
THE LINDEL ÖF PROPERTY AND σ-FRAGMENTABILITY
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ABSTRACT. In the previous paper, we, together with J. Orihuela, showed that a
compact subsetX of the product space[−1, 1]D is fragmented by the uniform
metric if and only ifX is Lindelöf with respect to the topologyγ(D) of uniform
convergence on countable subsets ofD. In the present paper we generalize the
previous result to the case whereX is K-analytic. Stated more precisely, a
K-analytic subspaceX of [−1, 1]D is σ-fragmented by the uniform metric if
and only if (X, γ(D)) is Lindelöf and, if this is the case then(X, γ(D))N is
also Lindel̈of. We give several applications of this theorem in areas of topology
and Banach spaces. We also show by examples that the main theorem cannot
be extended to the cases whereX is Čech-analytic and Lindelöf or countably
K-determined.

1. INTRODUCTION

In the paper [6], we, together with J. Orihuela, have investigated conditions
for a compact subsetK of the product[−1, 1]D to be fragmented by the uniform
metric. We discovered, among others, that forK to be fragmented by the uniform
metric, it is necessary and sufficient thatK is Lindelöf with respect to the topology
γ(D) of uniform convergence on countable subsets ofD, and if this is the case,
then(K, γ(D))N is Lindelöf. Although this topological result provided us with a
number of applications in topology and Banach spaces, we have been keenly aware
of the limitation ofK to be compact.

In this paper we present a generalization of the result stated above to the class
of K-analytic spaces. More specifically aK-analytic subsetX in the product
[−1, 1]D is σ-fragmented by the uniform metric if and only if(X, γ(D)) is Lin-
delöf, and if this is the case then(X, γ(D))N is also Lindel̈of. The proof of this
main theorem, which is far more involved than that for the compact case, is given
in the next section, where the mathematical terms used above are defined.

The subsequent sections are devoted to the applications of the main theorem and
examples. In Section 3, we show that the main theorem gives an easy proof of the
theorem proved by Gul’ko [11] and Orihuela [23]: IfK is a Corson compact space,
then(C(K), γ(K)) is Lindelöf. In this case, [23] proves that(C(K), γ(K))n is
Lindelöf for eachn ∈ N, but we can do a bit better:(C(K), γ(K))N is Lindelöf.
The section concludes with an example showing that the converse of the last state-
ment is not true.

In Section 4, we apply the main theorem to investigateK-analytic Tychonoff
spacesX. Specifically we give a number of conditions onX or C(X), each equiv-
alent to the statement ofX to beσ-scattered. We also give in this section examples
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2 B. CASCALES AND I. NAMIOKA

to show that our main theorem cannot be further generalized to the cases whereX
is Čech-analytic and Lindelöf or countablyK-determined.

In Section 5, we consider a class of Banach spaces wider than that of repre-
sentable Banach spaces introduced by Godefroy and Talagrand, [10]. The new
class includes all dual Banach spaces and the class of spaces considered in [6, Sec-
tion 5]. Our main theorem is applied once again to prove that a Banach space in
this class is weakly Lindelöf if, and only if, its dual unit ball endowed with the
weak∗ topology is countably tight and has the property that its separable subsets
are metrizable.

2. σ-FRAGMENTABILITY AND THE L INDELÖF PROPERTY FORγ(D)

We recall some topological terms. Let(T, τ) be a topological space and letδ be
a metric onT . Let S be a subset ofT . Then we say that(S, τ) (or simply,S) is
fragmented byδ down toε for someε > 0 if, wheneverA is a non-empty subset
of S, there is aτ -open setU in T such thatA ∩ U 6= ∅ andδ-diam(A ∩ U) < ε.
The subspace(S, τ) (or simply, setS) is fragmented byδ if it is fragmented byδ
down to eachε > 0. The spaceT is σ-fragmented byδ if, for eachε > 0, T can
be written asT =

⋃∞
n=1 Tn, where eachTn is fragmented byδ down toε. If the

metric δ is that of a norm‖ ‖, then instead of “fragmented by the metric of the
norm”, we saynorm-fragmentedor ‖ ‖-fragmented.

A topological space(T, τ) is said to beK-analytic if there is an upper semi-
continuous set-valued mapF : NN → 2T such thatF (σ) is compact for each
σ ∈ NN andF (NN) :=

⋃
{F (σ) : σ ∈ NN} = T . Here the set-valued mapF is

calledupper semi-continuousif for eachσ ∈ NN and for an open subsetU of T
such thatF (σ) ⊂ U there exists a neighborhoodV of σ with F (V ) ⊂ U. Our basic
reference forK-analytic spaces is [26]. A subsetS of T is said to beK-analytic if
S with the relative topology,i.e. (S, τ), is K-analytic. We use repeatedly the fact
that eachK-analytic Hausdorff space is Lindelöf (see [26, Theorem 2.7.1]).

Let (M,ρ) be a metric space with the metricρ bounded, and letD be an index
set. We consider various topologies on the product spaceMD in addition to the
product (= pointwise) topologyτp. If S is a subset ofD, we define the pseudo-
metricdS onMD by

dS(x, y) = sup{ρ(x(p), y(p)) : p ∈ S}

for all x, y ∈ MD. Note thatdD is theuniform metricon MD and we denote it
by d. Throughout this paper, we letC denote the family of all countable subsets
of D. Finally we letγ(D) denote the topology onMD of uniform convergence
on members ofC. This is the topology of the uniformity generated by the family
{dA : A ∈ C} of pseudo-metrics.

Using the notation above our main theorem is the following.

Theorem 2.1. Let X be aK-analytic subspace ofMD where(M,ρ) is a metric
space withρ bounded. Then the following statements are equivalent.

(a) The space(X, τp) is σ-fragmented byd.
(b) For each compact subsetK of (X, τp), (K, τp) is fragmented byd.
(c) For eachA ∈ C, the pseudo-metric space(X, dA) is separable.
(d) (X, γ(D)) is Lindel̈of.
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Proof. (Easy parts.) (a)⇔ (b). This follows from [12, Theorem 4.1]. (A simpler
proof in [19].)

(c) ⇒ (b). (c) implies that, for each compactK ⊂ X, (K, dA) is separable
wheneverA ∈ C. Then(K, τp) is fragmented byd by e.g. [6, Theorem 2.1].

(d) ⇒ (c). This is clear because, ifA ∈ C, then the topology ofdA is weaker
thanγ(D).

In order to prove (a)⇒ (c), we need the following simple lemma.

Lemma 1. Let(T, τ) be metrizable and separable (or more generally, hereditarily
Lindelöf) and letδ be a metric onT . Then(T, τ) is σ-fragmented byδ if and only
if (T, δ) is separable.

Proof. If (T, δ) is not separable, then there exist anε > 0 and an uncountable
subsetS of T such thatδ(t, t′) ≥ ε whenevert, t′ are distinct elements ofS. If
(T, τ) is σ-fragmented byδ, thenT can be written asT =

⋃
{Tn : n ∈ N},

where, for eachn, Tn is fragmented byδ down toε/2. Choosen so thatTn ∩ S is
uncountable. Since(T, τ) is hereditarily Lindel̈of, there is an uncountable subset
B of Tn ∩ S without aτ -isolated point. Because of the property ofTn, there is a
τ -open subsetU of T such thatU ∩ B 6= ∅ andδ-diam(U ∩ B) ≤ ε/2. Since
B is without aτ -isolated point,U ∩ B contain two distinct pointst, t′. Recalling
that B ⊂ S, we obtainε ≤ δ(t, t′) ≤ δ-diam(U ∩ B) ≤ ε/2, a contradiction.
Conversely if(T, δ) is separable, then for eachε, Y is a countable union of subsets
of δ-diameter< ε. So with any topology,T is σ-fragmented byδ. �

Proof of (a)⇒ (c) of Theorem 2.1.
Let A ∈ C and letr : MD → MA be the restriction map. Thenr is continuous

with respect to the product topologies as well as with respect todD anddA and
these metrics are lower-semicontinuous in respective product topologies. Since
(X, τp) is K-analytic andσ-fragmented bydD, by [12, Theorem 5.1],(r(X), τp)
is σ-fragmented bydA. Moreover being the continuous image of a Lindelöf space,
(r(X), τp) is Lindelöf. SinceA is countable,(MA, τp) is metrizable and there-
fore (r(X), τp) is metrizable and separable. Hence by Lemma 1,(r(X), dA) is
separable. It follows that(X, dA) is separable.

This completes the proof of the equivalence of (a), (b) and (c) and they are
implied by (d). It remains to prove that (c)⇒ (d). We do this in the next two
sub-sections 2.1 and 2.2.

2.1. Preliminary Remarks. We use the following convention: Ifσ = n1, n2, . . .
∈ NN and if k ∈ N, thenσ|k = n1, n2, ..., nk. LetA be a family of subsets of a
setT . Then aSouslin(A)-set is a subsetS of T that can be represented as

S =
⋃

σ∈NN

∞⋂
k=1

S(σ|k),

whereS(σ|k) ∈ A for eachσ ∈ NN andk ∈ N. The family of allSouslin(A)-
sets is denoted bySouslin(A). The familySouslin(A) is closed under countable
intersections and countable unions ([26, Corollary 2.3.3]). IfA consists ofK-
analytic subsets of a Hausdorff space(T, τ), then eachSouslin(A)-set is again
K-analytic ([26, Theorem 2.5.4]). The intersection of aK-analytic subset ofT
and a closed subset ofT is K-analytic ([26, Theorem 2.5.3]).
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We also recall some facts concerning Baire sets. Let(T, τ) be a Tychonoff
space. A subsetZ of T is called azero-set(in T ) if Z = f−1(0) for some contin-
uous functionf : T → R. LetZ (or Z(T )) denote the family of all zero-sets in
T . ThenZ is closed under finite unions and countable intersections. Iff : T → R
is continuous, thenf−1(F ) ∈ Z for each closed subsetF of R. Theσ-algebra
generated byZ is denoted by Baire(T ) and elements ofBaire(T ) are calledBaire
setsin T . If Z ∈ Z, thenT \ Z is a countable union of members ofZ. Hence
T \ Z ∈ Souslin(Z). Since the family

{S ⊂ T : S, T \ S ∈ Souslin(Z)}

is aσ-algebra, it follows thatBaire(T ) ⊂ Souslin(Z).
Using the earlier notation, letX be aK-analytic subset ofMD. Then each zero-

set inX, being closed, isK-analytic and therefore each member ofSouslin(Z)
is K-analytic. It follows that each Baire set inX is K-analytic hence Lindelöf
relative toτp.

Our proof of (c)⇒ (d) is by contradiction. So suppose henceforward that (c)
holds and (d) fails for a fixedK-analytic subsetX of (MD, τp), and we agree
upon the following notation. All topological terms (such asK-analytic,Baire(X),
Lindelöf, etc.) are relative toτp unless otherwise specified.

Notation. Givenx ∈ X, S ⊂ D andε > 0 we write

U(x, S, ε) := {y ∈ X : dS(y, x) < ε},

V (x, S, ε) := {y ∈ X : dS(y, x) ≤ ε}.
Let U = {Uj : j ∈ J} be a family ofγ(D)-open sets inX without a countable
subcover. We may assume that eachUj is of the form

Uj = U(xj , Aj , εj) = {y ∈ X : dAj (y, xj) < εj},

wherexj ∈ X, Aj ∈ C, εj > 0 for eachj ∈ J . For eachA ∈ C, let

U(A) =
⋃
{Uj : j ∈ J, Aj ⊂ A}.

ClearlyU(A) ⊂ U(A′) wheneverA ⊂ A′. SinceU coversX, X =
⋃
{U(A) :

A ∈ C}.

Lemma 2. Under the notation above, the following statements hold.

(i) U(x,A, ε) ∈ Baire(X) wheneverx ∈ X, A ∈ C, ε > 0.

(ii) U(A) ∈ Baire(X) for eachA ∈ C. In particular U(A) is K-analytic and
Lindelöf for eachA ∈ C.

(iii) A subsetS of X is covered by a countable subfamily ofU if and only if
S ⊂ U(A) for someA ∈ C.

Proof. (i) Since U(x, A, ε) =
⋃
{V (x, A, ε − 1/n) : n ∈ N}, it is sufficient

to showV (x,A, ε) =
⋂
{V (x, {a}, ε) : a ∈ A} ∈ Baire(X). Sincey 7→

ρ(x(a), y(a)) is continuous on(X, τp), V (x, {a}, ε) ∈ Z(X), and becauseA is
countable,V (x,A, ε) ∈ Baire(X).

(ii) The setUj = U(xj , Aj , εj) is dA-open wheneverAj ⊂ A. Since, by (c),
(X, dA) is hereditarily Lindel̈of, U(A) is a countable union of setsUj with Aj ⊂
A. Therefore, by (i),U(A) ∈ Baire(X).
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(iii) If S ⊂
⋃
{Uj : j ∈ J0} for some countable subsetJ0 of J , thenS ⊂ U(A)

whereA =
⋃
{Aj : j ∈ J0}. Conversely ifS ⊂ U(A), then from the proof of (ii),

we see thatS is covered by a countable subfamily ofU . �

2.2. Proof of (c)⇒ (d). All the assumptions and notation of sub-section 2.1 are
retained in this section. LetY be the family of allK-analytic subsetsY of (X, τp)
such that there is no countable subfamily ofU that coversY , i.e. for no A ∈ C,
Y ⊂ U(A). By our assumption,X ∈ Y. If Y ∈ Y, Y ⊂ Z ⊂ X and if Z is
K-analytic thenZ ∈ Y.

We distinguish two cases:

A. For eachY ∈ Y and eachε > 0, there is aZ ∈ Y such thatZ ⊂ Y and
d-diam(Z) ≤ ε.

B. For someZ ∈ Y and someε > 0, d-diam(Y ) > ε wheneverY ∈ Y and
Y ⊂ Z. (The negation of CaseA.)

We show that each case leads to a contradiction.

Lemma 3. CaseA leads to a contradiction.

Proof. Assume CaseA. Let G : NN → 2X be a compact-set-valued upper-semi-
continuous map such thatG(NN) = X. Recall that ifσ = n1, n2, · · · ∈ NN and
k ∈ N, then we letσ|k = n1, n2, . . . , nk and ifn1, n2, . . . , nk is a finite sequence
in N, we let [n1, n2, . . . , nk] = {σ ∈ NN : σ|k = n1, n2, . . . , nk}. We note that
[n1, n2, . . . , nk] is a clopen subset ofNN and the family of the sets of this form
constitutes a base for the topology ofNN. For convenience we set[∅] = NN. Note
that the set of the formG([n1, n2, . . . , nk]) is K-analytic.

By induction, we construct a decreasing sequenceF0 ⊃ F1 ⊃ F2 ⊃ . . . of
closed subsets of(X, τp) and a sequenceσ = n1, n2, · · · ∈ NN such that

(i) Fk ∩G([σ|k]) ∈ Y for eachk ≥ 0.
(ii) d-diam Fk ≤ 1/k for eachk ≥ 1.

CONSTRUCTION.To start the induction, letF0 = X. Clearly (i) holds and (ii)
does not apply. Inductively assume thatF0, F1, F2, . . . , Fk andn1, n2, . . . , nk have
been constructed. Since

Fk ∩G([n1, . . . , nk]) =
∞⋃
i=1

Fk ∩G([n1, . . . , nk, i]) ∈ Y,

there is ani ∈ N with

Fk ∩G([n1, . . . , nk, i]) ∈ Y.

By the assumption of CaseA, there is aZ ∈ Y such that

Z ⊂ Fk ∩G([n1, . . . , nk, i]) and d-diam Z ≤ 1/(k + 1).

Let Fk+1 = Z ⊂ Fk andnk+1 = i, where the closure is taken in(X, τp). Then
d-diam Fk+1 ≤ 1/(k + 1). ClearlyFk+1 ∩ G([n1, . . . , nk+1]) is K-analytic and
containsZ which is a member ofY. Hence (i) holds ifk is replaced byk +1. This
completes the construction.

By [26, Lemma 3.1.1],(
⋂
{Fk : k ∈ N}) ∩ G(σ) 6= ∅. Hence by (ii), the set⋂

{Fk : k ∈ N} is a singleton{a}. Now there is anA ∈ C such thata ∈ U(A).
SinceU(A) is dA-open, there is aδ > 0 such thatU(a,A, δ) ⊂ U(A). By (ii),
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there is ak ∈ N such thatd-diam Fk < δ. ThenFk ⊂ U(a,A, δ) ⊂ U(A). This
contradicts (i). This completes the proof. �

Before we take up CaseB, we prove the following lemma. Recall that all topo-
logical terms are relative toτp unless otherwise mentioned.

Lemma 4. LetY ∈ Y. Then there is a subsetQ of Y such that

(i) Q ∈ Y.
(ii) If V is an open subset of(Y, τp) with V ∩ Q 6= ∅, then for noA ∈ C,

V ⊂ U(A).

Proof. Let

Q = Y \
⋃
{intY (U(A) ∩ Y ) : A ∈ C},

where intY indicates theτp-interior relative toY . Then clearlyQ is closed in
(Y, τp). HenceQ is K-analytic. We show thatQ ∈ Y by contradiction. Suppose
then thatQ ⊂ U(A0) for someA0 ∈ C. Then⋃

{intY (U(A) ∩ Y ) : A ∈ C} = Y \Q ⊃ Y \ U(A0) = Y ∩ (X \ U(A0)).

By Lemma 2,U(A0) ∈ Baire (X) and henceX \ U(A0) ∈ Baire (X). Con-
sequently the setX \ U(A0) is K-analytic. It follows that the intersectionY ∩
(X \ U(A0)) is K-analytic and hence Lindelöf. Therefore, there is a sequence
{An : n ∈ N} in C such that

Y \ U(A0) ⊂
⋃
{intY (U(An) ∩ Y ) : n ∈ N} ⊂

⋃
{U(An) ∩ Y : n ∈ N}.

Let B =
⋃
{An : n ∈ {0} ∪ N} ∈ C. ThenY ⊂ U(B) contradictingY ∈ Y. This

proves (i).
Next, suppose thatV is an open subset of(Y, τp) such thatQ ∩ V 6= ∅. If the

conclusion of (ii) is not true, thenV ⊂ U(A0) for someA0 ∈ C. This implies that
V ⊂ intY (U(A0)∩Y ) ⊂ Y \Q andQ∩V = ∅, contradicting the assumption.�

Lemma 5. CaseB leads to a contradiction.

Proof. Let Z ∈ Y andε > 0 be fixed so thatd-diam Y > ε wheneverY ∈ Y and
Y ⊂ Z. We letH : NN → 2Z be a compact-set-valued upper-semicontinuous map
such thatH(NN) = Z. All the following construction takes place in(Z, τp).

Let 2(N) be the set all finite sequencess of 0’s and 1’s, and in this case let|s|
denote the length ofs. N(N) is similarly defined. For eachs ∈ 2(N), we construct
a closed subsetF (s) of (Z, τp), an `(s) ∈ N(N) and p(s) ∈ D satisfying the
following conditions.

(i) F (∅) = Z.
(ii) For eachs ∈ 2(N), F (s, 0) ∪ F (s, 1) ⊂ F (s), |`(s)| = |s| and `(s, 0),

`(s, 1) extend̀ (s).
(iii) For eachs ∈ 2(N), ρ(x(p(s)), y(p(s))) > ε wheneverx ∈ F (s, 0), y ∈

F (s, 1).
(iv) For eachs ∈ 2(N), Y (s) := F (s) ∩H([`(s)]) ∈ Y.
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CONSTRUCTION.The construction is by induction on|s|. When|s| = 0, we let
F (∅) = Z and`(∅) = ∅. Inductively assume thatF (s), `(s) have been constructed
for all s with |s| ≤ n andp(s) for |s| ≤ n− 1 so that (ii),(iii) hold for|s| ≤ n− 1
and (iv) for|s| ≤ n.

Let s ∈ 2(N) with |s| = n. Then by (iv),Y (s) ∈ Y. Hence by Lemma 4, there
exists a subsetQ of Y (s) such thatQ ∈ Y and, wheneverV is an open subset
of (Y (s), τp) with Q ∩ V 6= ∅, thenV ⊂ U(A) for no A ∈ C. By hypothesis
d-diam Q > ε. So there arex0, x1 ∈ Q and ap ∈ D such thatρ(x0(p), x1(p)) >
ε + δ for someδ > 0. Let

W0 = {x ∈ Y (s) : ρ(x0(p), x(p)) < δ/2},
W1 = {x ∈ Y (s) : ρ(x1(p), x(p)) < δ/2}.

Note first that ifx ∈ W0, y ∈ W1, where closures are taken in(Z, τp), then
ρ(x(p), y(p)) > ε. Next W0 is open in(Y (s), τp) andW0 ∩ Q 6= ∅. Hence,
for no A ∈ C, W0 ⊂ U(A). Similarly for W1. It follows that W0 ∩ Y (s) is
K-analytic andW0 ∩ Y (s) ⊂ U(A) for noA ∈ C. HenceW0 ∩ Y (s) ∈ Y. Now

W0 ∩ Y (s) = W0 ∩ F (s) ∩H([`(s)]) =
⋃
k∈N

W0 ∩ F (s) ∩H([`(s), k]).

Hence for somek, W0∩F (s)∩H([`(s), k] ∈ Y. LetF (s, 0) = W0∩F (s), `(s, 0)
= `(s), k andp(s) = p. Then (iv) holds for(s, 0). Similarly we letF (s, 1) =
W1 ∩ F (s) and choosè(s, 1) to make (iv) hold for(s, 1). Clearly conditions (ii)
and (iii) are satisfied as well. This completes the construction.

Now for eachσ ∈ 2N, let `(σ) be the unique element inNN such that̀ (σ)|n =
`(σ|n) for eachn ∈ N. Then by (iv),F (σ|n) ∩H([`(σ)|n]) 6= ∅ for eachn ∈ N.
Therefore, by [26, Lemma 3.1.1],

K(σ) := (
⋂
{F (σ|n) : n ∈ N}) ∩H(`(σ))

is a non-empty compact subset ofZ. For eachσ ∈ 2N, choose a pointx(σ) in
K(σ), and letB be the countable set{p(s) : s ∈ 2(N)} ⊂ D. Then from (ii) and
(iii) it follows that dB(x(σ), x(σ′)) > ε wheneverσ andσ′ are distinct elements
of the uncountable space2N. This contradicts (c), which proves Lemma 5. �

The proof of Theorem 2.1 now follows from Lemmas 3 and 5.

The proof of the next corollary is almost the same as the one for Corollary 2.2
in our previous paper [6]. For the convenience of the reader, a part of the proof is
repeated here.

Corollary 2.2. LetX, M, D be as in Theorem 2.1. IfX satisfies one (hence all) of
the three conditions of the Theorem 2.1, then(X, γ(D))N is Lindel̈of.

Proof. We may assume that the metricρ of the spaceM is bounded by 1. Let
ϕ : (MD)N → (MN)D be the map defined byϕ(ξ)(p)(j) = ξ(j)(p) for all
ξ ∈ (MD)N, p ∈ D, j ∈ N. Clearlyϕ is a homeomorphism when the product
topology is used throughout. Now the spaceMN is metrizable, and we use the
metricρ∞(m,m′) :=

∑
j∈N 2−jρ(m(j),m′(j)) for m,m′ ∈ MN. Let d∞ be the

metric on(MN)D given by

d∞(x, x′) = sup{ρ∞(x(p), x′(p)) : p ∈ D} for x, x′ ∈ (MN)D.
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Now, by [26, Theorem 2.5.5],XN is K-analytic, hence so isϕ(XN). We show
that each compact subset ofϕ(XN) is fragmented byd∞. For this it is sufficient to
prove that each set of the formϕ(K) is fragmented byd∞, whereK =

∏
{Kj :

j ∈ N} with eachKj compact inX. Let ε > 0, let C be a non-empty subset ofK
and letπj : K → Kj be thej-th projection. Then, since eachKj is fragmented
by d according to (b) of Theorem 2.1, we can construct inductively a decreasing
sequenceV1 ⊃ V2 ⊃ . . . of non-empty relatively open subsets ofC such that
d-diam πj(Vj) < ε/2 for eachj ∈ N. Choosek ∈ N so that2−k < ε/2, and let
ξ, ξ′ ∈ Vk. Then for eachp ∈ D,

ρ∞(ϕ(ξ)(p), ϕ(ξ′)(p)) ≤
∑
j≤k

2−jρ(ξ(j)(p), ξ′(j)(p)) +
∑

j≥k+1

2−j

<
∑
j≤k

2−jd(πj(ξ), πj(ξ′)) + ε/2 ≤ ε/2 + ε/2 = ε.

Thusϕ(Vk) is a non-empty relatively open subset ofϕ(C) with d∞-diameter not
greater thenε. It follows thatϕ(K) is fragmented byd∞.

Hence by Theorem 2.1,ϕ(XN) is γ(D)-Lindelöf. So we finish the proof by
noting thatϕ maps(MD, γ(D))N homeomorphically onto((MN)D, γ(D)). This
fact is shown at the end of the proof of [6, Corollary 2.2]. �

Remark 2.3. In Theorem 2.1 and Corollary 2.2 we have restricted ourselves to
metric spaces(M,ρ) with ρ bounded, because ifρ is unbounded, thenρ can always
be replaced byρ′ := ρ∧1 = min{ρ, 1}without changing the uniformity. However
in applications, there are cases when this replacement ofρ by ρ∧1 is not necessary.
More specifically supposeρ is unbounded, butX ⊂ MD is so situated that

d(x, y) = sup{ρ(x(p), y(p)) : p ∈ D} < +∞
for each(x, y) ∈ X × X. In this case the uniformities and the topologies ofd,
dA andγ(D) are unaffected by whetherρ or ρ′ is used in our definitions. Hence
Theorem 2.1 and Corollary 2.2 continue to hold for the original unbounded metric
ρ.

Remark 2.4. In Theorem 2.1, the equivalence of (a) and (b) is valid under a less
restrictive assumption than that ofK-analyticity. In the unpublished ‘Note of 8
December 1980’, D.H. Fremlin defined the notion ofČech-analyticity. We shall
not repeat the definition here but refer instead to [12, Section 8]. According to
[12, Theorem 4.1], statements (a) and (b) are equivalent whenX is assumed to be
Čech-analytic. This gives us hope that Theorem 2.1 may be true whenX is only
assumed to běCech-analytic and Lindelöf. A counter-example to this conjecture
is discussed in Section 4.

3. CORSON COMPACT SPACES

Let I = [−1, 1] and letΓ be an arbitrary index set. For anx ∈ IΓ, let us write
supp(x) = {γ ∈ Γ : x(γ) 6= 0}. We define two special subsets ofIΓ as follows:

F(Γ) = {x ∈ [−1, 1]Γ : supp(x) is finite}
and

Σ(Γ) = {x ∈ [−1, 1]Γ : supp(x) is countable}.
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Unless otherwise stated, the topology ofIΓ and its subsets is the product (= point-
wise) topologyτp.

Recall that a compact Hausdorff spaceK is said to beCorson compactif K
is homeomorphic to aτp-compact subset ofΣ(Γ). From the definition, it follows
that if A is a countable subset of a Corson compact spaceK, then the closure of
A is compact and metrizable. A topological spaceT is said to becountably tight
if, wheneverS is a subset ofT andt ∈ S, then for some countable subsetA of S,
t ∈ A. One can show easily that the space(Σ(Γ), τp) defined above is countably
tight, see [13, Lemma 1.6]. Hence the Corson compact spaceK is countable tight.

As the first application of our main theorem, we show that for any Corson com-
pact spaceK the space(C(K), γ(K)) is Lindelöf, whereγ(K) stands for the
topology inC(K) of uniform convergence on countable subsets ofK. This re-
sult, which implies thatCp(K) := (C(K), τp(K)) is Lindelöf, was first proved by
Gul’ko [11] by a direct method based on the abundance of retracts inK. Orihuela
[23] gave a different proof based on Banach space techniques. ThatCp(K) is Lin-
delöf also follows from the result of Alster and Pol [2] obtained independently by
yet a different method.

We need the following simple lemma first. IfS is a subset of a linear space, the
convex hull and the absolute convex hull ofS are denoted respectively by co(S)
and aco(S). The linear span of the setS is denoted by spanS.

Lemma 6. LetΓ be an index set and letH be a norm bounded subset of`∞(Γ) ⊂
RΓ. If

(1) aco(H)
τp = aco(H)

‖ ‖
,

thenX := spanH
‖ ‖

is K-analytic with respect to the pointwise topologyτp of
RΓ. In particular, if H is a norm boundedτp-compact subset of̀∞(Γ) that is

norm-fragmented, thenspanH
‖ ‖

is K-analytic relative toτp.

Proof. Let W = aco(H)
τp

. Then W is τp-compact and the equation (1) im-

plies the equalityX := spanH
‖ ‖ =

⋃
n nW

‖ ‖
. We define the set-valued map

ϕ : NN → 2`∞(Γ) as follows. Forα = (ak) ∈ NN, let

(2) ϕ(α) =
∞⋂

k=1

(
akW +

1
k
B

)
,

whereB denotes the unit ball of̀∞(Γ) which isτp-compact. Eachϕ(α) is a non
emptyτp-compact set contained inX. Now, we prove that the set-valued mapϕ is
upper semi-continuous relative toτp. Let U be aτp-open set such thatϕ(α) ⊂ U .
Then by the definition (2) forϕ(α), we see that there is anm ∈ N such that

m⋂
k=1

(akW +
1
k
B) ⊂ U.

Thenϕ([α|m]) ⊂ U , where[α|m] stands for the open neighborhood ofα defined
by [α|m] = {β ∈ NN : β|m = α|m}. This proves thatX = ϕ(NN) is K-analytic
with respect toτp.

Suppose thatH satisfies the assumptions of the second part of the lemma. If
we regard̀ ∞(Γ) as the dual of the Banach space`1(Γ), then, on norm bounded
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subsets,τp is identical with the weak∗ topology. Now as easily seen (cf. proof
of [18, Theorem 2.5])Ĥ := {t h : t ∈ [−1, 1], h ∈ H} is again norm bounded,
τp-compact and norm-fragmented. Since aco(H) = co(Ĥ), we see thatH satisfies
equation (1) by applying [18, Theorem 2.3] tôH. This completes the proof. �

The following proposition is the basis for all the results in this section. IfK is
a compact Hausdorff space and ifS is a subset ofK, then we letγ(S) denote the
topology forC(K) of uniform convergence on countable subsets ofS.

Proposition 3.1. . LetK be a compact subset ofIΓ such thatK ∩ F(Γ) is dense
in K. Then(C(K), γ(K ∩ Σ(Γ))N is Lindel̈of.

Proof. Let D = K ∩F(Γ). Then by hypothesis,D is dense inK. For eachγ ∈ Γ,
let πγ : K → I be theγ-th projection,i.e. πγ(x) = x(γ) for x ∈ K, and let
G = {πγ : γ ∈ Γ} ∪ {1}. ThenG is a subset of the unit ball ofC(K) separating
points ofK. As in [6, Example B and C], we enlargeG as follows. First for each
n ∈ N, let

Gn = {g1g2 · · · gn : gi ∈ G, i = 1, 2, . . . , n} ⊂ BC(K).

Then for eachx ∈ D, {g ∈ Gn : g(x) 6= 0} is finite, and henceGn \U is finite for
eachτp(D)-neighborhoodU of 0 in C(K). LetH =

⋃
{(1/n)Gn : n ∈ N}∪{0}.

Then againH \ U is finite for eachτp(D)-neighborhoodU of 0. It follows thatH
is τp(D)-compact and each non-zero element ofH is isolated. HenceH is also a
norm-fragmented subset ofC(K). Furthermore by the Stone-Weierstrass theorem

C(K) = spanH
‖ ‖

. Since

C(K) ⊂ `∞(D) ⊂ RD

and the norm ofC(K) is that of`∞(D), we conclude from Lemma 6 thatC(K)
is K-analytic relative toτp(D). We claim thatX := C(K) satisfies condition (c)
of Theorem 2.1. In fact, for any countable subsetA of D, the closureA ⊂ K is
metrizable, since it is homeomorphic with a subset ofIS where we have written
S =

⋃
{supp(a) : a ∈ A}. Hence, the Banach space(C(A), ‖ ‖∞) is separable

and from this, we can conclude thatC(K) is separable with respect to the pseudo-
metric dA. Consequently by Corollary 2.2 and Remark 2.3,(C(K), γ(D))N is
Lindelöf. Note thatD ⊂ K ∩ Σ(Γ) ⊂ K. Hence,D is dense inK ∩ Σ(Γ) and
K ∩Σ(Γ) is dense inK. SinceΣ(Γ) is countably tight, each element ofK ∩Σ(Γ)
is in the closure of a countable subset ofD. It follows that onC(K) the topologies
γ(D) andγ(K ∩ Σ(Γ)) agree, and hence(C(K), γ(K ∩ Σ(Γ))N is Lindelöf. �

A compact Hausdorff spaceK is said to beValdivia compactif K can be so
embedded in the space(IΓ, τp) thatK ∩ Σ(Γ) is dense inK. The spaces which
satisfy the hypothesis of the previous theorem are Valdivia compact. Obviously
Corson compact spaces are Valdivia compact. The next theorem, stated in the
context of Banach spaces, is due to Orihuela [23].

Theorem 3.2. Let K be a Valdivia compact subset ofIΓ with K ∩ Σ(Γ) dense in
K. Then(C(K), γ(K ∩ Σ(Γ)))N is Lindel̈of.
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Proof. Let the map
ϕ : [0, 1]Γ ×K −→ IΓ

be defined byϕ((tγ)γ∈Γ, (xγ)γ∈Γ) = (tγxγ)γ∈Γ. Thenϕ is continuous. Therefore
K̂ := ϕ([0, 1]Γ ×K) is a compact subset of(IΓ, τp) containingK andK̂ ∩ F(Γ)
is dense inK̂. Hence by Proposition 3.1,(C(K̂), γ(K̂∩Σ(Γ))N is Lindelöf. Since
the restriction mapC(K̂) → C(K) is surjective andγ(K̂ ∩ Σ(Γ))-γ(K ∩ Σ(Γ))
continuous, the conclusion of the corollary follows. �

Remark. As the proof shows, the conclusion of the theorem above is true for any
compact subsetK of IΓ. The assumption ofK being Valdivia compact makes the
space(C(K), γ(K ∩ Σ(Γ))) Hausdorff.

The next corollary is an immediate consequence of the previous theorem.

Corollary 3.3. If K is a Corson compact space, then(C(K), γ(K))N is Lindel̈of.
In particular Cp(K)N is Lindel̈of.

Example. The converse of the preceding corollary is false. To show this we use
the spaceX used by R. Pol in [24]. The compact Hausdorff spaceX is defined as
follows. LetΩ = [0, ω1), i.e. the set of all countable ordinals, letΛ be the set of
all limit ordinals inΩ and letΓ = Ω \ Λ. For eachλ ∈ Λ, choose an increasing
sequencesλ : N → Γ that converges toλ and letSλ = {λ}∪ sλ(N). The topology
onΩ is defined as follows: each point inΓ is open and, for eachλ ∈ Λ, the family
{Sλ\F : F ⊂ Γ, F is finite} is a base of open neighborhoods ofλ. Thus the space
Ω is locally compact and Haudsorff, and let the spaceX = Ω ∪ {ω1} be its one-
point compactification. The spaceX is scattered andX is not Eberlein compact
[24]. ConsequentlyX is not Corson compact (cf. [1]). However(C(X), γ(X))N

is Lindelöf showing that the converse of the preceding corollary is false. The proof
that(C(X), γ(X))N is Lindelöf consists of a result from [8, Section 4] as well as
modifications of ones in [24]. Below, we give a general remark and an outline of
the proof. We gratefully acknowledge the helpful exchanges of e-mail concerning
this example with Professor R. Pol.

1. LetK be a compact Hausdorff space and let(M,ρ) be a metric space, whereρ is
not necessarily bounded. We letC(K, M) denote the space of all continuous maps:
K → M . SinceC(K, M) ⊂ MK , the various topologies defined at the beginning
of Section 2 can be localized toC(K, M), and Remark 2.3 applies toC(K, M).
Whereas [24] is concerned with the pointwise topology, we are interested inγ(K)
for C(K, M) which is, of course, stronger. Throughout this Example only, we
denote(C(K, M), γ(K)) by Cγ(K, M). The following general remark is helpful
when modifying the proofs in [24] forCγ(K, M). For a subsetA of M and a
subsetB of M , we letW (A,B) = {f ∈ C(K, M) : f(A) ⊂ B}. Then one can
see easily thatthe family of the sets of the formW (L,U), whereL is a compact
separable subset ofK andU a non-empty open subset ofM , form a subbase for
the topologyγ(K). Henceγ(K) depends only on the topology of(M,ρ).
2. [24, Lemma 1] can be modified as follows:LetS be a compact zero-dimensional
space. Then the spaceCγ(S, R)N is Lindel̈of if and only if the productCγ(S, D)N

is Lindel̈of. Moreover, given a pointp ∈ S, the spaceCγ(S, D) can be replaced in
this equivalence by the spaceGp = {f ∈ C(S, D) : f(p) = 0}. HereD denotes
the two-point space{0, 1}, the discrete group of order two. The proof follows
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the one for the original lemma. The exponential law involvingγ(S) has already
been alluded to at the end of the proof of Corollary 2.2. Keeping in mind that
γ(S) is stronger than the pointwise topology, one can follow the proof in [24] to
conclude thatCγ(S, P ) is Lindelöf. Hence, the proof is complete if it is shown that
Cγ(S, R)N ≡ Cγ(S, RN) is a continuous image ofCγ(S, P ). As in [24], choose a
continuous, open and onto mapu : P → R. SinceP andP N are homeomorphic,
u gives rise to a continuous, open and onto mapu∗ : P → RN, which induces the
continuous mapF ∗ : Cγ(S, P ) → Cγ(S, RN) by F ∗(f) = u∗ ◦ f . ThatF ∗ is
onto can be seen exactly as in [24]. The second part of the assertion follows from
Cγ(S, D) ≡ (Gp, γ(S))×D.

3. Now, let X be the space defined above. As in [24], letG = {f ∈ C(X, D) :
f(ω1) = 0}, and writeGγ = (G, γ(X)). Then for eachf ∈ G, the sets of the form
{f ∈ G : f |A = g|A}, with A ⊂ X countable, constitute aγ(X)-neighborhood
base off . This means that onG, γ(X) coincides with the topology generated by
theGδ-subsets of(G, τp), cf. Section 4. We must prove thatGN

γ is Lindelöf. For
this we apply [24, Lemma 3] toGγ , which obviously is an Abelian topological
group, with a suitably chosenE. Here we follow [8]. For eachλ ∈ Λ, Sλ is a
compact and open subset ofX. Hence the characteristic functionfλ of Sλ is in G.
Define

E = {fλ : λ ∈ Λ} ∪ {χF : F ⊂ Γ, F is finite} ⊂ G.

Then a special case of the result in [8, Section 4] shows that(EN, γ(X)) is Lin-
delöf. Note that each element ofG is the characteristic function of a compact open
subset ofΩ, i.e. the set of the formF4

⋃
{Sλ : λ ∈ L} whereF andL are finite

subsets ofΓ andΛ respectively. It follows that each element ofG is the finite sum
of elements inE, and therefore the setE satisfies the conditions of [24, Lemma 3].

4. K-ANALYTIC SPACES WITHOUT COMPACT PERFECT SUBSETS

Let (X, τ) be a Tychonoff (completely regular andT1) space, and letC(X, I)
be the space of all continuous functionsf : X → I = [0, 1]. Then the map
Φ : X → IC(X,I), given byΦ(x)(f) = f(x) for x ∈ X, f ∈ C(X, I), em-
bedsX topologically in(IC(X,I), τp) (seee.g. [15]). Hereτp denotes the product
(= pointwise) topology as before. ThusX may be regarded as a subspace ofID

with D = C(X, I), and this makes it possible to apply our main theorem and its
corollary to the spaceX when it isK-analytic. In the next paragraphs, we interpret
the topological properties mentioned in Theorem 2.1 for our situation here.

The uniform metricd onX is given by

d(x, x′) = sup{|f(x)− f(x′)| : f ∈ C(X, I)},
for x, x′ ∈ X. Hence ifx 6= x′, thend(x, x′) = 1, i.e. d is thediscrete metric.

Given a topological space(Z, τ), theGδ-topology associated toτ is the topol-
ogy τδ onZ whose basis is the family of allGδ-sets inZ, i.e. the family of sets of
the form

⋂
{Un : Un ∈ τ : n ∈ N}. When no confusion is likely, we simply write

Z for the topological space(Z, τ) and refer toτδ as itsGδ-topology. The proof of
the next lemma is omitted, since it is a verbatim repetition of the short one given
for [6, Lemma 2].

Lemma 7. Let X be a Tychonoff space. Then theGδ-topology forX is identical
with γ(C(X, I)) onX.
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Letd denote the discrete metric as above for the space(X, τ). ForS ⊂ X, (S, τ)
is fragmented byd down toε, 0 < ε < 1, if and only if each non-empty subset of
S contains an isolated point,i.e. S is scattered. Therefore(X, τ) is σ-fragmented
by d if and only if X is σ-scattered, that isX is a countable union of scattered
subsets. One can easily check that each compact subset of(X, τ) is fragmented by
d if and only if there is no compact perfect subset ofX (i.e. a compact subset ofX
without an isolated point). In the context of the present section, Theorem 2.1 and
its Corollary 2.2 can now be translated as:

Theorem 4.1. Let (X, τ) be aK-analytic Tychonoff space. Then the following
statements are equivalent.

(a) The spaceX is σ-scattered.
(b) The spaceX does not contain a compact perfect subset.
(c) The space(X, τδ) is Lindel̈of.
(d) The space(X, τδ)N is Lindel̈of.

To the list of conditions of the theorem above, we wish to add several more. For
this we need some more definitions. A Hausdorff topological spaceZ is said to be
Fréchet-Urysohnif, whenever,S ⊂ Z andz ∈ S, z is the limit of a sequence in
S. We use the following simple fact: forZ to be Fŕechet-Urysohn, it is sufficient
thatZ be countably tight and each separable subset ofZ be metrizable. A subset
S of Z is said to besequentially closedif the limit of each sequence inS is in S.
The topological space is said to besequentialif each sequentially closed subset is
closed. The topological spaceZ is called ak-spaceif a subsetS of Z is closed
providedS ∩ C is closed for each compact subsetC of Z. The spaceZ is called
a kR-spaceif a real-valued functionf on Z is continuous whenever its restriction
f |C is continuous for each compact subsetC of Z. For a Tychonoff spaceX,
B1(X) denotes the space all functionsf on X which is the pointwise limit of a
sequence inC(X).

Finally we recall two facts. The first one is due to Arkhangelskii, [3, Theorem
II.1.1]: If Z is a topological space such thatZn is Lindel̈of for eachn ∈ N,
then(C(Z), τp) is countably tight. The second one is the following simple lemma
quoted from [6].

Lemma 8. LetZ be a Lindel̈of space, and letH ⊂ C(Z) be equicontinuous. Then
(H, τp) is metrizable.

Corollary 4.2. Let (X, τ) be a K-analytic Tychonoff space. Then each of the
statements of the theorem above is equivalent to each of the following.

(i) For any countable setA ⊂ C(X), A
τp (closure inRX ) is τp-metrizable.

(ii) (B1(X), τp) is Fréchet-Urysohn.
(iii) (C(X), τp) is Fréchet-Urysohn.
(iv) (C(X), τp) is sequential.
(v) (C(X), τp) is ak-space.

(vi) (C(X), τp) is akR-space.

Proof. We first remark that ifA is a countable subset ofC(X) then it is τδ-
equicontinuous. HenceA

τp (closure inRX ) is againτδ-equicontinuous and is a
subset ofC(X, τδ).
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(c)⇒(i). This is clear from the remark above and Lemma 8.
(d)⇒(ii). By (d) and the Arkhangelskii theorem above,(C(X, τδ), τp) is count-

ably tight. By the remark at the beginning of the proof,B1(X) ⊂ C(X, τδ) and
so(B1(X), τp) is countably tight. Hence to show (ii), it is sufficient to prove that
A

τp is τp-metrizable for each countable subsetA of B1(X). In fact, because of the
countable tightness, ifA is a countable subset ofB1(X), then, for some countable
C ⊂ C(X), A ⊂ C

τp andC
τp is τp-metrizable by (i) (which is a consequence of

(c) and hence of (d)). HenceA
τp is τp-metrizable as desired.

(i)⇒(iii). Since (X, τ) is K-analytic, the product space(X, τ)N is alsoK-
analytic (see [26, Theorem 2.5.5]). It follows that(X, τ)n is Lindelöf for each
n ∈ N. Hence by the Arkhangelskii theorem,(C(X), τp) is countably tight, and
by (i), if A is a countable subset ofC(X), A

τp ∩ C(X) is τp-metrizable. This
shows (iii).

The implications (ii)⇒(iii)⇒(iv) ⇒(v)⇒(vi) are obvious.
To complete the proof we show that (vi)⇒(b) by contradiction. So we assume

(vi) and that there is a compact perfect subsetK of X and try to reach a contradic-
tion. Letπ : (C(X), τp) → (C(K), τp) be the restriction mapf 7→ f |K. Thenf
is continuous and open. By applying the Tietze extension theorem toβX, one can
see thatπ is onto. Henceπ is a quotient map, and this fact together with (vi) imply
that (C(K), τp) is akR-space. SinceR is homeomorphic to the interval(−1, 1),
(C(K, (−1, 1)), τp) is also akR-space. We show that this is not the case.

SinceK is compact and perfect, there is a continuous onto mapϕ : K → [0, 1]
(cf. [26, Proposition 5.4.1]). Letλ denote the Lebesgue measure on[0, 1]. Since the
mapϕ induces the map of all Radon-probability measures onK onto that of[0, 1],
there exists a Radon-probability measureµ on K such thatλ(B) = µ(ϕ−1(B))
for each Borel subsetB of [0, 1]. In particularµ({x}) = 0 for eachx ∈ K. We
show that the functionΨ : (C(K, (−1, 1)), τp) → R given by

Ψ(f) =
∫

K
f dµ ,

for eachf ∈ C(K, (−1, 1)), is continuous when restricted to compact subsets of
(C(K, (−1, 1)), τp) but it is notτp-continuous on the whole ofC(K, (−1, 1)).

Let H be aτp-compact subset ofC(K, (−1, 1)) and letC ⊂ H be arbitrary. If
f ∈ C

τp , then there is a sequence(fn)n in C that converges tof pointwise (cf.
[16, Theorem 2.8.20]). Then by the Dominated Convergence Theorem we have
Ψ(f) = limn Ψ(fn). It follows thatΨ(Cτp) ⊂ Ψ(C)

τp
. This shows thatΨ|H is

τp-continuous.
On the other hand suppose thatΨ is continuous onC(K, (−1, 1)) at, say,0.

Then there is a finite subsetF of K and anε > 0 such thatΨ(f) < 1/4 whenever
f ∈ W := {g ∈ C(K, (−1, 1)) : |g(x)| < ε for eachx ∈ F}. Sinceµ(F ) = 0,
there is an open subsetU of K with F ⊂ U andµ(U) < 1/2. Let L = K \ U .
Then by Urysohn’s lemma, [15, Lemma 4, p. 115], there is a continuous function
h : K → [0, 1/2] such thath|F ≡ 0 andh|L ≡ 1/2. Thenh ∈ W butΨ(h) > 1/4
sinceµ(L) > 1/2. This contradiction proves thatΨ is notτp-continuous. �

Examples. We give examples to show that Theorem 4.1 cannot be generalized
to the case where(X, τ) is a Čech-analytic Lindel̈of space or a countablyK-
determined space.



THE LINDELÖF PROPERTY ANDσ-FRAGMENTABILITY 15

A. Čech-analytic Lindel̈of space, assuming CH.
The following example has been communicated to us by Professor V. Tkachuk

in response to a related question. A similar construction has been used by him
in [21]. We gratefully acknowledge his permission for us to use the example here.
Let L be a Lusin set inR, i.e. a subsetL of R of cardinality continuum such that,
wheneverN is a nowhere dense subset ofR, L ∩ N is countable. Recall thatN
is nowhere dense inR if the interior of its closure inR is empty. Such setL can
be constructed assuming the Continuum Hypothesis (CH) (seee.g. [17, Theorem
2.1]). Note that if a subsetA of L is nowhere dense relative toL, then it is nowhere
dense inR and so it is countable. Letλ be the usual topology ofR relativized toL
and letD be a countable dense subset of(L, λ). Now the familyB of subsets ofL
given by

B = {{x} : x ∈ L \D} ∪ {U ∈ λ : U ∩D 6= ∅}

is a base for a unique topologyτ for L. Clearly the space(L, τ) is Hausdorff and
regular. The following are additional properties.

(1) (L, τ) is Lindelöf. For supposeU is a covering ofL by a subfamily ofB.
ThenV := {V ∈ U : V ∩ D 6= ∅} has a countable subcoverW of D.
Let W =

⋃
W. ThenW is open dense in(L, λ) and soL \W is nowhere

dense in(L, λ) and hence countable. It follows thatU has a countable
subcover ofL.

(2) Since(L, τ) is regular and Lindelöf, it is normal by Tychonoff’s Lemma,
see [15, Lemma 3.1]. Thus(L, τ) is a Tychonoff space.

(3) The space(L, τ) is σ-discrete. In fact,L\D is discrete andD is countable.
(4) The space(L, τ) is Čech-analytic. A discrete space, beingČech-complete,

is Čech-analytic. Since the family ofČech-analytic sets is closed under the
Souslin operation,(L, τ) is Čech-analytic by (3).

(5) TheGδ-topologyτδ is the discrete topology. Hence the space(L, τδ) is not
Lindelöf.

In Theorem 4.1, assume only that(X, τ) is a Čech-analytic Lindel̈of space.
Then the equivalence of (a) and (b) still holds because of [12, Theorem 4.1]. How-
ever the example above shows that(a) ⇒ (c) fails. In fact, (2) and (4) show
that(L, τ) is Tychonoff, Lindel̈of andČech-analytic, and (3) shows that (a) holds.
However (5) shows that (c) fails. Consequently, as pointed out in Remark 2.4, The-
orem 2.1 is not valid whenX is assumed to běCech-analytic and Lindelöf in lieu
of K-analyticity.

B. CountablyK-determined spaces.
There is another kind of generalization ofK-analyticity. A topological space

(T, τ) is said to becountablyK-determinedif there is a upper-semicontinuous set-
valued mapF : M → 2T for some separable metric spaceM such thatF (M) = T
andF (m) is compact for eachm ∈ M . Obviously any separable metric space is
countablyK-determined. LetB ⊂ R be a Bernstein set,i.e. an uncountable set
B such that each compact subset ofB is countable, see [28, Corollary 1.5.14].
Then(B, τ) is countablyK-determined, whereτ is the relativization of the usual
topology forR. The space(B, τ) clearly satisfies the condition (b) of Theorem 4.1.
Since each scattered subset of(B, τ) is countable,(B, τ) is notσ-scattered. Also
the Gδ-topology of (B, τ) is discrete, and hence(B, τδ) is not Lindel̈of. Thus
conditions (a) and (c) fail in(B, τ).
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Remarks. We add a few comments on known results vis-a-vis our Theorem 4.1
and Corollary 4.2.

(I ) The equivalence of (iii), (iv) and (v) is valid for an arbitrary Tychonoff spaceX
(see [3, Section II.3]). Our results show that if we impose the condition thatX is
K-analytic, then any one of (iii), (iv) or (v) implies thatX is σ-scattered.

(II ) The equivalence of (b) and (c) is one of the main results of Blasco in [4]. We
acknowledge that some of the techniques in the proof of our Theorem 2.1 were
inspired by studying his paper.

(III ) A topological space is called aP -spaceif its Gδ-topology agrees with the
original one. Noble has shown in [20] that the product of a countable family of
Lindelöf P -spaces is again Lindelöf. Hence the equivalence of (c) and (d) holds
for an arbitrary topological space(X, τ).

(IV ) A topological spaceT is said to beangelic if, wheneverC is a relatively
countably compact subset ofT , its closureC is compact and each element ofC
is a limit of a sequence inC. It is known that(C(X), τp) is angelic wheneverX
is K-analytic, see [22]. Condition (iii) of Corollary 4.2 shows that there is a big
difference between angelicity and Fréchet-Urysohn property ofC(X).

(V) In [14] Ka̧kol and Ĺopez-Pellicer state the equivalence (iii), (vi) and condition
(a’) below

(a’) The spaceX is scattered,

in caseX is Čech-complete and Lindelöf, see [14, Theorem 2]. Since, in this
case,X is hereditarily Baire, (a) and (a’) are actually equivalent, seee.g. [12,
Corollary 3.1.2]. Now, one can show that aČech-complete Lindelöf space is a
Kσδ subset of its compactification, henceK-analytic. So, Theorem 2 in [14] is
also a consequence of our Theorem 4.1 and Corollary 4.2.

5. APPLICATIONS TOBANACH SPACES

In this section, we abstract some of the arguments in the previous sections in
the setting of Banach spaces. LetX be a Banach space andX∗ its dual Banach
space. The unit ball{x ∈ X : ‖x‖ ≤ 1} is denoted byBX . Thus the unit ball
of X∗ is BX∗ . If S is a subset ofX∗, thenσ(X, S) denotes the weakest topology
for X that makes each member ofS continuous, or equivalently, the topology
of pointwise convergence onS. Dually, if S is a subset ofX, thenσ(X∗, S) is
the topology forX∗ of pointwise convergence onS. In particularσ(X, X∗) and
σ(X∗, X) are the weak (w) and weak∗ (w∗) topologies respectively. Of course,
σ(X, S) is always a locally convex topology and it is Hausdorff if and only if

X∗ = spanS
w∗

and similarly forσ(X∗, S). WhenS ⊂ X∗, γ(X, S) (or simply
γ(S)) is the topology forX of uniform convergence on countable subsets ofS.
The Banach space is said to haveproperty (C)(after Corson) if each collection of
(norm) closed convex subsets ofX with empty intersection contains a countable
subcollection with empty intersection. A subsetB of X∗ is said to benormingif
the functionp of X given byp(x) = sup{|x∗(x)| : x∗ ∈ B} is a norm equivalent

to ‖ ‖. This is the case if and only ifB is norm bounded andkBX∗ ⊂ acoB
w∗

for
somek > 0. Without loss of generality we assume thatk = 1 so that‖x‖ ≤ p(x)
for x ∈ X.



THE LINDELÖF PROPERTY ANDσ-FRAGMENTABILITY 17

In [10], Godefroy and Talagrand called a Banach spaceX representable if there
is a countable norming subsetB of X∗ such that(X, σ(X, B)) is analytic. In this
section we consider a wider class of Banach spacesX such that(X, σ(X, B)) is
K-analytic for some norming subsetB of X∗.

We need the following lemma that improves Proposition 4.1 in [6].

Lemma 9. Let X be a Banach space andB ⊂ X∗ a norming subset. IfX has
property(C), thenγ(B) is stronger than the weak topology ofX.

Proof. We simply have to show that for eachx∗ ∈ BX∗ andε > 0 the weak open
neighborhood of the origin

V = {x ∈ X : |x∗(x)| < ε} = {x ∈ X : x∗(x) < ε} ∩ {x ∈ X : x∗(x) > −ε},
is a γ(B)-neighborhood of the origin or equivalently that the weak open semi-
spaces

U0 = {x ∈ X : x∗(x) < ε} and U1 = {x ∈ X : x∗(x) > −ε}
areγ(B)-neighborhoods of the origin. For eachb∗ ∈ B, let

Db∗ = {x ∈ X : |b∗(x)| ≤ ε/2}.
Clearly fori ∈ {0, 1},⋂

{Db∗ : b∗ ∈ B} ⊂ {x ∈ X : ‖x‖ ≤ ε/2} ⊂ Ui,

or equivalently,(X \ Ui) ∩
⋂
{Db∗ : b∗ ∈ B} = ∅.

Now fix i ∈ {0, 1}. SinceX has property(C) and each entry in the intersection
above is convex closed, there is a countable subsetA of B such that

(X \ Ui) ∩
⋂
{Db∗ : b∗ ∈ A} = ∅,

or equivalently ⋂
{Db∗ : b∗ ∈ A} ⊂ Ui,

which means that
{x ∈ X : sup

b∗∈A
|b∗(x)| ≤ ε/2} ⊂ Ui.

This shows thatUi is aγ(B)-neighborhood of the origin for eachi ∈ {0, 1}. �

Proposition 5.1. LetX be a Banach space such that, for some norming subsetB of
BX∗ , (X, σ(X, B)) is K-analytic. Then the following statements are equivalent.

(i) X has property(C) and(X, σ(X, B)) is σ-fragmented by the norm.
(ii) (X, w) is Lindel̈of.

(iii) (BX∗ ,w∗) is countably tight and itsw∗-separable subsets are metrizable.

Proof. (i)⇒(ii) (X, γ(B)) is Lindelöf after Theorem 2.1. By Lemma 9,γ(B) is
stronger than the weak topology, and consequently(X, w) is Lindelöf.

(ii)⇒(i) Property(C) is obvious. We use [5, Theorem B] or alternatively [7,
Corollary E] to deduce that eachσ(X, B)-compact subset ofX is norm frag-
mented. Now, by Theorem 2.1,(X, σ(X, B)) is σ-fragmented.

(i)&(ii) ⇒(iii) If we assume (i)&(ii) then we know thatγ(B) is stronger than
the weak topology by Lemma 9 and that(X, γ(B))N is Lindelöf by Corollary 2.2.
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Consequently, being a continuous image of the space(X, γ(B))N, (X, w)N is Lin-
delöf. Hence by Arkhangelskii’s theorem, see section 4,(X∗,w∗) ⊂ (C(X, w), τp)
is countably tight.

We prove that eachw∗-separable subsetM of BX∗ is w∗-metrizable. Since

BX∗ ⊂ acoB
w∗

and(X∗,w∗) is countably tight,M ⊂ acoA
w∗

for some count-
able subsetA of B. ThenacoA is γ(B)-equicontinuous on the Lindelöf space

(X, γ(B)). ConsequentlyacoA
w∗

is γ(B)-equicontinuous, and hencew∗-metri-
zable by Lemma 8.

(iii)⇒(i) By [25, Theorem 3.4], if(BX∗ ,w∗) is countably tight thenX has
property(C). To prove that(X, σ(X, B)) is σ-fragmented by the norm, by Theo-
rem 2.1, it is enough to show that(X, dA) is separable for each countable subsetA
of B, where(X, dA) is a pseudo-metric onX given by

dA(x, y) = sup{|x∗(x)− x∗(y)| : x∗ ∈ A} = sup{|x∗(x)− x∗(y)| : x∗ ∈ A
w∗}.

But this is obvious sinceX|Aw∗ ⊂ C(Aw∗
,w∗) andC(Aw∗

,w∗) is norm separable

on account of(Aw∗
,w∗) being compact and metrizable by (iii). �

It should be noted thatσ-fragmentability can not be dropped in statement (i) of
proposition 5.1. An example follows. TakeX = JT ∗, the dual of the James tree
spaceJT andB the unit ball ofJT . In this caseσ(JT ∗, B) = w∗ and we have:

(i) (X, σ(X, B)) is σ-compact;
(ii) X has property(C) according to the Example 5.8 of [9];

(iii) (X, σ(X, B)) is notσ-fragmented by the norm (i.e. JT ∗ has not the RNP)
and(X, w) is not Lindel̈of.

There are plenty of Banach spacesX for which there is a norming setB ⊂ BX∗

such that the space(X, σ(X, B)) is K-analytic. The following are some of the
examples.

•WeaklyK-analytic Banach spaces.If X is a Banach space that isK-analytic for
its weak topology then for any norming setB ⊂ X∗ the space(X, σ(X, B)) is
K-analytic too because it is a continuous image of(X, w). We refer to the paper
by Talagrand [27] for an account concerning weaklyK-analytic Banach spaces.

• Dual Banach spaces.If X = Y ∗ is a dual Banach space, and we writeB := BY

then B ⊂ BX∗ is norming andX =
⋃

n nBY ∗ is σ-compact with respect to
σ(X, B).
• Representable Banach spaces.As mentioned earlier the class of Banach spaces
that satisfies condition of Proposition 5.1 includes the class of representable Ba-
nach spaces introduced in [10]. In this paper Godefroy and Talagrand proved that
if X is representable, then(X, w) is Lindelöf if and only if X is separable (see the
proof of (1)⇔(2) of [10, Th́eor̀eme 7]). Proposition 5.1 gives an alternative proof
of this fact.

Corollary 5.2 (Godefroy and Talagrand, [10]). Let X be a representable Banach
space. ThenX is weakly Lindel̈of if, and only if,X is separable

Proof. We prove the non obvious direction. Assume that(X, w) is Lindelöf. Ac-
cording to the definition of representability, there is a countable norming subsetB
of X∗ such that(X, σ(X, B)) is analytic. Hence by Proposition 5.1,(X, σ(X, B))
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is σ-fragmented by the norm. SinceB is countable(X, σ(X, B)) is metrizable and
separable. So by Lemma 1,X is separable for the norm topology. �

• Banach spaces generated by RN-compact subsets.Let X be a Banach space,B
a norming subset ofBX∗ andH ⊂ X aσ(X, B)-compact set which is fragmented

by the norm. IfX = span(H)
‖ ‖

thenX is said generated by the RN-compact set
H, see [6]. In this case(X, σ(X, B)) is K-analytic by Lemma 6.

Open problems. In Proposition 5.1, can one replace statement (iii) with the
stronger one,viz. (BX∗ ,w∗) is Corson compact?
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DEPARTAMENTO DE MATEMÁTICAS, UNIVERSIDAD DE MURCIA, 30.100 ESPINARDO

MURCIA, SPAIN

E-mail address: beca@um.es

DEPARTMENT OF MATHEMATICS, BOX 354350, UNIVERSITY OF WASHINGTON, SEATTLE,
WASHINGTON 98195–4350, U.S.A.

E-mail address: namioka@math.washington.edu


