-
alent to strong measurability; a deep result by Talagrand, [19, Theorem 6-1-2], establishes
that f is Pettis integrable wheff; = {(z*, f) : «* € Bx-} is stable. We prove that the
Bourgain property is to Birkhoff integrability what strong measurability is to Bochner in-
tegrability: Theorem 2.4 establishes tlfeis Birkhoff integrable if, and only ifZ; has the
Bourgain property. We complete Section 2 with Proposition 2.6 where Birkhoff integra-
bility is characterized via the existence of the liffigfining partitions” of the net of sums
J(f,T). This last proposition shows that the notion of unconditional Riemann-Lebesgue
integrability, recently studied in [10], coincides with the notion of Birkhoff integrability.

Section 3 is mainly devoted to prove Theorem 3.5 —our characterization of Birkhoff
integrable functions that are non necessarily bounded— and Theorem 3.8 —the charac-
terization of the weak Radon-Nikgth property for dual Banach spaces via Birkhoff in-
tegrability. Technically speaking, Theorems 3.5 and 3.8 need of Lemmas 3.1, 3.2 and
Corollary 3.4, which might be of independent interest. Lemma 3.2 also corrects Theo-
rem 15 in [1] that appears to be wrong. We prove that the range of the indefinite integral of
a Birkhoff integrable function is relatively norm compact in Corollary 3.6. Our approach
to this subject allows us to easily obtain some other classical results as well as widen
and strengthen some other results spread out in [5], [9] and [16]. We finish the paper by
paying a visit to the weak Radon-Nik@eh property (WRNP, for short) in dual Banach
spaces. Recall that a dual Banach spaceis said to have the WRNP (see [11] and [3,
Definition 5.8)) if for every complete probability spa¢@, 3, 1) and everyu-continuous
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countably additive vector measure: ¥~ — X* of o-finite variation there is a Pettis
integrable functiory : 2 — X* such that

uE) = [t

for every E € . Efforts of several mathematicians (Musiat, Ryll-Nardzewski, Jan-
icka and Bourgain) led to the well-known characterization of Banach spsce#thout

copies of¢! as those for whichX* has the WRNP, see [3, 11, 12, 19] and the references
therein. Our Theorem 3.8 states that for dual spacégshe presence of WRNP entitle

us to change Pettis integrable Radon-Nikwodderivatives to Birkhoff integrable Radon-
Nikodym derivatives. In the very last result of the paper, Proposition 3.10, we characterize
the Riemann-Lebesgue integrable functions studied in [9, 10] using the Bourgain prop-
erty. As a consequence, Riemann-Lebesgue integrable functions do satisfy the law of large
numbers [20].

Our notation is standard and our standard references are [2], [17] and [19]. We write
X* to denote the dual of our Banach spaéés The weak (resp. wedktopology of X
(resp.X™) is denoted byw (resp.w*). Bx is the unit ball of X. For any setB ¢ X
we write || - [|-diam(B) = sup, ,cp |z — yl andco(B) for its convex hull. For the
probability spacegQ, >, 1) we write £1(u) (resp. £>°(u1)) to denote the space of real
u-integrable (resp. measurabteessentially bounded) functions defined@rand L* (1)

(resp. L>(u)) for the corresponding Banach space of equivalence classes with its usual
norm|| - |1 (resp.| - |)- The topology of pointwise convergenceR¥ is denoted byr,.

2. THE BIRKHOFF INTEGRAL FOR BOUNDED FUNCTIONS

For a bounded seB C X we use the notatiofjB|| = sup{||z|| : = € B}. Given
a sequenceé3, Bs, ... of sets ofX, the symbol}" " , B, denotes a formal series. The
seriesy -, B, is said to beunconditionally convergentrovided that for every choice
b, € By, n € N, the serie_ .~ b, is unconditionally convergent ix. Equivalently,
Y>>, By is unconditionally convergent if and only if for every> 0 there isN € N such
that| >, ¢ Bill < € for every finite setS € N\ {1,..., N}.

Given a functionf :  — X and a countable partitioRi = (A,) of Q in X, the
notion “ f is summable with respect 0", recalled in the introduction, is simply said
now: f|4, is bounded whenever(A,,) > 0 and the series of sefs, | f(A,)u(A,) is
unconditionally convergentor such ary andI” we retain the notatiod (f,T") defined in
equation (1) and for a givethoiceT = (¢,) in I (i.e. t,, € A,, for everyn), we write

S(f7F7T> = Zf(tn)M(An)

As usual, we say that another partitibhof (2, into countably many elements Bf is finer
thanT” when each element @f is contained in some element bf

The following lemma is a special case of [1, Theorem 9]. We provide a proof for the
convenience of the readers.

Lemma2.1. Let f : Q — X be a function. Suppose that there is a countable partifion
of  in X such thatf is summable with respect fa If I is any countable partition of2
in X finer thanl’, thenf is summable with respect id and

co(J(f, 1)) € co(J(f,T)). @)

Proof. Write I' = (4,,) andI” = (A4, ), with |, A, = A, for everyn. Now, set
By, = f(An)u(Ay) and By, i, := f(Apn k) (Ank). We will show first thatzm,C By 1 is
unconditionally convergent.
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Fix e > 0. Since)_,, B,, is unconditionally convergent, there € N such that

3)
for every finite setS € N\ {1,..., N}. Take

M > max{||f(A;)]| : 1 <i < N, u(A;) > 0}
There isK € N big enough such that

Z > k) < 5o M @)

n=1k>K

| > o<

(n,k)eS

for every finite setS ¢ (N x N)\ ({1,...,N} x {1,..., K}). Indeed, for such af, let
us write

S :={(n,k)eS:1<n<N} and S”"={(n,k)eS: n>N}

We claim that

On the one hand, inequality (4) applies to obtain
3
| 2 <5
(n,k)es’

On the other hand, if we defin¥’ = max{n > N : there isk with (n,k) € S}, then
some computations and inequality (3) give us (with the converition= 0)

H Z Bn,k ‘ < :U/ nk
(n.k)es” (n,k)es”
: Z co(B U{0}>H =[eof 32 @oon)] @
N<n<N’ N<n<N’
= ‘ B, U {0} H = sup ’ BkH <t
N<2N,( ) FC{N+1,...,N'} ]; 2

The claim is proved and therefofeis summable with respect 1.
To finish the proof we will show thaf (f,T") c co(J(f,T)) by contradiction. Sup-
pose that the previous inclusion does not hold. Then for some chdigeI” we have
S(f,I',T") € co(J(f,T)). The Hahn-Banach separation theorem ensures us of the exis-
tence ofz* € X* such that
(%, S(£,1°,1")) > sup{(a",y) : y € J(f,T)}. (6)
At the same time we have

(@, S(F,TT7) < Y sup(a®, f) p(Anx) = ZSXPW’ ) 1n(An)

n,k "
= sup{(z*, S(f,T,T)) : T choiceinl'} =sup{(z*,y): y € J(f, I},
which contradicts inequality (6) and the proof is finished. O

The Birkhoff property as defined below is a natural condition to characterize Birkhoff
integrability of f :  — X in terms of

Zy={(z", f): " € Bx~}.
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Definition 2. We say that a familyF ¢ R has the Birkhoff property if for every > 0
there is a countable partitioll = (A4,,) of Q in X such that for eachy,, ¢, € Ay, k € N,
we have

I3 A0 — 3 F(Hu(Ae)| << @)
k=1 k=1
for everym € N and everyf € F.

Observe that ifF satisfies (7), then eaghe F is bounded om,, whenever(A,,) > 0.
Consequently,F has the Birkhoff property if, and only if, for every > 0 there is a
countable partitio®” = (A4,,) such that

D |- |-diam(f(An))u(A,) < e
#(Ar)>0
for every f € F. Let us notice that ifF has the Birkhoff property then its absolutely
convex hullaco(F) and its pointwise closur& * also have the Birkhoff property.

Proposition 2.2. Let f : Q@ — X be a function. The following conditions are equivalent:
(i) f is Birkhoff integrable;

(ify f is summable with respect to some countable partifigrof 2 in 3 and Z; has
the Birkhoff property.

Proof. The implication (i}=(ii) is obvious and thus we will only prove (i5-(i). Fix e > 0.
SinceZ; has the Birkhoff property, there is a countable partifign= (A4,) of Q in X
such that
Do |- [-diam((z*, f)(An))p(An) <&

H(Ar)>0
for everyz* € Bx-. Takel' = (B,,) finer than botlT; andI';. Sincef summable with
respect td'y, then f is also summable with respect foafter Lemma 2.1. On the other
hand, sincd” is finer thanl';, we have

> |- |-diam((@*,f)(Bm))p(Bim)
w(Bp)>0 (8)
< Y > |- |diam((zT, ) (An)u(B) < e
#(An)>0 BmCAn,
for everyz* € Bx«. Therefore, ifl’ andT’ are choices if" inequality (8) implies that
||S(va7T) - S(f7F7T,)|| S g,
and consequently is Birkhoff integrable and the proof is over. O

Some readers familiar with the Bourgain property might have realized by now of the
relationship of the Birkhoff and Bourgain properties when the latter is viewed suitably.
First we recall the definition of the Bourgain property.

Definition 3. We say that a familF ¢ R® has the Bourgain property if for eveey> 0
and everyA € ¥ with u(A) > 0 there areBy,..., B, C A, B; € ¥ with u(B;) > 0,
such that for every € F

Jinf |- |-diam(f(By)) < <.

<i<n

Lemma 2.3. Let F c R® be a family of functions. The following statements hold:

(i) if F has the Birkhoff property, thef has the Bourgain property;
(i) if F is uniformly bounded and has the Bourgain property, tf€has the Birkhoff
property.
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Proof. In order to prove (i) fixc > 0 and A € ¥ with (A) > 0. By hypothesis there is a
countable partitiod” = (A4,,) of Q in ¥ such that for eachy,, ¢}, € Ax, k € N, we have

- - ep(4)

> Fwona) = > FtuAn| < 25 ©)

k=1 k=1

for everyn € N and everyf € F.

Fix n € N big enough such thgt" , u(A N A;) > p(A)/2. We can suppose without
loss of generality that(A N A;) > 0forall 1 < i < n. Now, we prove by contradiction
that for everyf € F

1é?£n| -|-diam(f(AN A4;)) <e. (10)
If for some f, € F inequality (10) does not hold, then for eath< i < n we can select
pointst;, t; € AN A; such thatfo(¢;) — fo(t;) > €. Thus, we conclude that

A S (olt) — ol (),

i=1

which contradicts inequality (9) and finishes the proof of (i).

The proof of (ii) imitates the proof of (e-(a) in [7, Proposition IV.8] but dealing now
with an abstract probability space and with oscillations insteaglsséntialoscillations.
Fix e > 0 and define the uniformly bounded set

K, = {g €[0,1]%: gis measurabl,e/ gdp > 5}.
Q

Its canonical imagé.. in L' (1) is uniformly integrable||- ||, -bounded and weakly closed,
hence weakly compact, [2, Theorem 15, p. 76]. The&et= {w € Q : g(w) > 0} is
of positivep-measure for every € K.. SinceF has the Bourgain property, there are sets
Al A ) © A%with A7 € X andu(AY) > 0 such that

inf |- |-diam(f(A?)) < (11)

1<i<n(g)
for every f € F. Note that the canonical image It (1) of the set

n(g)

Vig) = ﬂ{heﬁl(,u): /Aghd,u>0}

i=1

is a weak open neighborhood of the clgssf g in L'(;1). The weak compactness &f.
implies that there are finitely many, ..., g € K. such that

k
K. c |JVig).
j=1
Let {Ui,...,Un} be a partition of2 in ¥ with the property that i/, N A7’ # ) for
somel < j <k, 1<i<n(g;),thenlU; C A¥. Givenf € F consider

c=|J{vi: |- |-diam(f(U))) > €}.

We now prove that the characteristic functign of C' does not belong t& .. If x¢ € K.,
thenyc € V(g;) for somel < j < k. This means that(C N AJ’) > 0 for every
1 < i < n(gj). So, for everyl < i < n(g;) there isU;, with U;, N A # 0 and
| - |-diam(f(U,,)) > e. Sincel,, is contained ind?’ we infer that| - |-diam(f(A{’)) >
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for everyl < i < n(g;), which contradicts (11) and henceforth we conclude that the
functionyc ¢ K., i.e. u(C) < e. Now, we finish the proof of (ii) by noticing that

N
> |- [-diam(f(Un)u(U) =

=1

> |- -diam(fU)) () + Y |- |-diam(f (U1)u(U7)

uU,cc U]¢C
< 2Me + ep(Q)) = (2M + 1)e,
whereM = sup{|f(w)| :w € Q, f € F}. O

In general, wher C R® is not necessarily uniformly bounded and has the Bourgain
property we do not know ifF has the Birkhoff property: we can prove though that this is
the case for families = Z;, wheref : O — X, see Corollary 3.4.

We can now characterize Birkhoff integrability for bounded functions. Recall that a
subsetB C Bx- is said to benormingif

]l = sup (2", z)|
z*€B
for everyx € X.

Theorem 2.4. Let f : Q@ — X be a bounded function. The following statements are
equivalent:
(i) f is Birkhoff integrable;
(i) Zy has the Bourgain property;
(iii) there is a norming seB C Bx- such that

Zpp ={(a*,f): " € B} CR?
has the Bourgain property.

Proof. If fis bounded, the; = {(z*, f) : 2* € Bx-} C R%is a uniformly bounded
family of functions andf is summable with respect to any countable partitiof2oh X.
Hence, the equivalence €)(ii) is exactly what has been proved in Proposition 2.2 if we
bear in mind Lemma 2.3. The implication &(iii) is trivial and the proof for the impli-
cation (iii)=-(ii) goes as follows. If (jii) holds, thet; 5 C R® has the Birkhoff property
because it is uniformly bounded and has the Bourgain property —apply Lemma 2.3. Since
B is norming, the Hahn-Banach separation theorem guarante%cdwjﬁf,g)TP = Zs.

As the Birkhoff property is preserved by taking absolutely convex hulls and pointwise
closures we conclude that; has Birkhoff (Bourgain) property and the proof is over(d

Riddle and Saab proved in [16, Theorem 13] that any bounded funftidn — X*
is Pettis integrable whenevel, 5, = {(f,z) : © € Bx} has the Bourgain property. The
particular case of Theorem 2.4 that is isolated below improves their result.

Corollary 2.5. Letf : 2 — X ™ be a bounded function. Thehis Birkhoff integrable if,
and only if, {(f, x) : * € Bx} has the Bourgain property.

We end up the section by highlighting that for a functipn Q@ — X its Birkhoff
integral (upon its existence) can be realized as the limit of thg fief,T", T') }r, where
we order partitions by refinement. Note that for gfjjLemma 2.1 implies that the s&
of all pairs(I", T"), wherel' is a countable partition d® in 3 for which f is summable and
T is a choice iT", is a directed set with the binary relation

(I, T) = (I, T") & TI"isfiner thanl.
Proposition 2.6. Let f : 2 — X be a function. The following conditions are equivalent:
(i) f is Birkhoff integrable;
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(i) thereisz € X with the following property: for every > 0 there is a countable
partition " of 2 in ¥ such thatf is summable with respect tband
HS(](,F,T) - £L'|| <e

for every choice’ in T
(iii) there isy € X with the following property: for every > 0 there is a countable
partition I" of Q2 in ¥ such thatf is summable with respect to each countable
partition I finer thanI" and
IS(f, T T) —yll <e
for every choicg” in T”.
In this casex =y = [, f dp.

Proof. The implications (iii}=-(ii) =(i) are obvious. To see that £)(iii), we simply notice
that Birkhoff integrability off and Lemma 2.1 imply that the net

Sf_)Xa (F,T)HS(f,F,T),

is a Cauchy net and, therefore, it converges to sgraeX.
The last statement in this proposition straightforwardly follows from the very definition
of the Birkhoff integral. O

We mention that functiong : Q@ — X satisfying (iii) in the previous proposition are
calledunconditionally Riemann-Lebesgue integrafalactions in [10], where some results
about this type of integrable functions are proved. The previous proposition makes clear
that the notion of unconditional Riemann-Lebesgue integrability coincides with Birkhoff's
one.

3. BIRKHOFF INTEGRABILITY FOR ARBITRARY FUNCTIONS

We start this section by establishing the following criterion for the unconditional con-
vergence of double series in Banach spaces.
Lemma 3.1. Let(z,, & )n,ken be a double sequence i such that:

(i) the seriesy, i is unconditionally convergent for everye N;
(ii) there are an unconditionally convergent serles, , v, in X and a sequence of

non-negative real numbefs,,) with >~ | a,, < oo such that

H Z(xnk - ynk)H S (275
keQ
for every finite subse&) C N and everyn € N.
Thenzn’k Zn i IS unconditionally convergent i’

Proof. Fix ¢ > 0 and takeN € N such that

Z a, <& and H Z ynkH <e€ (12)

n>N (n,k)eP

for every finite subseP C N x N for which PN ({1,2,...,N} x {1,2,...,N}) = 0.
Take nowM € N, M > N, such that

13
HZI’“"’H<N’ n=1,2,...,N, (13)
keF

for every finite setr” ¢ N for which Fn{1,2,..., M} = 0.
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Given a finite setH ¢ N x Nwe write H' := {(n,k) € H : 1 < n < N}. If
HnN({1,2,...,N} x{1,2,...,M}) = 0, then we have

H Z xn,kH = H Z Tn k + Z LTn k )

(n,k)eH (n,k)eH’ (n,k)e H\H'
N
<3| = ale] X ememil+] Tl
n=1 o klfeH’ k)EH\H (n,k)eH\H'
<Z*~|— Zan+5<35
n>N
after inequalities (12) and (13). This proves that the seEqu)k Zn.k 1S Unconditionally
convergent inX and we are finished. O

If f: Q — X is Birkhoff integrable, then for everyl € X the restrictionf|, is
Birkhoff integrable with respectt@A, X4, pa) —X4 = {ENA: E € X} andu,4 stands
for the restriction ofu to ¥ 4,— and its Birkhoff and Pettis integrals ovércoincide, see
[14, 2.21].

Lemma 3.2. Let f : 2 — X be a function. The following conditions are equivalent:
(i) f is Birkhoff integrable;
(i) f is Pettis integrable and there is a countable partitibn= (A,,) of Q in X such
that f| 4, is Birkhoff integrable for every;
(iii) there is a countable partitio® = (A4,,) of Q in ¥ such thatf|4, is Birkhoff
integrable for every: and for every countable partitiof’ = (B,,) of Q in X finer
thanT, the series”, [, f du is unconditionally convergent iX..

Proof. The implications (i}=(ii) =-(iii) are clear — use that the indefinite integral of any
Pettis integrable function is a countably additive vector measure, [2, Theorem 5, p. 53].
We prove now (iii}=-(ii). Assume for the moment thgt takes real values and (iii) holds.
SetQt = {w € Q: f(w) >0} andQ™ = {w € Q : f(w) < 0}. With the partitions
I'and{Q", Q" } we induce the partitio” whose members ate™ N A,, andQ~ N A,,.

By hypothesis, the seriés, | fQ+mAn fdu+3, fQ,mAn f du is absolutely convergent,

meaning
+o0 > ‘/ fdu‘Jr ‘/ fdﬂ‘
; QtNA, 7ZL Q—NA,
— fl du + / fldp= / [l dp.
;‘/§2+0An,| | ; QimAn| ‘ ; An'l |

An appeal to Lebesgue’s Monotone Convergence Theorem [17, Theorem 1.26] gives us
that f is an integrable function. Now we handle the general casef IfQ) — X
satisfies (iii), then for every* € B the scalar functioz*, f) also satisfies (iii). Hence

(z*, f) € LY (). Moreover, if we definerg := Y | fAn f du, then we have

2 (zq) = x(Z/A ) = Z/A (", ) dyu = /Q<x*7f> .

If Aisasubset oE then (iii) is satisfied forf| 4 and(A, X 4, 4 ). The previous arguments
applied to anyf| 4 allow us to conclude that is Pettis integrable and therefore (ii) holds.
To finish we prove that (ig>(i). We are going to show that is Birkhoff integrable

using the very Definition 1. Fix > 0. Birkhoff integrability of f| 4, , n € N, implies that
there is a partitiod’,, = (A, x)r of A, in £ such thatf| 4, is summable with respect to
I, and .

= (14)

Jscs1a T

In,Tn) = S(fla

I, 7)) <

7L’ n» n

Ans
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for arbitrary choicesl,, and7T), in T',,. Take@ C N a finite set, fixn € N and set
B, = Uyeq Ank- Inequality (14) implies that

|5 senstnn - 5 st < &

keQ
for any choicedt, x)req and (t;L w)ke@ N the partitionI',, o = (An.x)keq. With the
notation in Definition 1, this means that- ||-diam(J(f|g, ,,I'n,q)) < €/2". Since
f|B., o is Birkhoff integrable aann o fdp € co(J(f|B,. o, Tnq)) we conclude that

Hé%U&MHMU%ﬁ)—/;$fWOHZHg%f@mwﬂwuk)—ﬁgﬁfdﬂu<;2

(15)
If we definel’ := JTI',, = (A, k)n .k, then the series(f,T',T) = Zn’k fln i) p(Ank)
converges unconditionally for every choi@e= (¢, ) in I'. Indeed, this follows from
Lemma 3.1 bearing in mind thgjn & fA f duis unconditionally convergenf(is Pettis

integrable) and that inequality (15) holds Now, inequality (14) is used again to deduce that
|s(s.0.1) = s(r.0. 1)

<eg,

for any choiced” andT” in T'. This shows thaf is Birkhoff integrable. O

The equivalence between (i) and (ii) in the Lemma above was first stated in the unpub-
lished note [5]: our approach here isolates and clarifies the difficulties behind the proof via
Lemma 3.1, that could be of interest by itself. We have felt somehow obliged to include
(iii) in the lemma because our implication (i#)(i) fixes a minor mistake in Birkhoff’s
paper [1]. Theorem 15 in [1] states that a functjpn Q2 — X is Birkhoff integrable as
long as the following weaker form of (iii) holds:

(i) there is a countable partitiod = (A,) of Q in ¥ such thatf|,, is Birkhoff

integrable for every: and the serie$ fAn f du is unconditionally convergent

in X.
Unfortunately this is not true even for real functions. Indeed, take any infinite countable
partition" = (A,,) of Borel sets of]0, 1] with Lebesgue measur¥(4,,) > 0. Split
A, = C,, U D, as the union of two disjoint measurable sets suchxf@t,) = \(D,,) =
A(A,,)/2, for everyn € N. Define the functiory : [0,1] — R by the sum

= XCn XD .

G Tn)
Clearly, f is not integrable ovef0, 1] meanwhilefAn f dx = 0 over eachA,,. This
shows that Theorem 15 in [1] is not correct and that it is certainly needed our assumption
>on an f dX unconditionally converges for every partitidh = (B,,) finer thanT’, as
presented in (i) in Lemma 3.2.

Our next goal is to show that the Bourgain and Birkhoff properties are equivalent for

families of the formZ; = {(z*, f) : «* € Bx-}, wheref : @ — X is any function. We
reduce our proof to the case of a bounded funcfidoy using the lemma below.

Lemma 3.3. Let By,..., B, C X be sets for which there is a constant> 0 such that
for everyz* € Bx~
1nf \ |-diam(z*(B;)) < k.

Then there id < j < nsuch thatBJ is bounded.

Proof. For eachl < i < n, defineC; := {z* € Bx~ : |- |-diam(z*(B;)) < k}. Notice
that eachC; is norm closed{Bx- \ C; : 1 <1 < n} is a family of relatively open subsets
of Bx- with empty intersection, hence therelis< j < n such thatBx- \ C; is not dense
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in Bx~. ThereforeG := {z* € X* : ||2*|| < 1} ¢ Bx-~ \CJ—H'H. It follows that there
existz§ € G andé > 0 such thaf{z* € X* : ||z — 2*| < 0} € GNCj. Fixzo € B;.
Givenz* € By-, we haverj + éx* € C; and therefore for every € B; we obtain

0™ ()] < [(xg + 627)(2) — (25 + 0x™)(0)| + [ap () — 5 (xo)| + 927 (20)]
< |- |-diam((a; + 627)(B;)) + | - |-diam(zg(B;)) + l|o]| < 2k + |o|-
Hence||z|| < (2k)/d + ||zol| for everyz € B;. ConsequentlyB, is bounded and the
proof is complete. O

It is not difficult to see that a familyF ¢ R has the Birkhoff (resp. Bourgain) property
if and only if there is a countable partitid,,) of 2 in ¥ such that for each € N the
4, : [ € F} C R4 has the Birkhoff (resp. Bourgain) property
with respecttd A, X4, ,pa, ).

Corollary 3.4. Let f : @ — X be a function. The following conditions are equivalent:
(i) Z; the has Birkhoff property;
(i) Z¢ has the Bourgain property.
In this case, there is a countable partitigal,,) of Q in X such thatf(A,,) is bounded
whenevep(4,,) > 0.

Proof. The implication (i}=(ii) has already been proved in Lemma 2.3 (i). Our comments
prior to this corollary and Lemma 2.3 (ii) imply that to prove £i#)i) it suffices to show

that there is a countable partitigrl,,) of Q in ¥ such thatf(A4,,) is bounded whenever
u(A,) > 0. A standard exhaustion argument reduces the proof of the last condition to
check thatfor eachE € ¥ with u(FE) > 0there isA C E, A € ¥ with u(4) > 0,

such thatf(A) is bounded We prove this: since&Z; has the Bourgain property, there are
Ey,...,E, C E, E; € X with u(E;) > 0, such that for every* € Bx-

Jnf |- -diam((*, f)(By) < 1. (16)

If we write B; := f(E;), mequahty (16) is read amfi<;<, | - |-diam(z*(B;)) < 1 for
everyz* € Bx-. An appeal to Lemma 3.3 ensures us that thefe s j < n such that
B; = f(E;) is bounded. The proof is finished. O

Theorem 3.5. Let f : @ — X be a function. The following conditions are equivalent:

(i) f is Birkhoff integrable;
(i) Zy is uniformly integrable and has the Bourgain property.

Proof. The implication (i}=(ii) follows from Proposition 2.2 and Lemma 2.3 (i) together
with the fact that sinc¢ is Pettis integrable (recall that Birkhoff integrability implies Pettis
integrability) the seZ; is uniformly integrable, [19, Theorem 4-2-2].

By Corollary 3.4 condition (ii) is actually equivalent to:

(i) Zy is uniformly integrableZ; has the Bourgain property and there is a countable
partitionT" = (A,,) of Q in ¥ such thatf(4,,) is bounded whenevet(A,,) > 0
We now prove (ii"=-(i). This implication can be established in several different ways:
we present the simplest one we came across with. To get started we provg ithat
Pettis integrable. By [19, Theorem 4-2-3] it suffices to show that the canonical map
it (Zs,1p) — (L'(w),w), that sends every function to its equivalence class, is con-
tinuous. We are going to show thafs in fact 7,,-to-|| - ||; continuous by proving that

i(A™) ci(A )H " for everyA C Z;. Fix A C Z; and pickg € A", SinceZ; has the
Bourgain propertyA has the Bourgain property too. Therefore there is a sequengéen
A converging tgy y-almost everywhere, [16, Theorem 11]. The sequépgegis uniformly
integrable and therefore Vitali's theorem, [8, p. 203], ensureslthat||g, — g|l1 = 0.

Hencei(g) € z(A)H I , the inclusioni(A™) c i(A )H "' holds and the proof of Pettis
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integrability of f is over. To prove thaf is Birkhoff integrable observe that, on the one
hand, f|4, is Birkhoff integrable whenever(4,,) = 0. On the other hand, whenever
1(Ap) >0, f|a, is bounded and

Zs,, =", fla,)+ 2" € Bx-}
has the Bourgain property; hence Theorem 2.4 impliesfthat s also Birkhoff integrable.

Therefore,f andTI" fulfill the requirements in (ii) of Lemma 3.2 and we conclude tfia$
Birkhoff integrable. O

Fremlin proved in [5] that for every Birkhoff integrable functign: 2 — X the set
Zy is stable. Since the Bourgain property is more restrictive than stability, [19, 9-5-4], the
aforementioned Fremlin’s result is a weaker form of Theorem 3.5.

In the proof of (ii}=(i) Pettis integrability off can be established in a different way,
namely, by using that a functiofi : & — X is Pettis integrable itZ; is stable and
uniformly integrable, [19, Theorem 6-1-2]. Nonetheless, we think that the arguments given
using the Bourgain property are easier than those using stability.

A thorough study about the continuity of the map (F,7,) — (L*(u), | - ||1), for
certain familiesF ¢ L!(u), can be found in [21]. Another consequence of the continuity
of 7 proved in the implication (ig>(i) in Theorem 3.5 is:

Corollary 3.6. If f : Q@ — X is Birkhoff integrable, then the range of the indefinite
integral { [, f du : A € ¥} is relatively norm compact.

Proof. It suffices to show that(Z ;) is a compact subset ¢£. (1), || -||1), [19, Proposition
4-1-5]. This follows from the compactness @, 7,,) —Alaouglu’s theorem— and the
continuity of the canonical map: (Z¢,7,) — (L' (w), || - [l1)- g

Corollary 3.6, that strengthens a result in [9] regarding the separability of the range
of the indefinite integral of Riemann-Lebesgue integrable functions, can be alternatively
proved combining Theorem 18 in [1] with Remark 9.1 in [12]. We mention that the range
of the indefinite integral of a Pettis integrable function is not relatively norm compact in
general (Fremlin and Talagrand, see e.g. [19, Theorem 4-2-5]).

Observe that iff : Q@ — X is u-strongly measurable, thefi; has the Bourgain
property. This easily follows from the fact thatstrong measurability fof is equivalent
to the condition:

(S) for everye > 0 there is a countable partitiolly = (Ag, A1,...) of Qin X such
thatu(Ag) = 0and|| - ||-diam(f(A,)) < e for everyn > 1,

see [2, Corollary 3, p. 42]. Hence, Theorem 3.5 particularly says that-f&irongly
measurable functions, Birkhoff integrability and Pettis integrability coincide, [14, Corol-
lary 5.11], becaus€; is uniformly integrable whenevef is Pettis integrable, see [19,
Theorem 4-2-2]. More particularly, every Bochner integrable function is Birkhoff inte-
grable, [1, p. 377].

Another application of Theorem 3.5 is Corollary 3.7 below where Birkhoff integrability
of a non necessarily bounded functipn 2 — X* is characterized in terms of the family

Zspy ={(f,x): v € Bx} CR™

Corollary 3.7. Let f : @ — X* be a function. Therf is Birkhoff integrable if, and only
if, {(f,z) : © € Bx} is uniformly integrable and has the Bourgain property.

Proof. In view of Theorem 3.5 we only need to check tizgtis uniformly integrable and
has the Bourgain property whenever the same holds trug fgr, . Observe that Golds-
tine’s theorem applies to deduce thigt = Z¢. On the one hand, since the Bourgain
property is preserved by taking pointwise closures [16, Theorem 11], we concludgrthat
has the Bourgain property. On the other haffd,is uniformly integrable. Indeed, since
Z;.p, has the Bourgain property aiff 5, © = Z;, every element of/; is the-almost
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everywhere limit of a sequence #y g, , see [16, Theorem 11]. The uniform integrability
of Z; 5, and Vitali's theorem ensure us thdy C £'(x) and that every element ¢f; is
the|| - ||1-limit of a sequence i 5. . Finally, the fact tha 5 is uniformly integrable
is used again to infer that the same holdsAgr The proof is over. O

We characterize now WRNP in dual Banach spaces in terms of Birkhoff integrable
Radon-Nikogm derivatives.

Theorem 3.8. Let X be a Banach space. The following statements are equivalent:

(i) X* has the weak Radon-Nikah property;
(i) X does not contain a copy 6f;
(iii) for every complete probability spa¢@, 3, 1) and everyu-continuous countably
additive vector measure : ¥ — X* of o-finite variation there is a Birkhoff
integrable functionf : Q@ — X™* such that

v(E) :/ fdu
E
for everyE € 3.

Proof. The equivalence (&»(ii) is well-known, see for instance [3, Theorem 6.8]. The im-
plication (iii)=-(i) uses the very definitions and the fact that Birkhoff integrability implies
Pettis integrability. For the proof of (i-(iii) we distinguish two cases. We write| to
denote the variation of.

Particular Case.-Suppose that there & > 0 such thafjv|(F) < Mu(E) for every
E € X. Fix alifting p on L>°(u), [3, Theorem G.1, p. 145]. By [3, Proposition 6.2] there
is a boundedv*-scalarly measurable functigh: 2 — X* such that:

@) p((f,z)) = (f,z) for everyz € X;
(b) (v(E),z) = [,(f,x) duforeveryE € ¥ and everyr € X.

Notice thatZ; 5, C ¢>°(Q) is a uniformly bounded subset that cannot contairf’an
sequence because otherwise ther@ase) and a sequende:,,) in Bx such that for every
n € Nand everya,,...,a, € R

5Z|ai\ § HZ%(J‘, J}i> - = H(f,Zazx» - S MHZC@%I
i=1 i=1 i=1 =1

this means that' embeds inX contradicting our hypothesis. Henc& 5, does not
contain¢!-sequences that together with the equalit s 5. ) = Zy 5, allow us to use
Corollary 12.1 in [12] to obtain thaZ; g, has the Bourgain property. Therefofeis
Birkhoff integrable after Corollary 2.5. Hence for eveilyc %, bothv(E) ande fdu
belong toX* and according to (b) above the equality’) = [,. f du holds.

General Case.Since|v| is a o-finite measure anfy|(F) = 0 whenevery(E) = 0,
standard arguments, see the proof of [3, Lemma 5.9], provide us with a countable partition
I' = (A,) of Qin X such thaty|(E) < nu(E) foreveryE € ¥4 and everyn € N. Fix

n € N. TheParticular Case already proved, implies the existence of a Birkhoff integrable
function f,, : A, — X* such that

V(E):/fndu, EecXy,.
E

Definef : Q — X* by f(w) = fn(w) if w € A,,. The proof of [3, Lemma 5.9] reveals
that f is Pettis integrable with indefinite Pettis integral So, Lemma 3.2 says thdtis
Birkhoff integrable and the proof is finished. O

)

It is well-known that there is a one-to-one correspondence between bounded linear op-
eratorsT : L'(u) — X* and measures : ¥ — X* satisfying|v|(E) < Mu(E),
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E € %, for someM < oo: simply putv(E) := T(xg), E € %, see [3, Lemma 5.9].
Theorem 3.8 can be completed as follows:

Corollary 3.9. Let X be a Banach space. The following statements are equivalent:

() X* has the weak Radon-Nik{ah property;
(iv) for every complete probability spac€, ¥, 1) and for every bounded operator
T : L'(u) — X* there is a bounded Birkhoff integrable functign Q — X*
such that

(", T(g)) = /Q gle™, ) dp, =™ € X**, g€ L\(p). 17)

We mention that Saab proved in [18, Proposition 9] —using martingale techniques—
that X* has the WRNP if, and only if, for every bounded operdfor L[0,1] — X*
there is a bounded functiofi : [0,1] — X*** such thatZ, has the Bourgain property
(with respect to the Lebesgue measure) and equation (17) holds forgewehy [0, 1].

Another consequence of Theorem 3.8 is thakif has the WRNP, then every Pettis
integrable functionf : Q@ — X™* is scalarly equivalent to a Birkhoff integrable func-
tion —bear in mind that the indefinite integral associated to a Pettis integrable function is
countably additive and hasfinite variation, [3, Proposition 5.6].

Functionsf : Q@ — X for which Z; is stable and such thdtf| has au-integrable
majorant have gotten the attention of several authors over the years, see [6, 13, 19, 20]
amongst others. These functions are callalhgrand integrable functionisy Fremlin and
Mendoza, see [6], and they were characterized by Talagrand as those functions satisfying
the law of large numberssee [20]. As the last application of our techniques here we
characterize those functiorfsfor which Z; has the Bourgain property and|| has au-
integrable majorant.

Recall that a functiorf : @ — X is said to be Riemann-Lebesgue integrable, [9, 10],
if there isz € X with the following property: for every > 0 there is a countable partition
T" of Q in X such that for every countable partiti@i finer thanI" and every choic&d”
in T, the seriesS(f,T”,T") is absolutely convergent anid'(f,I",7") — x| < . Every
Riemann-Lebesgue integrable function is Birkhoff integrable after Proposition 2.6.

Proposition 3.10. Let f : 2 — X be a function. The following conditions are equiva-
lent:

(i) fis Riemann-Lebesgue integrable;
(i) Z; has the Bourgain property and theregse £'(u) such that| f|| < g u-almost
everywhere.

Proof. (i))=(ii) Theorem 3.5 ensures th&af; has the Bourgain property becaugeis
Birkhoff integrable. Now, takd® = (A,) a countable partition of2 in ¥ such that
I1S(f,T,T) — S(f,I',T")] < 1, for any choicesT" andT” in T', being the series in-
volved absolutely convergent. Notice thAtA,) is bounded whenevet(4,) > 0.
The series 4 >0 1/ (An)[l1(Ar) is convergent and therefore the function defined by
9= (a0 IF(An)llxa, is p-integrable and satisfig’|| < g u-almost everywhere.
Conversely, (ii}>(i). SinceZ; has the Bourgain propert¥,, is made up of measurable
functions, [16, Theorem 11]. The inequality| < g u-almost everywhere impliest) Z ¢
is uniformly integrableb) there is a countable partitiqid,,) of Q2 in 3 such thatf (4,,) is
bounded whenever(A,) > 0and}_, 4 1o llf(A4s)[[n(An) is convergent. An appeal
to Theorem 3.5 establishes thais Birkhoff integrable. Clearly5(f, I, T") is absolutely
convergent for every countable partitibh of 2 in X finer thanI” and every choicd” in
TI". Proposition 2.6 finishes the proof. O
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