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ABSTRACT. In this paper we study the Birkhoff integral of functionsf : Ω −→ X de-
fined on a complete probability space(Ω, Σ, µ) with values in a Banach spaceX. We
prove that iff is bounded then its Birkhoff integrability is equivalent to the fact that the set
of compositions off with elements of the dual unit ballZf = {〈x∗, f〉 : x∗ ∈ BX∗}
has the Bourgain property. A non necessarily bounded functionf is shown to be Birkhoff
integrable if, and only if,Zf is uniformly integrable and has the Bourgain property. As
a consequence it turns out that the range of the indefinite integral of a Birkhoff integrable
function is relatively norm compact. We characterize the weak Radon-Nikodým property
in dual Banach spaces via Birkhoff integrable Radon-Nikodým derivatives. We also point
out that a recently introduced notion of unconditional Riemann-Lebesgue integrability co-
incides with the notion of Birkhoff integrability. Some other applications are given.

1. INTRODUCTION

Our concern here is to study the Birkhoff integral. Birkhoff integrability lies strictly
between Bochner and Pettis integrability. We link Birkhoff integrability with the Bourgain
property —a measurability notion— and then we succeed in replacing Pettis integrability
by Birkhoff integrability in some classical results. We stress that the Birkhoff integral is:
a) more restrictive than the Pettis integral and then closer to the Bochner integral;b) not as
restrictive as the Bochner integral because every Riemann integrable function is Birkhoff
integrable;c) a bit more tangible than the Pettis integral because it is defined using a limit
(as the classical integrals are defined) instead of a barycentric formula.

Throughout this paper(Ω,Σ, µ) is a complete probability space and(X, ‖ · ‖) is a real
Banach space. The starting point of our investigation goes back to the beautiful paper by
Birkhoff [1], dated in 1935, in which he studied the integration of functionsf : Ω −→ X.
Birkhoff’s idea was to extend, to the setting of Banach-valued functions,“Fr échet’s elegant
interpretation of the Lebesgue integral”. For some reason or other the approaches used by
Fréchet and Birkhoff in setting up an integral were almost passed over.

Fréchet considers in [4] functionsf : Ω −→ R and for each partitionΓ of Ω into count-
ably many sets(An) of Σ assigns a relativeupperandlower integral by the expressions

J∗(f,Γ) =
∑

n

sup f(An) µ(An) and J∗(f,Γ) =
∑

n

inf f(An) µ(An),

respectively, assuming both series are well defined and absolutely convergent. One has the
inequalityJ∗(f,Γ) ≤ J∗(f,Γ′) wheneverJ∗(f,Γ) andJ∗(f,Γ′) are defined. Therefore
the intersection of the “relative integral ranges”

J∗(f,Γ) ≤ x ≤ J∗(f,Γ),

for variableΓ is not empty. This intersection is a single pointx if, and only if,f is Lebesgue
integrable andx =

∫
Ω

f dµ. Fréchet presented his approach to the Lebesgue integral with
the following sentence, [4, page 249]:
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This way of presenting the theory of integration due to M. Lebesgue has
the advantage, over the way M. Lebesgue presented his theory himself,
that is very much close to the views of Riemann-Darboux to which many
students are familiar with.

Fréchet’s views inspired Birkhoff to give the following definition in [1, Definition 3]:

Definition 1. Letf : Ω −→ X be a function. IfΓ is a partition ofΩ into countably many
sets(An) of Σ, the functionf is called summable with respect toΓ if the restrictionf |An

is bounded wheneverµ(An) > 0 and the set of sums

J(f,Γ) =
{∑

n

f(tn)µ(An) : tn ∈ An

}
(1)

is made up of unconditionally convergent series. The functionf is said integrable if for
everyε > 0 there is a partitionΓ = (An) of Ω in Σ for which f is summable and
‖ · ‖-diam(J(f,Γ)) < ε.

Whenf is integrable according to the previous definition, then the Birkhoff integral
(B)

∫
Ω

f dµ of f is the only point in the intersection⋂
{co(J(f,Γ)) : f is summable with respect toΓ},

[1, Theorem 12]. As said at the beginning of the introduction, it has been known for long
that

f Bochner integrable ⇒ f Birkhoff integrable ⇒ f Pettis integrable,

and none of the reverse implications holds in general, see [1], [14] and [15]. Iff is Birkhoff
integrable then(B)

∫
Ω

f dµ = (Pettis)
∫
Ω

f dµ and both integrals are, from now onwards,
simply written as

∫
Ω

f dµ. The first example of a Pettis integrable function which is not
Birkhoff integrable was obtained by Phillips [15, Example 10.2]. When the range spaceX
is separable, Birkhoff and Pettis integrability are the same [14].

The Bourgain property, Definition 3 in Section 2, is a nice tool of measurability for
families of functions widely studied over the years, see amongst others [7, 12, 16] and the
references therein. IfF ⊂ RΩ has the Bourgain property, thenF is stable, see [19, 9-5-4].
While speaking about aboundedfunctionf : Ω −→ X, its Bochner integrability is equiv-
alent to strong measurability; a deep result by Talagrand, [19, Theorem 6-1-2], establishes
thatf is Pettis integrable whenZf = {〈x∗, f〉 : x∗ ∈ BX∗} is stable. We prove that the
Bourgain property is to Birkhoff integrability what strong measurability is to Bochner in-
tegrability: Theorem 2.4 establishes thatf is Birkhoff integrable if, and only if,Zf has the
Bourgain property. We complete Section 2 with Proposition 2.6 where Birkhoff integra-
bility is characterized via the existence of the limit“refining partitions” of the net of sums
J(f,Γ). This last proposition shows that the notion of unconditional Riemann-Lebesgue
integrability, recently studied in [10], coincides with the notion of Birkhoff integrability.

Section 3 is mainly devoted to prove Theorem 3.5 —our characterization of Birkhoff
integrable functions that are non necessarily bounded— and Theorem 3.8 —the charac-
terization of the weak Radon-Nikodým property for dual Banach spaces via Birkhoff in-
tegrability. Technically speaking, Theorems 3.5 and 3.8 need of Lemmas 3.1, 3.2 and
Corollary 3.4, which might be of independent interest. Lemma 3.2 also corrects Theo-
rem 15 in [1] that appears to be wrong. We prove that the range of the indefinite integral of
a Birkhoff integrable function is relatively norm compact in Corollary 3.6. Our approach
to this subject allows us to easily obtain some other classical results as well as widen
and strengthen some other results spread out in [5], [9] and [16]. We finish the paper by
paying a visit to the weak Radon-Nikodým property (WRNP, for short) in dual Banach
spaces. Recall that a dual Banach spaceX∗ is said to have the WRNP (see [11] and [3,
Definition 5.8]) if for every complete probability space(Ω,Σ, µ) and everyµ-continuous
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countably additive vector measureν : Σ −→ X∗ of σ-finite variation there is a Pettis
integrable functionf : Ω −→ X∗ such that

ν(E) =
∫

E

f dµ

for every E ∈ Σ. Efforts of several mathematicians (Musiał, Ryll-Nardzewski, Jan-
icka and Bourgain) led to the well-known characterization of Banach spacesX without
copies of̀ 1 as those for whichX∗ has the WRNP, see [3, 11, 12, 19] and the references
therein. Our Theorem 3.8 states that for dual spacesX∗ the presence of WRNP entitle
us to change Pettis integrable Radon-Nikodým derivatives to Birkhoff integrable Radon-
Nikodým derivatives. In the very last result of the paper, Proposition 3.10, we characterize
the Riemann-Lebesgue integrable functions studied in [9, 10] using the Bourgain prop-
erty. As a consequence, Riemann-Lebesgue integrable functions do satisfy the law of large
numbers [20].

Our notation is standard and our standard references are [2], [17] and [19]. We write
X∗ to denote the dual of our Banach spacesX. The weak (resp. weak∗) topology ofX
(resp.X∗) is denoted byw (resp.w∗). BX is the unit ball ofX. For any setB ⊂ X
we write ‖ · ‖-diam(B) = supx,y∈B ‖x − y‖ and co(B) for its convex hull. For the
probability space(Ω,Σ, µ) we write L1(µ) (resp. L∞(µ)) to denote the space of real
µ-integrable (resp. measurableµ-essentially bounded) functions defined onΩ andL1(µ)
(resp. L∞(µ)) for the corresponding Banach space of equivalence classes with its usual
norm‖ · ‖1 (resp.‖ · ‖∞). The topology of pointwise convergence inRΩ is denoted byτp.

2. THE BIRKHOFF INTEGRAL FOR BOUNDED FUNCTIONS

For a bounded setB ⊂ X we use the notation‖B‖ = sup{‖x‖ : x ∈ B}. Given
a sequenceB1, B2, . . . of sets ofX, the symbol

∑∞
n=1 Bn denotes a formal series. The

series
∑∞

n=1 Bn is said to beunconditionally convergentprovided that for every choice
bn ∈ Bn, n ∈ N, the series

∑∞
n=1 bn is unconditionally convergent inX. Equivalently,∑∞

n=1 Bn is unconditionally convergent if and only if for everyε > 0 there isN ∈ N such
that‖

∑
i∈S Bi‖ < ε for every finite setS ⊂ N \ {1, . . . , N}.

Given a functionf : Ω −→ X and a countable partitionΓ = (An) of Ω in Σ, the
notion “ f is summable with respect toΓ” , recalled in the introduction, is simply said
now: f |An

is bounded wheneverµ(An) > 0 and the series of sets
∑∞

n=1 f(An)µ(An) is
unconditionally convergent. For such anf andΓ we retain the notationJ(f,Γ) defined in
equation (1) and for a givenchoiceT = (tn) in Γ (i.e. tn ∈ An for everyn), we write

S(f,Γ, T ) :=
∑

n

f(tn)µ(An).

As usual, we say that another partitionΓ′ of Ω, into countably many elements ofΣ, is finer
thanΓ when each element ofΓ′ is contained in some element ofΓ.

The following lemma is a special case of [1, Theorem 9]. We provide a proof for the
convenience of the readers.

Lemma 2.1. Letf : Ω −→ X be a function. Suppose that there is a countable partitionΓ
of Ω in Σ such thatf is summable with respect toΓ. If Γ′ is any countable partition ofΩ
in Σ finer thanΓ, thenf is summable with respect toΓ′ and

co(J(f,Γ′)) ⊂ co(J(f,Γ)). (2)

Proof. Write Γ = (An) andΓ′ = (An,k), with
⋃

k An,k = An for everyn. Now, set
Bn := f(An)µ(An) andBn,k := f(An,k)µ(An,k). We will show first that

∑
n,k Bn,k is

unconditionally convergent.



4 B. CASCALES AND J. RODŔIGUEZ

Fix ε > 0. Since
∑

n Bn is unconditionally convergent, there isN ∈ N such that∥∥∥∑
n∈S

Bn

∥∥∥ <
ε

2
(3)

for every finite setS ⊂ N \ {1, . . . , N}. Take

M > max{‖f(Ai)‖ : 1 ≤ i ≤ N,µ(Ai) > 0}.

There isK ∈ N big enough such that

N∑
n=1

∑
k>K

µ(An,k) <
ε

2M
. (4)

We claim that ∥∥∥ ∑
(n,k)∈S

Bn,k

∥∥∥ < ε

for every finite setS ⊂ (N× N) \ ({1, . . . , N} × {1, . . . ,K}). Indeed, for such anS, let
us write

S′ := {(n, k) ∈ S : 1 ≤ n ≤ N} and S′′ = {(n, k) ∈ S : n > N}.

On the one hand, inequality (4) applies to obtain∥∥∥ ∑
(n,k)∈S′

Bn,k

∥∥∥ <
ε

2
.

On the other hand, if we defineN ′ = max{n > N : there isk with (n, k) ∈ S}, then
some computations and inequality (3) give us (with the convention0/0 = 0)∥∥∥ ∑

(n,k)∈S′′

Bn,k

∥∥∥ ≤ ∥∥∥ ∑
(n,k)∈S′′

µ(An,k)
µ(An)

Bn

∥∥∥
≤

∥∥∥ ∑
N<n≤N ′

co(Bn ∪ {0})
∥∥∥ =

∥∥∥co
( ∑

N<n≤N ′

(
Bn ∪ {0}

))∥∥∥
=

∥∥∥ ∑
N<n≤N ′

(
Bn ∪ {0}

)∥∥∥ = sup
F⊂{N+1,...,N ′}

∥∥∥ ∑
k∈F

Bk

∥∥∥ <
ε

2
.

(5)

The claim is proved and thereforef is summable with respect toΓ′.
To finish the proof we will show thatJ(f,Γ′) ⊂ co(J(f,Γ)) by contradiction. Sup-

pose that the previous inclusion does not hold. Then for some choiceT ′ in Γ′ we have
S(f,Γ′, T ′) 6∈ co(J(f,Γ)). The Hahn-Banach separation theorem ensures us of the exis-
tence ofx∗ ∈ X∗ such that

〈x∗, S(f,Γ′, T ′)〉 > sup{〈x∗, y〉 : y ∈ J(f,Γ)}. (6)

At the same time we have

〈x∗, S(f,Γ′,T ′)〉 ≤
∑
n,k

sup
An

〈x∗, f〉 µ(An,k) =
∑

n

sup
An

〈x∗, f〉 µ(An)

= sup{〈x∗, S(f,Γ, T )〉 : T choice inΓ} = sup{〈x∗, y〉 : y ∈ J(f,Γ)},

which contradicts inequality (6) and the proof is finished. �

The Birkhoff property as defined below is a natural condition to characterize Birkhoff
integrability off : Ω −→ X in terms of

Zf = {〈x∗, f〉 : x∗ ∈ BX∗}.
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Definition 2. We say that a familyF ⊂ RΩ has the Birkhoff property if for everyε > 0
there is a countable partitionΓ = (An) of Ω in Σ such that for eachtk, t′k ∈ Ak, k ∈ N,
we have ∣∣∣ m∑

k=1

f(tk)µ(Ak)−
m∑

k=1

f(t′k)µ(Ak)
∣∣∣ < ε (7)

for everym ∈ N and everyf ∈ F .

Observe that ifF satisfies (7), then eachf ∈ F is bounded onAn wheneverµ(An) > 0.
Consequently,F has the Birkhoff property if, and only if, for everyε > 0 there is a
countable partitionΓ = (An) such that∑

µ(An)>0

| · |-diam(f(An))µ(An) < ε

for everyf ∈ F . Let us notice that ifF has the Birkhoff property then its absolutely
convex hullaco(F) and its pointwise closureFτp also have the Birkhoff property.

Proposition 2.2. Letf : Ω −→ X be a function. The following conditions are equivalent:

(i) f is Birkhoff integrable;
(ii) f is summable with respect to some countable partitionΓ0 of Ω in Σ andZf has

the Birkhoff property.

Proof. The implication (i)⇒(ii) is obvious and thus we will only prove (ii)⇒(i). Fix ε > 0.
SinceZf has the Birkhoff property, there is a countable partitionΓ1 = (An) of Ω in Σ
such that ∑

µ(An)>0

| · |-diam(〈x∗, f〉(An))µ(An) < ε

for everyx∗ ∈ BX∗ . TakeΓ = (Bm) finer than bothΓ0 andΓ1. Sincef summable with
respect toΓ0, thenf is also summable with respect toΓ after Lemma 2.1. On the other
hand, sinceΓ is finer thanΓ1, we have∑

µ(Bm)>0

| · |-diam(〈x∗,f〉(Bm))µ(Bm)

≤
∑

µ(An)>0

∑
Bm⊂An

| · |-diam(〈x∗, f〉(An))µ(Bm) < ε
(8)

for everyx∗ ∈ BX∗ . Therefore, ifT andT ′ are choices inΓ inequality (8) implies that

‖S(f,Γ, T )− S(f,Γ, T ′)‖ ≤ ε,

and consequentlyf is Birkhoff integrable and the proof is over. �

Some readers familiar with the Bourgain property might have realized by now of the
relationship of the Birkhoff and Bourgain properties when the latter is viewed suitably.
First we recall the definition of the Bourgain property.

Definition 3. We say that a familyF ⊂ RΩ has the Bourgain property if for everyε > 0
and everyA ∈ Σ with µ(A) > 0 there areB1, . . . , Bn ⊂ A, Bi ∈ Σ with µ(Bi) > 0,
such that for everyf ∈ F

inf
1≤i≤n

| · |-diam(f(Bi)) < ε.

Lemma 2.3. LetF ⊂ RΩ be a family of functions. The following statements hold:

(i) if F has the Birkhoff property, thenF has the Bourgain property;
(ii) if F is uniformly bounded and has the Bourgain property, thenF has the Birkhoff

property.
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Proof. In order to prove (i) fixε > 0 andA ∈ Σ with µ(A) > 0. By hypothesis there is a
countable partitionΓ = (An) of Ω in Σ such that for eachtk, t′k ∈ Ak, k ∈ N, we have∣∣∣ n∑

k=1

f(tk)µ(Ak)−
n∑

k=1

f(t′k)µ(Ak)
∣∣∣ <

εµ(A)
2

(9)

for everyn ∈ N and everyf ∈ F .
Fix n ∈ N big enough such that

∑n
i=1 µ(A ∩ Ai) > µ(A)/2. We can suppose without

loss of generality thatµ(A ∩ Ai) > 0 for all 1 ≤ i ≤ n. Now, we prove by contradiction
that for everyf ∈ F

inf
1≤i≤n

| · |-diam(f(A ∩Ai)) ≤ ε. (10)

If for somef0 ∈ F inequality (10) does not hold, then for each1 ≤ i ≤ n we can select
pointsti, t

′
i ∈ A ∩Ai such thatf0(ti)− f0(t′i) > ε. Thus, we conclude that

εµ(A)
2

<
n∑

i=1

(
f0(ti)− f0(t′i)

)
µ(Ai),

which contradicts inequality (9) and finishes the proof of (i).
The proof of (ii) imitates the proof of (d)⇒(a) in [7, Proposition IV.8] but dealing now

with an abstract probability space and with oscillations instead ofessentialoscillations.
Fix ε > 0 and define the uniformly bounded set

Kε =
{
g ∈ [0, 1]Ω : g is measurable,

∫
Ω

g dµ ≥ ε
}
.

Its canonical imagêKε in L1(µ) is uniformly integrable,‖·‖1-bounded and weakly closed,
hence weakly compact, [2, Theorem 15, p. 76]. The setAg := {w ∈ Ω : g(w) > 0} is
of positiveµ-measure for everyg ∈ Kε. SinceF has the Bourgain property, there are sets
Ag

1, . . . , A
g
n(g) ⊂ Ag with Ag

i ∈ Σ andµ(Ag
i ) > 0 such that

inf
1≤i≤n(g)

| · |-diam(f(Ag
i )) ≤ ε (11)

for everyf ∈ F . Note that the canonical image inL1(µ) of the set

V (g) =
n(g)⋂
i=1

{
h ∈ L1(µ) :

∫
Ag

i

h dµ > 0
}

is a weak open neighborhood of the classĝ of g in L1(µ). The weak compactness of̂Kε

implies that there are finitely manyg1, . . . , gk ∈ Kε such that

Kε ⊂
k⋃

j=1

V (gj).

Let {U1, . . . , UN} be a partition ofΩ in Σ with the property that ifUl ∩ A
gj

i 6= ∅ for
some1 ≤ j ≤ k, 1 ≤ i ≤ n(gj), thenUl ⊂ A

gj

i . Givenf ∈ F consider

C =
⋃{

Ul : | · |-diam(f(Ul)) > ε
}
.

We now prove that the characteristic functionχC of C does not belong toKε. If χC ∈ Kε,
thenχC ∈ V (gj) for some1 ≤ j ≤ k. This means thatµ(C ∩ A

gj

i ) > 0 for every
1 ≤ i ≤ n(gj). So, for every1 ≤ i ≤ n(gj) there isUli with Uli ∩ A

gj

i 6= ∅ and
| · |-diam(f(Uli)) > ε. SinceUli is contained inAgj

i we infer that| · |-diam(f(Agj

i )) > ε
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for every1 ≤ i ≤ n(gj), which contradicts (11) and henceforth we conclude that the
functionχC 6∈ Kε, i.e. µ(C) < ε. Now, we finish the proof of (ii) by noticing that

N∑
l=1

| · |-diam(f(Ul))µ(Ul) =

=
∑

Ul⊂C

| · |-diam(f(Ul))µ(Ul) +
∑

Ul 6⊂C

| · |-diam(f(Ul))µ(Ul)

≤ 2Mε + εµ(Ω) = (2M + 1)ε,

whereM := sup{|f(w)| : w ∈ Ω, f ∈ F}. �

In general, whenF ⊂ RΩ is not necessarily uniformly bounded and has the Bourgain
property we do not know ifF has the Birkhoff property: we can prove though that this is
the case for familiesF = Zf , wheref : Ω −→ X, see Corollary 3.4.

We can now characterize Birkhoff integrability for bounded functions. Recall that a
subsetB ⊂ BX∗ is said to benormingif

‖x‖ = sup
x∗∈B

|〈x∗, x〉|

for everyx ∈ X.

Theorem 2.4. Let f : Ω −→ X be a bounded function. The following statements are
equivalent:

(i) f is Birkhoff integrable;
(ii) Zf has the Bourgain property;

(iii) there is a norming setB ⊂ BX∗ such that

Zf,B = {〈x∗, f〉 : x∗ ∈ B} ⊂ RΩ

has the Bourgain property.

Proof. If f is bounded, thenZf = {〈x∗, f〉 : x∗ ∈ BX∗} ⊂ RΩ is a uniformly bounded
family of functions andf is summable with respect to any countable partition ofΩ in Σ.
Hence, the equivalence (i)⇔(ii) is exactly what has been proved in Proposition 2.2 if we
bear in mind Lemma 2.3. The implication (ii)⇒(iii) is trivial and the proof for the impli-
cation (iii)⇒(ii) goes as follows. If (iii) holds, thenZf,B ⊂ RΩ has the Birkhoff property
because it is uniformly bounded and has the Bourgain property —apply Lemma 2.3. Since
B is norming, the Hahn-Banach separation theorem guarantees thataco(Zf,B)

τp = Zf .
As the Birkhoff property is preserved by taking absolutely convex hulls and pointwise
closures we conclude thatZf has Birkhoff (Bourgain) property and the proof is over.�

Riddle and Saab proved in [16, Theorem 13] that any bounded functionf : Ω −→ X∗

is Pettis integrable wheneverZf,BX
= {〈f, x〉 : x ∈ BX} has the Bourgain property. The

particular case of Theorem 2.4 that is isolated below improves their result.

Corollary 2.5. Letf : Ω −→ X∗ be a bounded function. Thenf is Birkhoff integrable if,
and only if,{〈f, x〉 : x ∈ BX} has the Bourgain property.

We end up the section by highlighting that for a functionf : Ω −→ X its Birkhoff
integral (upon its existence) can be realized as the limit of the net{S(f,Γ, T )}Γ, where
we order partitions by refinement. Note that for anyf , Lemma 2.1 implies that the setSf

of all pairs(Γ, T ), whereΓ is a countable partition ofΩ in Σ for whichf is summable and
T is a choice inΓ, is a directed set with the binary relation

(Γ, T ) � (Γ′, T ′) ⇔ Γ′ is finer thanΓ.

Proposition 2.6. Letf : Ω −→ X be a function. The following conditions are equivalent:

(i) f is Birkhoff integrable;
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(ii) there isx ∈ X with the following property: for everyε > 0 there is a countable
partition Γ of Ω in Σ such thatf is summable with respect toΓ and

‖S(f,Γ, T )− x‖ < ε

for every choiceT in Γ;
(iii) there isy ∈ X with the following property: for everyε > 0 there is a countable

partition Γ of Ω in Σ such thatf is summable with respect to each countable
partition Γ′ finer thanΓ and

‖S(f,Γ′, T ′)− y‖ < ε

for every choiceT ′ in Γ′.

In this case,x = y =
∫
Ω

f dµ.

Proof. The implications (iii)⇒(ii)⇒(i) are obvious. To see that (i)⇒(iii), we simply notice
that Birkhoff integrability off and Lemma 2.1 imply that the net

Sf −→ X, (Γ, T ) 7→ S(f,Γ, T ),

is a Cauchy net and, therefore, it converges to somey ∈ X.
The last statement in this proposition straightforwardly follows from the very definition

of the Birkhoff integral. �

We mention that functionsf : Ω −→ X satisfying (iii) in the previous proposition are
calledunconditionally Riemann-Lebesgue integrablefunctions in [10], where some results
about this type of integrable functions are proved. The previous proposition makes clear
that the notion of unconditional Riemann-Lebesgue integrability coincides with Birkhoff’s
one.

3. BIRKHOFF INTEGRABILITY FOR ARBITRARY FUNCTIONS

We start this section by establishing the following criterion for the unconditional con-
vergence of double series in Banach spaces.

Lemma 3.1. Let (xn,k)n,k∈N be a double sequence inX such that:

(i) the series
∑

k xn,k is unconditionally convergent for everyn ∈ N;
(ii) there are an unconditionally convergent series

∑
n,k yn,k in X and a sequence of

non-negative real numbers(an) with
∑∞

n=1 an < ∞ such that∥∥∥∑
k∈Q

(xn,k − yn,k)
∥∥∥ ≤ an

for every finite subsetQ ⊂ N and everyn ∈ N.

Then
∑

n,k xn,k is unconditionally convergent inX.

Proof. Fix ε > 0 and takeN ∈ N such that∑
n>N

an < ε and
∥∥∥ ∑

(n,k)∈P

yn,k

∥∥∥ < ε (12)

for every finite subsetP ⊂ N × N for which P ∩ ({1, 2, . . . , N} × {1, 2, . . . , N}) = ∅.
Take nowM ∈ N, M ≥ N , such that∥∥∥∑

k∈F

xn,k

∥∥∥ <
ε

N
, n = 1, 2, . . . , N, (13)

for every finite setF ⊂ N for whichF ∩ {1, 2, . . . ,M} = ∅.
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Given a finite setH ⊂ N × N we write H ′ := {(n, k) ∈ H : 1 ≤ n ≤ N}. If
H ∩ ({1, 2, . . . , N} × {1, 2, . . . ,M}) = ∅, then we have∥∥∥ ∑

(n,k)∈H

xn,k

∥∥∥ =
∥∥∥ ∑

(n,k)∈H′

xn,k +
∑

(n,k)∈H\H′

xn,k

∥∥∥
≤

N∑
n=1

∥∥∥ ∑
k

(n,k)∈H′

xn,k

∥∥∥ +
∥∥∥ ∑

(n,k)∈H\H′

(xn,k − yn,k)
∥∥∥ +

∥∥∥ ∑
(n,k)∈H\H′

yn,k

∥∥∥
<

N∑
n=1

ε

N
+

∑
n>N

an + ε < 3ε,

after inequalities (12) and (13). This proves that the series
∑

n,k xn,k is unconditionally
convergent inX and we are finished. �

If f : Ω −→ X is Birkhoff integrable, then for everyA ∈ Σ the restrictionf |A is
Birkhoff integrable with respect to(A,ΣA, µA) —ΣA = {E ∩A : E ∈ Σ} andµA stands
for the restriction ofµ to ΣA— and its Birkhoff and Pettis integrals overA coincide, see
[14, 2.21].

Lemma 3.2. Letf : Ω −→ X be a function. The following conditions are equivalent:

(i) f is Birkhoff integrable;
(ii) f is Pettis integrable and there is a countable partitionΓ = (An) of Ω in Σ such

thatf |An
is Birkhoff integrable for everyn;

(iii) there is a countable partitionΓ = (An) of Ω in Σ such thatf |An
is Birkhoff

integrable for everyn and for every countable partitionΓ′ = (Bn) of Ω in Σ finer
thanΓ, the series

∑
n

∫
Bn

f dµ is unconditionally convergent inX.

Proof. The implications (i)⇒(ii)⇒(iii) are clear — use that the indefinite integral of any
Pettis integrable function is a countably additive vector measure, [2, Theorem 5, p. 53].
We prove now (iii)⇒(ii). Assume for the moment thatf takes real values and (iii) holds.
SetΩ+ := {w ∈ Ω : f(w) > 0} andΩ− := {w ∈ Ω : f(w) ≤ 0}. With the partitions
Γ and{Ω+,Ω−} we induce the partitionΓ′ whose members areΩ+ ∩ An andΩ− ∩ An.
By hypothesis, the series

∑
n

∫
Ω+∩An

f dµ +
∑

n

∫
Ω−∩An

f dµ is absolutely convergent,
meaning

+∞ >
∑

n

∣∣∣ ∫
Ω+∩An

f dµ
∣∣∣ +

∑
n

∣∣∣ ∫
Ω−∩An

f dµ
∣∣∣

=
∑

n

∫
Ω+∩An

|f | dµ +
∑

n

∫
Ω−∩An

|f | dµ =
∑

n

∫
An

|f | dµ.

An appeal to Lebesgue’s Monotone Convergence Theorem [17, Theorem 1.26] gives us
that f is an integrable function. Now we handle the general case. Iff : Ω −→ X
satisfies (iii), then for everyx∗ ∈ BX∗ the scalar function〈x∗, f〉 also satisfies (iii). Hence
〈x∗, f〉 ∈ L1(µ). Moreover, if we definexΩ :=

∑
n

∫
An

f dµ, then we have

x∗(xΩ) = x∗
( ∑

n

∫
An

f dµ
)

=
∑

n

∫
An

〈x∗, f〉 dµ =
∫

Ω

〈x∗, f〉 dµ.

If A is a subset ofΣ then (iii) is satisfied forf |A and(A,ΣA, µA). The previous arguments
applied to anyf |A allow us to conclude thatf is Pettis integrable and therefore (ii) holds.

To finish we prove that (ii)⇒(i). We are going to show thatf is Birkhoff integrable
using the very Definition 1. Fixε > 0. Birkhoff integrability off |An , n ∈ N, implies that
there is a partitionΓn = (An,k)k of An in Σ such thatf |An

is summable with respect to
Γn and ∥∥∥S(f |An

,Γn, Tn)− S(f |An
,Γn, T ′

n)
∥∥∥ <

ε

2n
(14)
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for arbitrary choicesTn and T ′
n in Γn. TakeQ ⊂ N a finite set, fixn ∈ N and set

Bn,Q =
⋃

k∈Q An,k. Inequality (14) implies that∥∥∥ ∑
k∈Q

f(tn,k)µ(An,k)−
∑
k∈Q

f(t′n,k)µ(An,k)
∥∥∥ <

ε

2n

for any choices(tn,k)k∈Q and(t′n,k)k∈Q in the partitionΓn,Q = (An,k)k∈Q. With the
notation in Definition 1, this means that‖ · ‖-diam(J(f |Bn,Q

,Γn,Q)) ≤ ε/2n. Since

f |Bn,Q
is Birkhoff integrable and

∫
Bn,Q

f dµ ∈ co(J(f |Bn,Q
,Γn,Q)), we conclude that∥∥∥ ∑

k∈Q

(
f(tn,k)µ(An,k)−

∫
An,k

f dµ
)∥∥∥ =

∥∥∥ ∑
k∈Q

f(tn,k)µ(An,k)−
∫

Bn,Q

f dµ
∥∥∥ ≤ ε

2n
.

(15)
If we defineΓ :=

⋃
Γn = (An,k)n,k, then the seriesS(f,Γ, T ) =

∑
n,k f(tn,k)µ(An,k)

converges unconditionally for every choiceT = (tn,k) in Γ. Indeed, this follows from
Lemma 3.1 bearing in mind that

∑
n,k

∫
An,k

f dµ is unconditionally convergent (f is Pettis
integrable) and that inequality (15) holds. Now, inequality (14) is used again to deduce that∥∥∥S(f,Γ, T )− S(f,Γ, T ′)

∥∥∥ ≤ ε,

for any choicesT andT ′ in Γ. This shows thatf is Birkhoff integrable. �

The equivalence between (i) and (ii) in the Lemma above was first stated in the unpub-
lished note [5]: our approach here isolates and clarifies the difficulties behind the proof via
Lemma 3.1, that could be of interest by itself. We have felt somehow obliged to include
(iii) in the lemma because our implication (iii)⇒(i) fixes a minor mistake in Birkhoff’s
paper [1]. Theorem 15 in [1] states that a functionf : Ω −→ X is Birkhoff integrable as
long as the following weaker form of (iii) holds:

(iii’) there is a countable partitionΓ = (An) of Ω in Σ such thatf |An
is Birkhoff

integrable for everyn and the series
∑

n

∫
An

f dµ is unconditionally convergent
in X.

Unfortunately this is not true even for real functions. Indeed, take any infinite countable
partition Γ = (An) of Borel sets of[0, 1] with Lebesgue measureλ(An) > 0. Split
An = Cn ∪Dn as the union of two disjoint measurable sets such thatλ(Cn) = λ(Dn) =
λ(An)/2, for everyn ∈ N. Define the functionf : [0, 1] −→ R by the sum

f :=
∞∑

n=1

( χCn

λ(Cn)
− χDn

λ(Dn)

)
.

Clearly, f is not integrable over[0, 1] meanwhile
∫

An
f dλ = 0 over eachAn. This

shows that Theorem 15 in [1] is not correct and that it is certainly needed our assumption∑
n

∫
Bn

f dλ unconditionally converges for every partitionΓ′ = (Bn) finer thanΓ, as
presented in (iii) in Lemma 3.2.

Our next goal is to show that the Bourgain and Birkhoff properties are equivalent for
families of the formZf = {〈x∗, f〉 : x∗ ∈ BX∗}, wheref : Ω −→ X is any function. We
reduce our proof to the case of a bounded functionf by using the lemma below.

Lemma 3.3. Let B1, . . . , Bn ⊂ X be sets for which there is a constantk > 0 such that
for everyx∗ ∈ BX∗

inf
1≤i≤n

| · |-diam(x∗(Bi)) ≤ k.

Then there is1 ≤ j ≤ n such thatBj is bounded.

Proof. For each1 ≤ i ≤ n, defineCi := {x∗ ∈ BX∗ : | · |-diam(x∗(Bi)) ≤ k}. Notice
that eachCi is norm closed.{BX∗ \Ci : 1 ≤ i ≤ n} is a family of relatively open subsets
of BX∗ with empty intersection, hence there is1 ≤ j ≤ n such thatBX∗ \Cj is not dense
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in BX∗ . ThereforeG := {x∗ ∈ X∗ : ‖x∗‖ < 1} 6⊂ BX∗ \ Cj
‖·‖

. It follows that there
existx∗0 ∈ G andδ > 0 such that{x∗ ∈ X∗ : ‖x∗0 − x∗‖ ≤ δ} ⊂ G ∩ Cj . Fix x0 ∈ Bj .
Givenx∗ ∈ BX∗ , we havex∗0 + δx∗ ∈ Cj and therefore for everyx ∈ Bj we obtain

|δx∗(x)| ≤ |(x∗0 + δx∗)(x)− (x∗0 + δx∗)(x0)|+ |x∗0(x)− x∗0(x0)|+ |δx∗(x0)|
≤ | · |-diam((x∗0 + δx∗)(Bj)) + | · |-diam(x∗0(Bj)) + δ‖x0‖ ≤ 2k + δ‖x0‖.

Hence‖x‖ ≤ (2k)/δ + ‖x0‖ for everyx ∈ Bj . Consequently,Bj is bounded and the
proof is complete. �

It is not difficult to see that a familyF ⊂ RΩ has the Birkhoff (resp. Bourgain) property
if and only if there is a countable partition(An) of Ω in Σ such that for eachn ∈ N the
family of restrictions{f |An

: f ∈ F} ⊂ RAn has the Birkhoff (resp. Bourgain) property
with respect to(An,ΣAn , µAn).

Corollary 3.4. Letf : Ω −→ X be a function. The following conditions are equivalent:

(i) Zf the has Birkhoff property;
(ii) Zf has the Bourgain property.

In this case, there is a countable partition(An) of Ω in Σ such thatf(An) is bounded
wheneverµ(An) > 0.

Proof. The implication (i)⇒(ii) has already been proved in Lemma 2.3 (i). Our comments
prior to this corollary and Lemma 2.3 (ii) imply that to prove (ii)⇒(i) it suffices to show
that there is a countable partition(An) of Ω in Σ such thatf(An) is bounded whenever
µ(An) > 0. A standard exhaustion argument reduces the proof of the last condition to
check thatfor eachE ∈ Σ with µ(E) > 0 there isA ⊂ E, A ∈ Σ with µ(A) > 0,
such thatf(A) is bounded. We prove this: sinceZf has the Bourgain property, there are
E1, . . . , En ⊂ E, Ei ∈ Σ with µ(Ei) > 0, such that for everyx∗ ∈ BX∗

inf
1≤i≤n

| · |-diam(〈x∗, f〉(Ei)) ≤ 1. (16)

If we write Bi := f(Ei), inequality (16) is read asinf1≤i≤n | · |-diam(x∗(Bi)) ≤ 1 for
everyx∗ ∈ BX∗ . An appeal to Lemma 3.3 ensures us that there is1 ≤ j ≤ n such that
Bj = f(Ej) is bounded. The proof is finished. �

Theorem 3.5. Letf : Ω −→ X be a function. The following conditions are equivalent:

(i) f is Birkhoff integrable;
(ii) Zf is uniformly integrable and has the Bourgain property.

Proof. The implication (i)⇒(ii) follows from Proposition 2.2 and Lemma 2.3 (i) together
with the fact that sincef is Pettis integrable (recall that Birkhoff integrability implies Pettis
integrability) the setZf is uniformly integrable, [19, Theorem 4-2-2].

By Corollary 3.4 condition (ii) is actually equivalent to:

(ii’) Zf is uniformly integrable,Zf has the Bourgain property and there is a countable
partition Γ = (An) of Ω in Σ such thatf(An) is bounded wheneverµ(An) > 0.

We now prove (ii’)⇒(i). This implication can be established in several different ways:
we present the simplest one we came across with. To get started we prove thatf is
Pettis integrable. By [19, Theorem 4-2-3] it suffices to show that the canonical map
i : (Zf , τp) −→ (L1(µ), w), that sends every function to its equivalence class, is con-
tinuous. We are going to show thati is in fact τp-to-‖ · ‖1 continuous by proving that

i(A
τp) ⊂ i(A)

‖·‖1
for everyA ⊂ Zf . Fix A ⊂ Zf and pickg ∈ A

τp . SinceZf has the
Bourgain property,A has the Bourgain property too. Therefore there is a sequence(gn) in
A converging tog µ-almost everywhere, [16, Theorem 11]. The sequence(gn) is uniformly
integrable and therefore Vitali’s theorem, [8, p. 203], ensures thatlimn ‖gn − g‖1 = 0.

Hencei(g) ∈ i(A)
‖·‖1

, the inclusioni(A
τp) ⊂ i(A)

‖·‖1
holds and the proof of Pettis
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integrability off is over. To prove thatf is Birkhoff integrable observe that, on the one
hand,f |An

is Birkhoff integrable wheneverµ(An) = 0. On the other hand, whenever
µ(An) > 0, f |An is bounded and

Zf |An
= {〈x∗, f |An

〉 : x∗ ∈ BX∗}
has the Bourgain property; hence Theorem 2.4 implies thatf |An

is also Birkhoff integrable.
Therefore,f andΓ fulfill the requirements in (ii) of Lemma 3.2 and we conclude thatf is
Birkhoff integrable. �

Fremlin proved in [5] that for every Birkhoff integrable functionf : Ω −→ X the set
Zf is stable. Since the Bourgain property is more restrictive than stability, [19, 9-5-4], the
aforementioned Fremlin’s result is a weaker form of Theorem 3.5.

In the proof of (ii)⇒(i) Pettis integrability off can be established in a different way,
namely, by using that a functionf : Ω −→ X is Pettis integrable ifZf is stable and
uniformly integrable, [19, Theorem 6-1-2]. Nonetheless, we think that the arguments given
using the Bourgain property are easier than those using stability.

A thorough study about the continuity of the mapi : (F , τp) −→ (L1(µ), ‖ · ‖1), for
certain familiesF ⊂ L1(µ), can be found in [21]. Another consequence of the continuity
of i proved in the implication (ii)⇒(i) in Theorem 3.5 is:

Corollary 3.6. If f : Ω −→ X is Birkhoff integrable, then the range of the indefinite
integral{

∫
A

f dµ : A ∈ Σ} is relatively norm compact.

Proof. It suffices to show thati(Zf ) is a compact subset of(L1(µ), ‖·‖1), [19, Proposition
4-1-5]. This follows from the compactness of(Zf , τp) —Alaouglu’s theorem— and the
continuity of the canonical mapi : (Zf , τp) −→ (L1(µ), ‖ · ‖1). �

Corollary 3.6, that strengthens a result in [9] regarding the separability of the range
of the indefinite integral of Riemann-Lebesgue integrable functions, can be alternatively
proved combining Theorem 18 in [1] with Remark 9.1 in [12]. We mention that the range
of the indefinite integral of a Pettis integrable function is not relatively norm compact in
general (Fremlin and Talagrand, see e.g. [19, Theorem 4-2-5]).

Observe that iff : Ω −→ X is µ-strongly measurable, thenZf has the Bourgain
property. This easily follows from the fact thatµ-strong measurability forf is equivalent
to the condition:

(S) for everyε > 0 there is a countable partitionΓ0 = (A0, A1, . . . ) of Ω in Σ such
thatµ(A0) = 0 and‖ · ‖-diam(f(An)) < ε for everyn ≥ 1,

see [2, Corollary 3, p. 42]. Hence, Theorem 3.5 particularly says that forµ-strongly
measurable functions, Birkhoff integrability and Pettis integrability coincide, [14, Corol-
lary 5.11], becauseZf is uniformly integrable wheneverf is Pettis integrable, see [19,
Theorem 4-2-2]. More particularly, every Bochner integrable function is Birkhoff inte-
grable, [1, p. 377].

Another application of Theorem 3.5 is Corollary 3.7 below where Birkhoff integrability
of a non necessarily bounded functionf : Ω −→ X∗ is characterized in terms of the family

Zf,BX
= {〈f, x〉 : x ∈ BX} ⊂ RΩ.

Corollary 3.7. Letf : Ω −→ X∗ be a function. Thenf is Birkhoff integrable if, and only
if, {〈f, x〉 : x ∈ BX} is uniformly integrable and has the Bourgain property.

Proof. In view of Theorem 3.5 we only need to check thatZf is uniformly integrable and
has the Bourgain property whenever the same holds true forZf,BX

. Observe that Golds-
tine’s theorem applies to deduce thatZf,BX

τp = Zf . On the one hand, since the Bourgain
property is preserved by taking pointwise closures [16, Theorem 11], we conclude thatZf

has the Bourgain property. On the other hand,Zf is uniformly integrable. Indeed, since
Zf,BX

has the Bourgain property andZf,BX

τp = Zf , every element ofZf is theµ-almost
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everywhere limit of a sequence inZf,BX
, see [16, Theorem 11]. The uniform integrability

of Zf,BX
and Vitali’s theorem ensure us thatZf ⊂ L1(µ) and that every element ofZf is

the‖ · ‖1-limit of a sequence inZf,BX
. Finally, the fact thatZf,BX

is uniformly integrable
is used again to infer that the same holds forZf . The proof is over. �

We characterize now WRNP in dual Banach spaces in terms of Birkhoff integrable
Radon-Nikod́ym derivatives.

Theorem 3.8. LetX be a Banach space. The following statements are equivalent:

(i) X∗ has the weak Radon-Nikodým property;
(ii) X does not contain a copy of`1;

(iii) for every complete probability space(Ω,Σ, µ) and everyµ-continuous countably
additive vector measureν : Σ −→ X∗ of σ-finite variation there is a Birkhoff
integrable functionf : Ω −→ X∗ such that

ν(E) =
∫

E

f dµ

for everyE ∈ Σ.

Proof. The equivalence (i)⇔(ii) is well-known, see for instance [3, Theorem 6.8]. The im-
plication (iii)⇒(i) uses the very definitions and the fact that Birkhoff integrability implies
Pettis integrability. For the proof of (ii)⇒(iii) we distinguish two cases. We write|ν| to
denote the variation ofν.

Particular Case.-Suppose that there isM > 0 such that|ν|(E) ≤ Mµ(E) for every
E ∈ Σ. Fix a lifting ρ onL∞(µ), [3, Theorem G.1, p. 145]. By [3, Proposition 6.2] there
is a boundedw∗-scalarly measurable functionf : Ω −→ X∗ such that:

(a) ρ(〈f, x〉) = 〈f, x〉 for everyx ∈ X;
(b) 〈ν(E), x〉 =

∫
E
〈f, x〉 dµ for everyE ∈ Σ and everyx ∈ X.

Notice thatZf,BX
⊂ `∞(Ω) is a uniformly bounded subset that cannot contain an`1-

sequence because otherwise there areδ > 0 and a sequence(xn) in BX such that for every
n ∈ N and everya1, . . . , an ∈ R

δ
n∑

i=1

|ai| ≤
∥∥∥ n∑

i=1

ai〈f, xi〉
∥∥∥
∞

=
∥∥∥〈f,

n∑
i=1

aixi〉
∥∥∥
∞
≤ M

∥∥∥ n∑
i=1

aixi

∥∥∥;

this means that̀1 embeds inX contradicting our hypothesis. HenceZf,BX
does not

contain`1-sequences that together with the equalityρ(Zf,BX
) = Zf,BX

allow us to use
Corollary 12.1 in [12] to obtain thatZf,BX

has the Bourgain property. Thereforef is
Birkhoff integrable after Corollary 2.5. Hence for everyE ∈ Σ, bothν(E) and

∫
E

f dµ

belong toX∗ and according to (b) above the equalityν(E) =
∫

E
f dµ holds.

General Case.-Since |ν| is a σ-finite measure and|ν|(E) = 0 wheneverµ(E) = 0,
standard arguments, see the proof of [3, Lemma 5.9], provide us with a countable partition
Γ = (An) of Ω in Σ such that|ν|(E) ≤ nµ(E) for everyE ∈ ΣAn

and everyn ∈ N. Fix
n ∈ N. TheParticular Case, already proved, implies the existence of a Birkhoff integrable
functionfn : An −→ X∗ such that

ν(E) =
∫

E

fn dµ, E ∈ ΣAn
.

Definef : Ω −→ X∗ by f(ω) = fn(ω) if ω ∈ An. The proof of [3, Lemma 5.9] reveals
that f is Pettis integrable with indefinite Pettis integralν. So, Lemma 3.2 says thatf is
Birkhoff integrable and the proof is finished. �

It is well-known that there is a one-to-one correspondence between bounded linear op-
eratorsT : L1(µ) −→ X∗ and measuresν : Σ −→ X∗ satisfying|ν|(E) ≤ Mµ(E),
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E ∈ Σ, for someM < ∞: simply putν(E) := T (χE), E ∈ Σ, see [3, Lemma 5.9].
Theorem 3.8 can be completed as follows:

Corollary 3.9. LetX be a Banach space. The following statements are equivalent:

(i) X∗ has the weak Radon-Nikodým property;
(iv) for every complete probability space(Ω,Σ, µ) and for every bounded operator

T : L1(µ) −→ X∗ there is a bounded Birkhoff integrable functionf : Ω −→ X∗

such that

〈x∗∗, T (g)〉 =
∫

Ω

g〈x∗∗, f〉 dµ, x∗∗ ∈ X∗∗, g ∈ L1(µ). (17)

We mention that Saab proved in [18, Proposition 9] —using martingale techniques—
thatX∗ has the WRNP if, and only if, for every bounded operatorT : L1[0, 1] −→ X∗

there is a bounded functionf : [0, 1] −→ X∗∗∗ such thatZf has the Bourgain property
(with respect to the Lebesgue measure) and equation (17) holds for everyg ∈ L1[0, 1].

Another consequence of Theorem 3.8 is that ifX∗ has the WRNP, then every Pettis
integrable functionf : Ω −→ X∗ is scalarly equivalent to a Birkhoff integrable func-
tion —bear in mind that the indefinite integral associated to a Pettis integrable function is
countably additive and hasσ-finite variation, [3, Proposition 5.6].

Functionsf : Ω → X for which Zf is stable and such that‖f‖ has aµ-integrable
majorant have gotten the attention of several authors over the years, see [6, 13, 19, 20]
amongst others. These functions are calledTalagrand integrable functionsby Fremlin and
Mendoza, see [6], and they were characterized by Talagrand as those functions satisfying
the law of large numbers, see [20]. As the last application of our techniques here we
characterize those functionsf for which Zf has the Bourgain property and‖f‖ has aµ-
integrable majorant.

Recall that a functionf : Ω −→ X is said to be Riemann-Lebesgue integrable, [9, 10],
if there isx ∈ X with the following property: for everyε > 0 there is a countable partition
Γ of Ω in Σ such that for every countable partitionΓ′ finer thanΓ and every choiceT ′

in Γ′, the seriesS(f,Γ′, T ′) is absolutely convergent and‖S(f,Γ′, T ′) − x‖ < ε. Every
Riemann-Lebesgue integrable function is Birkhoff integrable after Proposition 2.6.

Proposition 3.10. Let f : Ω −→ X be a function. The following conditions are equiva-
lent:

(i) f is Riemann-Lebesgue integrable;
(ii) Zf has the Bourgain property and there isg ∈ L1(µ) such that‖f‖ ≤ g µ-almost

everywhere.

Proof. (i)⇒(ii) Theorem 3.5 ensures thatZf has the Bourgain property becausef is
Birkhoff integrable. Now, takeΓ = (An) a countable partition ofΩ in Σ such that
‖S(f,Γ, T ) − S(f,Γ, T ′)‖ < 1, for any choicesT and T ′ in Γ, being the series in-
volved absolutely convergent. Notice thatf(An) is bounded wheneverµ(An) > 0.
The series

∑
µ(An)>0 ‖f(An)‖µ(An) is convergent and therefore the function defined by

g =
∑

µ(An)>0 ‖f(An)‖χAn
is µ-integrable and satisfies‖f‖ ≤ g µ-almost everywhere.

Conversely, (ii)⇒(i). SinceZf has the Bourgain property,Zf is made up of measurable
functions, [16, Theorem 11]. The inequality‖f‖ ≤ g µ-almost everywhere implies:a) Zf

is uniformly integrable;b) there is a countable partition(An) of Ω in Σ such thatf(An) is
bounded wheneverµ(An) > 0 and

∑
µ(An)>0 ‖f(An)‖µ(An) is convergent. An appeal

to Theorem 3.5 establishes thatf is Birkhoff integrable. ClearlyS(f,Γ′, T ′) is absolutely
convergent for every countable partitionΓ′ of Ω in Σ finer thanΓ and every choiceT ′ in
Γ′. Proposition 2.6 finishes the proof. �
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