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ABSTRACT. The aim of this paper is to study Birkhoff integrability for multi-valued maps
F : Ω −→ cwk(X), where(Ω, Σ, µ) is a complete finite measure space,X is a Banach
space andcwk(X) is the family of all non-empty convex weakly compact subsets ofX.
It is shown that the Birkhoff integral ofF can be computed as the limit for the Haus-
dorff distance incwk(X) of a net of Riemann sums

∑
n µ(An)F (tn). We link Birkhoff

integrability with Debreu integrability, a notion introduced to replace sums associated to
correspondences when studying certain models in Mathematical Economics. We show that
each Debreu integrable multi-valued function is Birkhoff integrable and that each Birkhoff
integrable multi-valued function is Pettis integrable. The three previous notions coincide
for finite dimensional Banach spaces and they are different even for bounded multi-valued
functions whenX is infinite dimensional andX∗ is assumed to be separable. We show that
whenF takes values in the family of all non-empty convex norm compact sets of a separa-
ble Banach spaceX, thenF is Pettis integrable if, and only if,F is Birkhoff integrable; in
particular, these Pettis integrableF ’s can be seen as single-valued Pettis integrable func-
tions with values in some other adequate Banach space. Incidentally, to handle some of
the constructions needed we prove that ifX is an Asplund Banach space, thencwk(X) is
separable for the Hausdorff distance if, and only if,X is finite dimensional.

1. INTRODUCTION AND PRELIMINARY RESULTS

A great deal of work about measurable and integrable multifunctions was made in the
last decades. Some pioneering and highly influential ideas and notions around the matter
were inspired by problems arising in Control Theory and Mathematical Economics. We
can cite the papers by Aumann [2] and Debreu [10], the monographs by Castaing and
Valadier [8], Klein and Thompson [23], and the survey by Hess [18].

HenceforthF : Ω −→ cwk(X) will be a multi-valued function from a complete finite
measure space(Ω,Σ, µ) into the family of all non-empty convex weakly compact subsets
cwk(X) of the Banach spaceX.

The notion of Debreu integrability introduced in 1967 is a multi-valued counterpart to
Bochner integrability. Despite the theory of integration developed by Debreu in [10] dealt
with functions taking values in the familyck(X) of all non-empty convex norm compact
subsets ofX, it is readily seen, as pointed out by Byrne in [5, p. 246], that this theory
extends to the case ofcwk(X)-valued functions. Debreu integral is defined by means of a
certain embedding ofcwk(X) into a Banach space. The brief explanation below includes
some preliminary results, e.g. Lemma 1.1, that will be needed in the subsequent sections.
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The familyC of all non-empty bounded closed subsets ofX is a metric space with the
Hausdorff distance [17], given by

h(A,B) := inf{η > 0 : A ⊂ B + ηBX , B ⊂ A + ηBX},

whereBX denotes the closed unit ball ofX. Since the underlying metric inX is complete,
the space(C, h) is complete too, see [8, Theorem II.3] or [23, Corollary 4.3.12 (i)]. It is
easily proved thatck(X) (resp. cwk(X)) is a closed subspace of(C, h) [23, Corollary
4.3.12 (v)] (resp. bear in mind that the set of all convex elements ofC is closed [23,
Corollary 4.3.12 (iii)], and use Grothendieck’s characterization of weak compactness [11,
Lemma 2, p. 227]). For a bounded setB ⊂ X and eachx∗ in the dual spaceX∗, we write

δ∗(x∗, B) := sup{x∗(x) : x ∈ B}.

We have the following embedding result.

Lemma 1.1 (Theorems II.18 and II.19 in [8]). Let `∞(BX∗) be the Banach space of
bounded real valued functions defined onBX∗ endowed with the supremum norm‖ · ‖∞.
Then, the mapj : cwk(X) −→ `∞(BX∗) given byj(A) := δ∗(·, A) satisfies the proper-
ties below:

(i) j(A + B) = j(A) + j(B) for everyA,B ∈ cwk(X);
(ii) j(λA) = λj(A) for everyλ ≥ 0 and everyA ∈ cwk(X);

(iii) h(A,B) = ‖j(A)− j(B)‖∞ for everyA,B ∈ cwk(X);
(iv) j(cwk(X)) is closed iǹ ∞(BX∗).

The multi-valued functionF : Ω −→ cwk(X) is Debreu integrable[23, Defini-
tion 17.2.3 and Proposition 17.2.4] if, and only if, the compositionj ◦ F is Bochner inte-
grable. In this case, the Debreu integral ofF in Ω is the unique element(D)

∫
Ω

F dµ ∈
cwk(X) such thatj((D)

∫
Ω

F dµ) is the Bochner integral ofj ◦ F . In fact, Debreu in-
tegrability does not depend on the particular embeddingj considered, see [23, Proposi-
tion 17.2.4], and in order to define Debreu integral we can use any mapi : cwk(X) −→ Y ,
into a Banach spaceY , as long as properties (i)-(iv) in Lemma 1.1 are fulfilled. The exis-
tence of such kind of embedding was first proved by Rådstr̈om, [29]. For information about
the Debreu integral we refer the reader to [5, 10, 20], [23, Chapter 17], [18, Section 3] and
the references therein.

Given a multi-valued functionF : Ω −→ cwk(X), we writeδ∗(x∗, F ) to denote the
real valued function given byδ∗(x∗, F )(t) := δ∗(x∗, F (t)), t ∈ Ω. WhenX is a separable
Banach space the functionF is said to bePettis integrableif δ∗(x∗, F ) ∈ L1(µ) for every
x∗ ∈ X∗ and for everyA ∈ Σ there is(P )

∫
A

F dµ ∈ cwk(X) such that

δ∗
(
x∗, (P )

∫
A

F dµ
)

=
∫

A

δ∗(x∗, F ) dµ, x∗ ∈ X∗.

The notion of Pettis integrable multifunction was first considered in [8, Chapter V,§4] and
has been pretty recently studied in [1, 14, 19, 32, 33].

It is known that, for separableX, a multi-valued functionF : Ω −→ cwk(X) is scalarly
measurable (i.e.δ∗(x∗, F ) is measurable for everyx∗ ∈ X∗) if, and only if, F is Effros
measurable (i.e.{t ∈ Ω : F (t) ∩ U 6= ∅} ∈ Σ for every open setU ⊂ X), see e.g. [3,
Corollary 4.10 (a)]. In this caseF admits at least one strongly measurable selector, by the
selection theorem due to Kuratowski and Ryll-Nardzewski, see e.g. [8, Theorem III.6].
The books [8, 23] and the papers [3, 18, 20, 21] are convenient references on measurability
properties of multi-valued functions.
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In particular, ifX is separable andF : Ω −→ cwk(X) is a Pettis integrable multi-
valued function, thenF is scalarly measurable and thereforeF admits strongly measurable
selectors. Moreover, each strongly measurable selector ofF is Pettis integrable and we
have

(1) (P )
∫

A

F dµ =
{

(Pettis)
∫

A

f dµ : f is a Pettis integrable selector ofF
}

for everyA ∈ Σ, [32, Theorem 3.2] and [33]. WhenF is Debreu integrable,(D)
∫

A
F dµ

is described as in (1) but using Bochner integrable selectors instead of Pettis integrable
ones, i.e. Debreu integral coincides with Aumann integral, see [23, Theorem 17.3.2]
and [5].

This article is organized in the following manner. In Section 2 we offer the definition
of Birkhoff integral for multi-valued functionsF : Ω −→ cwk(X) using the embedding
j given in Lemma 1.1. We give two different characterizations of Birkhoff integrability.
The first one is given in exclusive terms of(cwk(X), h), Proposition 2.6, and it is used
to show that the notion of Birkhoff integrability does not depend on the embeddingj,
Corollary 2.7. The second one is for bounded multi-functions, Proposition 2.9, and uses
Bourgain property that we studied in relationship to Birkhoff integrability for single-valued
functions in [7]. This characterization is used in the examples at the end of the paper.

Section 3 has two different subsections. The first one is devoted to study positive results
about the relationship between Debreu, Birkhoff and Pettis integrability. Proposition 3.1
establishes that each Debreu integrable multi-valued function is Birkhoff integrable and
that each Birkhoff integrable one is Pettis integrable. The three previous notions coincide
for finite dimensional Banach spaces, Theorems 3.2 and 3.4. In fact Theorem 3.4 is a
bit better: Birkhoff integrability coincides with Pettis integrability when the multi-valued
function F takes values inck(X); in particular, such anF is Pettis integrable if, and
only if, the single-valued functionj ◦ F is Pettis integrable, Proposition 3.5, which is,
to the best of our knowledge, a new characterization for Pettis integrable multi-valued
maps. To end up this part we prove that ifX is an Asplund Banach space, thencwk(X) is
separable for the Hausdorff distance if, and only if,X is finite dimensional, Corollary 3.7.
The last subsection of the paper is devoted to provide examples showing that Birkhoff
integrability for multi-valued maps lies strictly between Debreu and Pettis integrability
whenX is infinite dimensional andX∗ is separable, even when we deal with bounded
multi-valued functions, Examples 3.10 and 3.12.

Terminology. Our Banach spaces are assumed to be real and referred to by lettersX,
Y andZ; if the norm is explicitly needed we shall write‖ · ‖. The weak topology of
Y is denoted byw, andw∗ denotes the weak∗ topology of the dualY ∗. For a given set
S ⊂ Y we use‖ · ‖-diam(S) := supy,y′∈S ‖y − y′‖. A set B ⊂ BY ∗ is norming if
‖y‖ = sup{|〈y∗, y〉| : y∗ ∈ B} for everyy ∈ Y . The topology of pointwise convergence
in RΩ is denoted byτp(Ω). L1(µ) stands for the space of realµ-integrable functions
defined onΩ andL1(µ) for the associated Banach space of equivalence classes with its
usual norm‖·‖1. We denote byλ the Lebesgue measure on theσ-algebraL of all Lebesgue
measurable subsets of[0, 1]. For the theory of Bochner and Pettis integrals we refer the
reader to [12] and [26].
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2. SERIES OF SETS INBANACH SPACES ANDBIRKHOFF INTEGRABLE MULTI-VALUED

FUNCTIONS

Recall that a single-valued functionf defined onΩ with values in a Banach spaceY is
summablewith respect to a given countable partitionΓ = (An) of Ω in Σ [4] if f |An is
bounded wheneverµ(An) > 0 and the set

J(f,Γ) :=
{∑

n

µ(An)f(tn) : tn ∈ An

}
is made up of unconditionally convergent series. The functionf is said to beBirkhoff
integrable[4] if for every ε > 0 there is a countable partitionΓ of Ω in Σ for which f is
summable and‖ · ‖-diam(J(f,Γ)) ≤ ε. In this case, the Birkhoff integral(B)

∫
Ω

f dµ of
f is the only point in the intersection⋂

{co(J(f,Γ)) : f is summable with respect toΓ}.

We stress that Birkhoff integrability lies strictly between Bochner and Pettis integrability,
[4], [27] and [28]. If f is Birkhoff integrable then we have the equality(B)

∫
Ω

f dµ =
(Pettis)

∫
Ω

f dµ and both integrals are, from now onwards, simply written as
∫
Ω

f dµ.
In a similar way as Debreu integral was defined, we introduce below the natural exten-

sion of Birkhoff integral to the case of multi-valued functions.

Definition 2.1. Let F : Ω −→ cwk(X) be a multi-valued function. We say thatF is
Birkhoff integrable if the single-valued functionj ◦ F : Ω −→ `∞(BX∗) is Birkhoff
integrable.

If F is Birkhoff integrable, then for everyA ∈ Σ the restrictionF |A is Birkhoff inte-
grable with respect to the restriction ofµ to theσ-algebra{E ∩ A : E ∈ Σ}, because the
same holds true for the single-valued Birkhoff integrable functionj ◦ F [4, Theorem 14],
and ∫

A

j ◦ F dµ ∈ µ(A) · co(j ◦ F (A)).

Sincej(cwk(X)) is a closed convex cone iǹ∞(BX∗) by Lemma 1.1, we conclude that∫
A

j ◦ F dµ ∈ j(cwk(X)). Therefore there is a unique(B)
∫

A
F dµ ∈ cwk(X), that will

be calledBirkhoff integralof F onA, that satisfies

j
(
(B)

∫
A

F dµ
)

=
∫

A

j ◦ F dµ.

The remaining of the section is devoted to prove two different characterizations of
Birkhoff integrability, Propositions 2.6 and 2.9. To get started we need some previous
machinery about convergent series of sets in Banach spaces.

Given a sequenceB1, B2, . . . of subsets ofX, the symbol
∑∞

n=1 Bn denotes a formal
series. The series

∑∞
n=1 Bn is said to beunconditionally convergentprovided that for

every choicebn ∈ Bn, n ∈ N, the series
∑∞

n=1 bn is unconditionally convergent inX. In
this case we define

∞∑
n=1

Bn :=
{ ∞∑

n=1

bn : bn ∈ Bn, n ∈ N
}

.

If we agree to write‖B‖ := sup{‖x‖ : x ∈ B} when B ⊂ X, then
∑∞

n=1 Bn is
unconditionally convergent if, and only if, for everyε > 0 there isN ∈ N such that
‖

∑
i∈S Bi‖ ≤ ε for every finite setS ⊂ N \ {1, . . . , N}, see [4, p. 362]. Indeed, theif

part is clear and we prove theonly if part by contradiction. Suppose that there isε > 0 such
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that for everyN ∈ N there is a finite setS ⊂ N \ {1, . . . , N} such that‖
∑

i∈S Bi‖ > ε.
Then there exist an infinite sequence(Sk) of pairwise disjoint nonempty finite subsets ofN
and choicesbn ∈ Bn, n ∈ Sk, k ∈ N, such that‖

∑
n∈Sk

bn‖ > ε for everyk ∈ N. Fix
bn ∈ Bn for everyn ∈ N \

⋃∞
k=1 Sk. Then the family(bn)n∈N is not summable and

therefore
∑∞

n=1 bn can not be unconditionally convergent (see e.g. [9, Theorem 10.7]).

Lemma 2.2. Let (Bn) be a sequence incwk(X) such that
∑

n Bn is unconditionally
convergent. Then

∑
n Bn ∈ cwk(X).

Proof. Clearly
∑

n Bn is convex. To see that
∑

n Bn is weakly compact let us consider
the mapping

S :
∏
n

Bn −→ X, S((bn)n) :=
∑

n

bn.

Let T be the product topology in
∏

n Bn obtained when eachBn is endowed with the
restriction of the weak topology ofX. We claim thatS is T-to-weak continuous. Indeed,
fix (bn)n ∈

∏
n Bn andU ∈ U , whereU is the family of all neighborhoods of0 in the

weak topology ofX. There existε > 0 andV ∈ U such that2εBX + V ⊂ U . Since∑
n Bn is unconditionally convergent, there isN ∈ N such that‖

∑
i∈S Bi‖ ≤ ε for

every finite setS ⊂ N \ {1, . . . , N}. Fix W1, . . . ,WN ∈ U such that
∑N

n=1 Wn ⊂ V .
DefineHn := Bn ∩ (bn + Wn) for every1 ≤ n ≤ N , Hn := Bn for everyn > N and
H :=

∏
n Hn. ThenH is aT-neighborhood of(bn)n such that for each(b′n)n ∈ H

S((b′n)n) =
∑

n

b′n =
N∑

n=1

b′n +
∑
n>N

b′n ∈
N∑

n=1

bn +
∑
n>N

b′n +
N∑

n=1

Wn

⊂
∑

n

bn +
∑
n>N

(b′n − bn) + V ⊂
∑

n

bn + 2εBX + V ⊂
∑

n

bn + U.

Since(bn)n ∈
∏

n Bn andU ∈ U are arbitrary,S is T-to-weak continuous. Finally, since
(
∏

n Bn,T) is compact (by Tychonoff’s theorem [22, Theorem 13, p. 143]),S(
∏

n Bn) =∑
n Bn is weakly compact. The proof is over. �

The following result can be obtained as a consequence of the previous lemma and
Propositions 2.3 and 2.5 in [13]; from the proof we give below it becomes clear that the role
played byj in our definition of Birkhoff integrability can be also played by any embedding
i from cwk(X) into a Banach spaceY fulfilling (i)-(iv) in Lemma 1.1.

Lemma 2.3. Let(Bn) be a sequence incwk(X). The following conditions are equivalent:

(i)
∑

n Bn is unconditionally convergent;
(ii) there isB ∈ cwk(X) with the following property: for everyε > 0 there is a finite

setP ⊂ N such thath(
∑

n∈Q Bn, B) ≤ ε for every finite setQ ⊂ N such that
P ⊂ Q;

(iii)
∑

n j(Bn) is unconditionally convergent iǹ∞(BX∗).
In this case,

∑
n Bn = B andj(

∑
n Bn) =

∑
n j(Bn).

Proof. (i)⇒(ii) Note thatB :=
∑

n Bn belongs tocwk(X) by Lemma 2.2. Fixε > 0.
Since

∑
n Bn is unconditionally convergent, there isN ∈ N such that‖

∑
n∈S Bn‖ ≤ ε

for every finite setS ⊂ N \ P , whereP := {1, . . . , N}. Take any finite setQ ⊂ N with
P ⊂ Q. Then ∑

n∈Q

Bn ⊂ B + εBX and B ⊂
∑
n∈Q

Bn + εBX ,
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henceh(
∑

n∈Q Bn, B) ≤ ε. This proves (i)⇒(ii).
Assume now that (ii) holds, meaning that the net{∑

n∈Q

Bn : Q ⊂ N, Q finite
}

converges in(cwk(X), h). In particular, forε > 0, there is a finite setP ⊂ N such that
h(

∑
n∈Q Bn,

∑
n∈P Bn) ≤ ε for every finite setQ ⊂ N with P ⊂ Q. Take any finite set

S ⊂ N \ P . By Lemma 1.1 we have∥∥∥∑
n∈S

Bn

∥∥∥ = h
(∑

n∈S

Bn, {0}
)

=
∥∥∥j

(∑
n∈S

Bn

)∥∥∥
∞

=
∥∥∥j

( ∑
n∈S∪P

Bn

)
− j

(∑
n∈P

Bn

)∥∥∥
∞

= h
( ∑

n∈S∪P

Bn,
∑
n∈P

Bn

)
≤ ε.

Sinceε > 0 is arbitrary the series
∑

n Bn is unconditionally convergent and we have
proved that (ii)⇒(i).

To realize that (ii) and (iii) are actually equivalent we simply note that the computations
above yield∥∥∥∑

n∈S

Bn

∥∥∥ = h
(∑

n∈S

Bn, {0}
)

=
∥∥∥j

(∑
n∈S

Bn

)∥∥∥
∞

=
∥∥∥∑

n∈S

j(Bn)
∥∥∥
∞

,

for each finite setS ⊂ N.
The equality

∑
n Bn = B follows from the proof (i)⇒(ii) and once this is known the

equalityj(
∑

n Bn) =
∑

n j(Bn) follows from Lemma 1.1. �

Remark 2.4. Observe that each one of the three equivalent statements in Lemma 2.3 is
equivalent to the following:

(iv) For any embeddingi from cwk(X) into a Banach spaceY satisfying properties
(i)-(iv) in Lemma 1.1, the series

∑
n i(Bn) is unconditionally convergent inY .

In this case,i(
∑

n Bn) =
∑

n i(Bn).

In [7, Proposition 2.6] we exhibited the following characterization of Birkhoff integra-
bility for single-valued functions. As usual, we say that a partitionΓ of Ω in Σ is finer than
another oneΓ0, if each element ofΓ is contained in some element ofΓ0.

Proposition 2.5. A single-valued functionf defined onΩ with values in a Banach spaceY
is Birkhoff integrable if, and only if, there isy ∈ Y with the following property: for every
ε > 0 there is a countable partitionΓ0 of Ω in Σ such that for every countable partition
Γ = (An) of Ω in Σ finer thanΓ0 and any choiceT = (tn) in Γ (i.e. tn ∈ An for everyn),
the series

∑
n µ(An)f(tn) converges unconditionally and∥∥∥∑

n

µ(An)f(tn)− y
∥∥∥ ≤ ε.

In this case,y =
∫
Ω

f dµ.

As an easy consequence of Lemmas 1.1 and 2.3 and Proposition 2.5 we have the fol-
lowing characterization.

Proposition 2.6. Let F : Ω −→ cwk(X) be a multi-valued function. The following
conditions are equivalent:

(i) F is Birkhoff integrable;
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(ii) there isB ∈ cwk(X) with the following property: for everyε > 0 there is a
countable partitionΓ0 ofΩ in Σ such that for every countable partitionΓ = (An)
of Ω in Σ finer thanΓ0 and any choiceT = (tn) in Γ, the series

∑
n µ(An)F (tn)

is unconditionally convergent and

h
(∑

n

µ(An)F (tn), B
)
≤ ε.

In this case,B = (B)
∫
Ω

F dµ.

If we bear in mind Remark 2.4 we will convince ourselves that the following holds.

Corollary 2.7. The notions of Birkhoff integrability and Birkhoff integral for multi-valued
functions do not depend on the particular embeddingi from cwk(X) into a Banach space
Y chosen, as long asi satisfies properties(i)-(iv) in Lemma 1.1.

The characterization of Birkhoff integrability that closes the section, Proposition 2.9, is
for bounded multi-valued functions. We recall some definitions first.

Definition 2.8. LetF be a family inRΩ.

(i) We say thatF has Bourgain property (with respect toµ) [30] if for everyε > 0
and everyA ∈ Σ with µ(A) > 0 there areB1, . . . , Bn ⊂ A, Bi ∈ Σ, with
µ(Bi) > 0, such that for everyf ∈ F

inf
1≤i≤n

| · |-diam(f(Bi)) ≤ ε.

(ii) We say thatF has Birkhoff property (with respect toµ) [7] if for everyε > 0
there is a countable partitionΓ = (An) of Ω in Σ such that for eachtk, t′k ∈ Ak,
k ∈ N, we have∣∣∣ m∑

k=1

µ(Ak)f(tk)−
m∑

k=1

µ(Ak)f(t′k)
∣∣∣ ≤ ε

for everym ∈ N and everyf ∈ F .

We notice that ifF has Birkhoff property, then its pointwise closureFτp(Ω)
and its

absolutely convex hullaco(F) also have Birkhoff property. IfF has Birkhoff property,
thenF has Bourgain property. The converse holds ifF is uniformly bounded, see [7,
Lemma 2.3].

Observe that for everyx∗ ∈ BX∗ andt ∈ Ω we have

δ∗(x∗, F )(t) = 〈ex∗ , j ◦ F (t)〉,
whereex∗ ∈ B`∞(BX∗ )∗ is defined by〈ex∗ , g〉 := g(x∗) for everyg ∈ `∞(BX∗). Given a
multi-valued functionF : Ω −→ cwk(X), we fix the following terminology

WF := {δ∗(x∗, F ) : x∗ ∈ BX∗} ⊂ RΩ.

Proposition 2.9. Let F : Ω −→ cwk(X) be a bounded (for the Hausdorff distance)
multi-valued function. The following conditions are equivalent:

(i) F is Birkhoff integrable;
(ii) WF has Birkhoff property;

(iii) WF has Bourgain property.

Proof. SinceF ish-bounded, the functionj◦F : Ω → `∞(BX∗) is bounded. On the other
hand, since the setB := {ex∗ : x∗ ∈ BX∗} ⊂ B`∞(BX∗ )∗ is norming, the proposition
straightforwardly follows from Theorem 2.4 in [7] applied toj ◦ F andB. �
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3. BIRKHOFF INTEGRABILITY VERSUSDEBREU AND PETTIS INTEGRABILITY

This section is devoted to study the relationship between the notions of Birkhoff, Debreu
and Pettis integrability, see Subsection 3.1. We also provide some examples that show
that Birkhoff integrability lies strictly between Debreu and Pettis integrability even when
bounded multi-valued maps are considered, see Subsection 3.2.

3.1. Positive results. In our first result below the connection between Birkhoff and Au-
mann integrals is made clear too.

Proposition 3.1. LetF : Ω −→ cwk(X) be a multi-valued function.

(i) If F is Debreu integrable, thenF is Birkhoff integrable and(B)
∫
Ω

F dµ =
(D)

∫
Ω

F dµ.

Assuming thatX is separable we have:

(ii) If F is Birkhoff integrable, thenF is Pettis integrable and for everyA ∈ Σ we
have(B)

∫
A

F dµ = (P )
∫

A
F dµ. Moreover,F admits strongly measurable

selectors, each of them being Birkhoff integrable, and for everyA ∈ Σ we have

(2) (B)
∫

A

F dµ =
{∫

A

f dµ : f is a Birkhoff integrable selector ofF
}

.

Proof. Statement (i) follows from the very definitions of the integrals involved.
Let us assume thatX is separable and let us prove (ii). Sincej ◦ F is Pettis integrable,

we haveδ∗(x∗, F ) = 〈ex∗ , j ◦ F 〉 ∈ L1(µ) for everyx∗ ∈ BX∗ and

δ∗
(
x∗, (B)

∫
A

F dµ
)

= 〈ex∗ , j
(
(B)

∫
A

F dµ
)
〉

= 〈ex∗ ,

∫
A

j ◦ F dµ〉 =
∫

A

〈ex∗ , j ◦ F 〉 dµ =
∫

A

δ∗(x∗, F ) dµ

for everyA ∈ Σ and everyx∗ ∈ BX∗ . ConsequentlyF is Pettis integrable and for every
A ∈ Σ the equality(P )

∫
A

F dµ = (B)
∫

A
F dµ holds.

As pointed out in the introduction, sinceF : Ω −→ cwk(X) is scalarly measurable,F
admits strongly measurable selectors. In addition, sinceF is even Pettis integrable, each
strongly measurable selector ofF is Pettis integrable and equality (1) in page 3 holds.
Finally, for separable Banach spaces Birkhoff and Pettis integrability coincide for single-
valued functions [27], hence equality (2) follows from equality (1) in page 3 and the proof
is over. �

To prove the next result we will use that the space(ck(X), h) is separable ifX is
separable, see [8, Theorem II.8].

Theorem 3.2. If X is finite dimensional, then a multi-valued functionF : Ω −→ ck(X)
is Debreu integrable if, and only if,F is Birkhoff integrable.

Proof. The only if part is statement (i) in Proposition 3.1. The proof of theif part is as
follows. Assume thatF is Birkhoff integrable. In order to establish thatF is Debreu
integrable we have to show thatj ◦ F is Bochner integrable. Sincej(ck(X)) is separable
andj ◦ F is scalarly measurable,j ◦ F is strongly measurable by Pettis’s measurability
theorem [12, Theorem 2, p. 42]. Therefore, the proof will be finished when proving

(3)
∫

Ω

‖j ◦ F‖∞ dµ < ∞.
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Given any setA ⊂ Ω, write F(A) =
⋃

t∈A F (t). Observe that

‖j ◦ F (A)‖ := sup{‖j(F (t))‖∞ : t ∈ A} = sup{‖F (t)‖ : t ∈ A} = ‖F(A)‖.
Using thatj ◦ F is Birkhoff integrable, we find a countable partition(Am) of Ω in Σ
such thatj ◦ F (Am) is bounded iǹ ∞(BX∗), wheneverµ(Am) > 0, with the series∑

m µ(Am)j ◦ F (tm) unconditionally convergent for every choice(tm) in (Am). Hence
‖F(Am)‖ < ∞ wheneverµ(Am) > 0, and the series

∑
m µ(Am)F(Am) is uncondition-

ally convergent inX by Lemma 2.3. In finite dimensional Banach spaces every uncondi-
tionally convergent series is absolutely convergent and we conclude that∑

µ(Am)>0

µ(Am)‖j ◦ F (Am)‖ =
∑

µ(Am)>0

µ(Am)‖F(Am)‖ < ∞,

which proves (3) and finishes the proof. �

The lemma below is well known, at least for the caseB = BY ∗ , see [26, Theorem 5.2].
However, we include a proof for the sake of completeness and because our approach is
easily extended to a far more general context that shall be explained at the end of the
subsection. Recall that a setF ⊂ L1(µ) is uniformly integrable ifF is ‖ · ‖1-bounded
and for everyε > 0 there isδ > 0 such thatsupf∈F

∫
E
|f | dµ ≤ ε wheneverµ(E) ≤ δ.

Equivalently, the canonical image ofF in L1(µ) is relatively weakly compact, see [16,
247C].

Lemma 3.3. Let Y be a separable Banach space andB ⊂ BY ∗ a norming set. Let
f : Ω −→ Y be a function such thatZf,B = {〈y∗, f〉 : y∗ ∈ B} is a uniformly integrable
subset ofL1(µ). Thenf is Pettis integrable.

Proof. SinceB is norming, the Hahn-Banach separation theorem applies to obtain that the
absolutely convex hull ofB, aco(B), is w∗-dense inBY ∗ . The separability ofY implies
that (BY ∗ , w∗) is metrizable, henceaco(B) is w∗-sequentially dense inBY ∗ . Therefore
the uniformly integrable setaco(Zf,B) is τp(Ω)-sequentially dense inZf = {〈y∗, f〉 :
y∗ ∈ BY ∗}. An appeal to Vitali’s theorem [16, 246J (a)] establishes thatZf is a uniformly
integrable subset ofL1(µ).

In order to see thatf is Pettis integrable we only have to check that the canonical map

T : BY ∗ −→ L1(µ), T (y∗) = 〈y∗, f〉,
is w∗-to-w continuous [26, Theorem and Remark 4.3]. To this end, fixC ⊂ BY ∗ and take

any y∗ ∈ C
w∗

. SinceY is separable, there is a sequence(y∗n) in C that w∗-converges
to y∗. Therefore(T (y∗n)) is a sequence inZf converging pointwise toT (y∗) and, sinceZf

is uniformly integrable, another appeal to Vitali’s theorem ensures us that

lim
n
‖T (y∗n)− T (y∗)‖1 = 0.

In particular,T (y∗) ∈ T (C)
w

. HenceT (C
w∗

) ⊂ T (C)
w

for everyC ⊂ BY ∗ . It follows
thatT is w∗-to-w continuous andf is Pettis integrable. �

To prove Theorem 3.4 and Proposition 3.5 below we will use the following character-
ization of Pettis integrable multi-valued functions:a multi-valued functionF : Ω −→
cwk(X) is Pettis integrable if, and only if,WF = {δ∗(x∗, F ) : x∗ ∈ BX∗} is a uniformly
integrable subset ofL1(µ), see [32, Theorem 3.2] and [33].

Theorem 3.4. Assume thatX is separable. LetF : Ω −→ cwk(X) be a multi-valued
function such thatF (Ω) is h-separable (e.g.F (Ω) ⊂ ck(X)). ThenF is Birkhoff inte-
grable if, and only if,F is Pettis integrable.
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Proof. In view of Proposition 3.1 it only remains to show theif part. Assume thatF is
Pettis integrable. We begin with the proof of the claim below.

Claim.- The single-valued functionj ◦ F : Ω −→ `∞(BX∗) is Pettis integrable.

From theh-separability ofF (Ω) we deduce thatY := span(j ◦ F (Ω)) is a closed
separable subspace of`∞(BX∗) in which j ◦ F takes its values. Let us notice that the
setB := {ex∗ |Y : x∗ ∈ BX∗} ⊂ BY ∗ is norming. By the Pettis integrability ofF , the
family WF = Zj◦F,B is a uniformly integrable subset ofL1(µ) and Lemma 3.3 tells us
thatj ◦ F is Pettis integrable, as claimed. Since Birkhoff and Pettis integrability coincide
for single-valued functions with values in a separable Banach space [27], it follows that
j ◦ F is Birkhoff integrable. The proof is complete. �

Given a separable Banach spaceX and a multi-valued mapF : Ω −→ cwk(X) we
could not find in the literature any reference to prior study about the relationship between
F being Pettis integrable andj ◦ F being Pettis integrable too. In Proposition 3.5 we
analyze this matter.

Proposition 3.5. Assume thatX is separable and letF : Ω −→ cwk(X) be a multi-valued
function. Let us consider the following statements:

(i) j ◦ F is Pettis integrable;
(ii) F is Pettis integrable.

Then(i) always implies(ii) and in this casej((P )
∫

A
F dµ) =

∫
A

j ◦ F dµ for every
A ∈ Σ. If moreoverF (Ω) is h-separable (e.g.F (Ω) ⊂ ck(X)) then(ii) implies(i).

Proof. Assume that (i) holds. We know thatWF = {〈ex∗ , j ◦ F 〉 : x∗ ∈ BX∗} is a
uniformly integrable subset ofL1(µ), see [26, Corollary 4.1], and therefore the multi-
valued functionF is Pettis integrable.

Moreover, for everyA ∈ Σ and everyx∗ ∈ BX∗ we have

〈ex∗ ,

∫
A

j ◦ F dµ〉 =
∫

A

〈ex∗ , j ◦ F 〉 dµ

=
∫

A

δ∗(x∗, F ) dµ = δ∗
(
x∗, (P )

∫
A

F dµ
)

= 〈ex∗ , j
(
(P )

∫
A

F dµ
)
〉.

Hencej((P )
∫

A
F dµ) =

∫
A

j ◦ F dµ for everyA ∈ Σ.
The implication (ii)⇒(i) whenF (Ω) is h-separable is a straightforward consequence

of Theorem 3.4. The proof is finished. �

The reader is well aware at this point of the role played by the hypothesis“ F (Ω) is
h-separable” in the implication (ii)⇒(i) above: we have to fulfill the requirements in
Lemma 3.3 that is used in the proof of Theorem 3.4. In other words, we have to ensure
thatY := span(j ◦ F (Ω)) is a closed separable subspace of`∞(BX∗). So in order to get
possible extensions of Proposition 3.5 two natural questions arise:

(A) ¿when iscwk(X) h-separable?
(B) ¿can we extend Lemma 3.3 for a class of Banach spaces wider than the class of

separable ones?

Question (B) has a pretty reasonable answer. Lemma 3.3 can be extended to those Banach
spacesY with dual unit ball satisfying the following property:

For every subsetC of BY ∗ , if y∗ ∈ C
w∗

, then there is a sequence inC
thatw∗-converges toy∗ – shortly,(BY ∗ , w∗) is angelic (Fremlin).
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Whereas the class of Banach spaces withw∗-angelic dual unit ball is difficult to handle
(there is no intrinsic characterization of spaces in this class) there are, however, notorious
wide subclasses of it with pretty good properties, as for instance, the class of weakly count-
ably K-determined Banach spaces – this class properly extends the classes of separable
and weakly compactly generated Banach spaces, see [31]. From the above, it follows that
Lemma 3.3 extends, in particular, to the class of weakly countablyK-determined Banach
spaces. Since every Banach space is weakly countablyK-determined provided that it con-
tains a total weakly countablyK-determined subset [31, Théor̀eme 3.6], our Theorem 3.4
is true under the,a priori, more general assumption ofweakly countablyK-determination
for j ◦ F (Ω) instead of separability. Unfortunately, Lemma 3.6 shows that this extension
is futile. This lemma also gives an answer to previous question (A) for Banach spaces with
separable dual. The lemma will be used once again later in the paper.

Recall that a topological space(T, τ) is said to becountablyK-determinedif there is a
separable metric spaceM and an upper semi-continuous multi-valued mapF : M → 2T

such thatF (m) is compact for eachm ∈ M andT =
⋃
{F (m) : m ∈ M}. Here the

multi-valued mapF is calledupper semi-continuousif for eachm ∈ M and for each open
subsetU of T such thatF (m) ⊂ U there exists a neighborhoodV of m with F (v) ⊂ U
for eachv ∈ V . Every countablyK-determined topological space is Lindelöf, see [15].

Lemma 3.6. Assume thatX is separable. LetT be any subset ofcwk(X). The following
statements are equivalent:

(i) T is h-separable;
(ii) j(T ) is countablyK-determined with the weak topologyw induced bỳ∞(BX∗).

If, moreover,X∗ is separable andT = cwk(X), then each of the above is equivalent to:

(iii) X is finite dimensional.

Proof. The implication (i)⇒(ii) is obvious because (i) implies thatj(T ) is separable for the
topologyT induced by the norm̀∞(BX∗), after Lemma 1.1, and(j(T ), w) is a continuous
image of(j(T ),T).

The other way around. Assume (ii) holds. Observe first that for eachA ∈ cwk(X) the
functionδ∗(., A) : BX∗ → R given byδ∗(., A)(x∗) = δ∗(x∗, A) is bounded and contin-
uous whenBX∗ is endowed with the topology induced by the Mackey topologyτ (with
respect to the dual pair〈X, X∗〉) in X∗ [24, Mackey-Arens Theorem§21.4.(2)]. If we
denote byCb(BX∗) the space of real bounded and continuous functions on(BX∗ , τ), our
previous comment is rephrased asj(cwk(X)) ⊂ Cb(BX∗). Then the topology induced by
the weak topology of̀∞(BX∗) in j(T ) coincides with the topology induced by the weak
topology of the Banach space(Cb(BX∗), ‖·‖∞). SinceX is separable there is a countable

setC ⊂ BX∗ such thatC
w∗

= BX∗ . If D is the set of convex combinations ofC with
rational coefficients, then we deduce thatBX∗ = D

τ
–bear in mind that the dual of the

locally convex space(X∗, τ) is againX and thusw∗ andτ have the same closed convex
sets [24,§20.8.(6)]. The topologyτp(D) on Cb(BX∗) of pointwise convergence onD is
metrizable and coarser than the weak topology of the Banach spaceCb(BX∗). Hencej(T )
is w-countablyK-determined and has a metrizable coarser topologyν. Since(j(T ), w) is
Lindelöf, its continuous metrizable image(j(T ), ν) is Lindelöf too, thus second countable.
Now [6, Theorem 8] applies to ensure us that(j(T ), w) is separable. Thusj(T ) is separa-
ble for the topology induced by the norm ofCb(BX∗) (or by the norm of̀ ∞(BX∗)), and
consequently a new appeal to Lemma 1.1 tells us thatT is h-separable and the implication
(ii)⇒(i) has been established.
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For X finite dimensional we know thatcwk(X) = ck(X) is h-separable and so to
finish the proof of the lemma we only have to prove that if(cwk(X), h) andX∗ are sep-
arable, thenX is finite dimensional. This is proved by contradiction. If we assume that
X is infinite dimensional andX∗ is separable, the Ovsepian-Pelczynski theorem [25, The-
orem 1.f.4] ensures us of the existence of an infinite countable shrinking Markushevich
basis ofX which is bounded, i.e. a sequence{(xn, x∗n)}n∈N ⊂ X ×X∗ such that

(i) x∗n(xm) = δn,m (the Kronecker symbol) for everyn, m ∈ N;
(ii) span{xn}n∈N = X;

(iii) span‖·‖{x∗n}n∈N = X∗;
(iv) supn∈N ‖xn‖‖x∗n‖ < ∞.

We can assume (normalize!) that(xn) is bounded and thatx∗n ∈ BX∗ for everyn ∈ N.
Observe that(xn) is weakly convergent to0, hence the set{xn : n ∈ N} is relatively
weakly compact and, by the Krein-Smulian theorem [12, Theorem 11, p. 51], for every
∅ 6= P ⊂ N the set

CP := co{xn : n ∈ P}
belongs tocwk(X). We claim that

(4) h(CP , CQ) ≥ 1 wheneverP 6= Q.

Indeed, assume thatQ 6⊂ P and fixn ∈ Q \ P . Let η > 0 be such thatCQ ⊂ CP + ηBX

and fixε > 0. Sincexn ∈ CQ, there isy ∈ co{xm : m ∈ P} such that‖xn − y‖ ≤ η + ε.
But n 6∈ P , hence1 = x∗n(xn − y) ≤ ‖xn − y‖ ≤ η + ε. Sinceε > 0 is arbitrary, we get
η ≥ 1 and thereforeh(CP , CQ) ≥ 1, as claimed. Finally, being the collection of all non-
empty subsets ofN uncountable, it follows that the space(cwk(X), h) is not separable.
The proof is over. �

Given a closed subspaceZ ⊂ X, we havecwk(Z) = {B ∈ cwk(X) : B ⊂ Z}
and the Hausdorff distance (relative to the metric spaceZ) between two arbitrary elements
B,B′ ∈ cwk(Z) is exactlyh(B,B′). As a consequence we get the following result.

Corollary 3.7. Assume thatX∗ has the Radon-Nikodým property (i.e.X is Asplund). The
following conditions are equivalent:

(i) cwk(X) is h-separable;
(ii) X is finite dimensional.

Proof. It follows straightforwardly from Lemma 3.6, since the dualZ∗ of each closed
separable subspaceZ ⊂ X is separable, see [12, Theorem 6, p. 195]. �

We stress that the hypothesisX∗ separable in the implication (i)⇒(iii) in Lemma 3.6
cannot be weakened toX separable: indeed,X = `1 with its natural norm is an infinite
dimensional separable Banach space with Schur’s property [11, p. 85], thuscwk(X) =
ck(X) is h-separable.

3.2. Examples. It is well known that the notions of Bochner and Birkhoff integrability
coincide forboundedsingle-valued functions defined onΩ with values in a separable
Banach space. However, when bounded multi-valued maps are considered the previous
equivalence does not hold in general, see Example 3.10 below. For the proof we need
Lemmas 3.8 and 3.9.

Lemma 3.8. The familyQ := {χ[0,s) : s ∈ [0, 1]} ∪ {χ[s,1] : s ∈ [0, 1]} ⊂ R[0,1] has
Birkhoff property with respecto toλ.
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Proof. From the equalityχ[s,1] = 1 − χ[0,s), s ∈ [0, 1], we deduce thatQ has Birkhoff
property if{χ[0,s) : s ∈ [0, 1]} does. We prove the latter. Fixε > 0 and choosen ∈ N
large enough such that2/n ≤ ε. SetAi := [(i− 1)/n, i/n) for every1 ≤ i ≤ n− 1 and
An := [(n− 1)/n, 1]. Given arbitraryti, t′i ∈ Ai, 1 ≤ i ≤ n, for eachs ∈ [0, 1] we have∣∣∣ n∑

i=1

λ(Ai)χ[0,s)(ti)−
n∑

i=1

λ(Ai)χ[0,s)(t′i)
∣∣∣ =

1
n
·
∣∣∣ n∑
i=1

(
χ[0,s)(ti)− χ[0,s)(t′i)

)∣∣∣
=

1
n
·
∣∣∣ n∑
i=1

(
χ(ti,1](s)− χ(t′i,1]

(s)
)∣∣∣

≤ 1
n
·
∣∣∣ ∑
ti<t′i

χ(ti,t′i]
(s)

∣∣∣ +
1
n
·
∣∣∣ ∑
ti>t′i

χ(t′i,ti](s)
∣∣∣ ≤ 2

n
≤ ε.

Sinceε > 0 is arbitrary, we have proved that{χ[0,s) : s ∈ [0, 1]} has Birkhoff property.
�

From now on{q1, q2, . . . } is a fixed enumeration ofQ ∩ [0, 1]. Givenb1, . . . , bN ∈ R,
we definehb1,...,bN

: [0, 1] −→ R by the formula

hb1,...,bN
(t) := max

(
{bn : 1 ≤ n ≤ N, qn ≤ t} ∪ {0}

)
.

Lemma 3.9. For anyr > 0 the family

Hr := {hb1,...,bN
: b1, . . . , bN ∈ [−r, r], N ∈ N} ⊂ R[0,1]

has Birkhoff property with respecto toλ.

Proof. We first prove thatHr ⊂ aco(3rQ), whereQ is the family defined in Lemma 3.8.
Fix b1, . . . , bN ∈ [−r, r]. Choose a permutationσ of {1, . . . , N} such that

qσ(1) < qσ(2) < · · · < qσ(N)

and define
ci := max

(
{bσ(j) : 1 ≤ j ≤ i} ∪ {0}

)
, 1 ≤ i ≤ N.

Notice that0 ≤ c1 ≤ c2 ≤ · · · ≤ cN ≤ r and that we have

hb1,...,bN
=

N−1∑
i=1

ciχ[qσ(i),qσ(i+1)) + cNχ[qσ(N),1]

=
N−1∑
i=1

ci(χ[0,qσ(i+1)) − χ[0,qσ(i))) + cNχ[qσ(N),1]

= −c1χ[0,qσ(1)) +
N−1∑
i=2

(ci−1 − ci)χ[0,qσ(i)) + cN−1χ[0,qσ(N)) + cNχ[qσ(N),1].

On the other hand

| − c1|+
N−1∑
i=2

|ci−1 − ci|+ |cN−1|+ |cN |

= c1 +
N−1∑
i=2

(ci − ci−1) + cN−1 + cN = 2cN−1 + cN ≤ 3r.

Thereforehb1,...,bN
∈ aco(3rQ). It follows thatHr ⊂ aco(3rQ).
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Since by Lemma 3.8 the familyQ has Birkhoff property, the family3rQ also does.
Therefore,Hr ⊂ aco(3rQ) has Birkhoff property, and the proof finishes. �

Example 3.10. If X is infinite dimensional andX∗ is separable, then there exists a
bounded Birkhoff integrable multi-valued functionF : [0, 1] −→ cwk(X) which is not
Debreu integrable.

Proof. As in the proof of Lemma 3.6, take{(xn, x∗n)}n∈N an infinite countable shrinking
Markushevich basis ofX such thatr := supn∈N ‖xn‖ < ∞ andx∗n ∈ BX∗ for every
n ∈ N. The same line of arguments we did for the proof of (i)⇒(iii) in Lemma 3.6 ensures
that the bounded multi-valued functionF defined by

F (t) := aco{xn : qn ≤ t}, t ∈ [0, 1].

takes values incwk(X).
We first prove thatF is not Debreu integrable by showing thatF is not λ-essentially

h-separably valued. This follows from the fact that for anyt 6= s in [0, 1], we have

{n ∈ N : qn ≤ t} 6= {n ∈ N : qn ≤ s}

and thereforeh(F (t), F (s)) ≥ 1 (see the proof of Lemma 3.6; inequality (4) also holds
for absolutely convex hulls).

We now prove thatF is Birkhoff integrable. According to Proposition 2.9 we only have
to check thatWF = {δ∗(x∗, F ) : x∗ ∈ BX∗} has Birkhoff property. Define

G := {δ∗(x∗, F ) : x∗ ∈ BX∗ ∩ span{x∗m : m ∈ N}}.

We claim thatG ⊂ Hr, whereHr is the family defined in Lemma 3.9. Indeed, given
x∗ =

∑N
n=1 anx∗n ∈ BX∗ , we havex∗(xn) = an and |an| ≤ ‖xn‖ ≤ r for every

1 ≤ n ≤ N . Moreover, for eacht ∈ [0, 1] we have

δ∗(x∗, F (t)) = sup
{

x∗(x) : x ∈ aco{xm : qm ≤ t}
}

= sup
{ N∑

n=1

∑
qm≤t

anλmδn,m :
∑

qm≤t

|λm| ≤ 1, λm = 0 for all but finitely manym
}

= sup
{ N∑

n=1
qn≤t

anλn :
∑

qm≤t

|λm| ≤ 1, λm = 0 for all but finitely manym
}

.

It is now clear that

δ∗(x∗, F (t)) = max
(
{|an| : 1 ≤ n ≤ N, qn ≤ t} ∪ {0}

)
= h|a1|,...,|aN |(t)

for everyt ∈ [0, 1]. Sincex∗ ∈ BX∗ ∩ span{xm : m ∈ N} is arbitrary, we conclude that
G ⊂ Hr, as we claimed.

From the above and Lemma 3.9 we deduce thatG has Birkhoff property, hence its

pointwise closureGτp([0,1])
has Birkhoff property too. In order to finish the proof we will

see thatWF ⊂ Gτp([0,1])
. To this end fixx∗ ∈ BX∗ . Sincespan{x∗n : n ∈ N} is norm

dense inX∗, there is a sequence(y∗n) in BX∗ ∩ span{x∗n : n ∈ N} converging tox∗ for
the dual norm. For eacht ∈ [0, 1] we havelimn y∗n(x) = x∗(x) uniformly for x ∈ F (t),
hencelimn δ∗(y∗n, F (t)) = δ∗(x∗, F (t)). Thusδ∗(x∗, F ) belongs toGτp([0,1])

. Therefore,

WF ⊂ Gτp([0,1])
has Birkhoff property and the proof ends. �
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Given a closed subspaceZ ⊂ X and a multi-valued functionF : Ω −→ cwk(Z), it is
easy to see thatF is Birkhoff (resp. Debreu) integrable if, and only if,F is Birkhoff (resp.
Debreu) integrable when viewed as acwk(X)-valued function. In this case the respective
integrals coincide. Bearing this in mind, Example 3.10 yields the following result.

Corollary 3.11. Assume thatX∗ has the Radon-Nikodým property (i.e.X is Asplund).
The following conditions are equivalent:

(i) every bounded Birkhoff integrable multi-valued functionF : [0, 1] −→ cwk(X)
is Debreu integrable;

(ii) X is finite dimensional.

We have already mentioned that Birkhoff and Pettis integrability coincide for single-
valued functions with values in a separable Banach space. In general, for multi-valued
functions Pettis integrability is strictly weaker than Birkhoff integrability, as we show next.

Example 3.12. If X is infinite dimensional andX∗ is separable, then there exists a
bounded Pettis integrable multi-valued functionF : [0, 1] −→ cwk(X) which is not
Birkhoff integrable.

Proof. Let us consider the complete probability space({0, 1}N,Σ, µ) obtained after com-
pleting the usual product probability measure onBorel({0, 1}N), i.e. the denumerable
product of the measureν on {0, 1} given byν({0}) = ν({1}) = 1

2 . It is well known that
({0, 1}N,Σ, µ) and([0, 1],L, λ) are isomorphic as measure spaces, see [16, 254K], and
therefore, in order to have the claimed example, it is sufficient to find a bounded Pettis in-
tegrable multi-valued functionF : {0, 1}N −→ cwk(X) which is not Birkhoff integrable
(with respect toµ).

We already know thatX admits an infinite countable shrinking Markushevich basis
{(xn, x∗n)}n∈N such that{xn : n ∈ N} is bounded andx∗n ∈ BX∗ for everyn ∈ N, and
that we can define a bounded multi-valued functionF : {0, 1}N −→ cwk(X) by

F (z) :=

{
aco{xn : zn = 1} if z = (zn)∞n=1 ∈ {0, 1}N \ {0}
{0} if z = 0 := (0, 0, . . . )

(see the proof of Example 3.10).
On the one hand,F is not Birkhoff integrable. In order to prove this it suffices to check

that the family{δ∗(x∗n, F ) : n ∈ N} ⊂ WF does not have Bourgain property and then use
Proposition 2.9. Let us notice that for eachn ∈ N the functionfn := δ∗(x∗n, F ) satisfies

fn(z) = δ∗(x∗n, F (z)) = sup
{

x∗n(x) : x ∈ aco{xm : zm = 1}
}

= zn

for everyz ∈ {0, 1}N \ {0}, with fn(0) = 0.
We will prove that{fn : n ∈ N} does not have Bourgain property by contradiction.

Suppose that{fn : n ∈ N} has Bourgain property. Then there areA1, . . . , Am ∈ Σ of
positiveµ-measure such that

N =
m⋃

i=1

{n ∈ N : | · |-diam(fn(Ai)) < 1}.

Hence there is1 ≤ i ≤ m such that

P := {n ∈ N : | · |-diam(fn(Ai)) < 1}
= {n ∈ N : f−1

n ({0}) ∩Ai = ∅ or f−1
n ({1}) ∩Ai = ∅}
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is infinite. Sincezn = z′n for everyz, z′ ∈ Ai and everyn ∈ P , we haveAi ⊂
∏∞

n=1 Tn,
whereTn is a singleton for everyn ∈ P andTn = {0, 1} whenevern ∈ N \ P . SinceP
is infinite andν(Tn) = 1

2 for everyn ∈ P , it follows thatµ(Ai) ≤ µ(
∏∞

n=1 Tn) = 0, a
contradiction which proves thatF is not Birkhoff integrable.

On the other hand, in order to establish thatF is Pettis integrablewe only need to show
thatWF is a uniformly integrable subset ofL1(µ), as we pointed out before Theorem 3.4.
SinceF is bounded,WF is uniformly bounded and the proof will be finished when proving
thatδ∗(x∗, F ) is measurable for everyx∗ ∈ BX∗ . We begin with a particular case.

Claim.-δ∗(y∗, F ) is measurable for everyy∗ ∈ span{x∗n : n ∈ N}.

Indeed, fixy∗ ∈ span{x∗n : n ∈ N} and writey∗ =
∑N

n=1 αnx∗n, αi ∈ R. Notice that
for everyz ∈ {0, 1}N \ {0} we have

δ∗(y∗, F (z)) = sup
{

y∗(x) : x ∈ aco{xm : zm = 1}
}

= sup
{ N∑

n=1

∑
zm=1

αnλmδn,m :
∑

zm=1

|λm| ≤ 1, λm = 0 for all but finitely manym
}

= sup
{ N∑

n=1
zn=1

αnλn :
∑

zm=1

|λm| ≤ 1, λm = 0 for all but finitely manym
}

.

It is now easy to see that

δ∗(y∗, F (z)) =

{
max {|αn| : 1 ≤ n ≤ N, zn = 1} if z ∈ A

0 if z ∈ Ω \A,

whereA :=
⋃N

n=1{z ∈ {0, 1}N : zn = 1}. Since the coordinate projectionsz 7→ zn are
continuous,δ∗(y∗, F ) is measurable, as we claimed.

Finally, fix x∗ ∈ BX∗ . Sincespan‖·‖{x∗n}n∈N = X∗, there is a sequence(y∗n) in
span{x∗n : n ∈ N} converging tox∗ for the dual norm. Therefore, for eachz ∈ {0, 1}N

we havelimn y∗n(x) = x∗(x) uniformly for x ∈ F (z), and thuslimn δ∗(y∗n, F (z)) =
δ∗(x∗, F (z)). By Claim above eachδ∗(y∗n, F ) is measurable, henceδ∗(x∗, F ) is measur-
able and the proof is over. �
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[24] G. Köthe,Topological vector spaces. I, Translated from the German by D. J. H. Garling. Die Grundlehren
der mathematischen Wissenschaften, Band 159, Springer-Verlag New York Inc., New York, 1969. MR 40
#1750

[25] J. Lindenstrauss and L. Tzafriri,Classical Banach spaces. I, Springer-Verlag, Berlin, 1977, Sequence
spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92. MR 58 #17766

[26] K. Musiał,Topics in the theory of Pettis integration, Rend. Istit. Mat. Univ. Trieste23(1991), no. 1, 177–262
(1993), School on Measure Theory and Real Analysis (Grado, 1991). MR94k:46084

[27] B. J. Pettis,On integration in vector spaces, Trans. Amer. Math. Soc.44 (1938), no. 2, 277–304. MR 1 501
970

[28] R. S. Phillips,Integration in a convex linear topological space, Trans. Amer. Math. Soc.47(1940), 114–145.
MR 2,103c
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