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ABSTRACT. The aim of this paper is to study Birkhoff integrability for multi-valued maps

F: Q — cwk(X), where(Q2, 3, 1) is a complete finite measure spaééjs a Banach

space andwk(X) is the family of all non-empty convex weakly compact subsetX of

It is shown that the Birkhoff integral of’ can be computed as the limit for the Haus-
dorff distance ircwk(X) of a net of Riemann sums., 1(A»)F (tr). We link Birkhoff
integrability with Debreu integrability, a notion introduced to replace sums associated to
correspondences when studying certain models in Mathematical Economics. We show that
each Debreu integrable multi-valued function is Birkhoff integrable and that each Birkhoff
integrable multi-valued function is Pettis integrable. The three previous notions coincide
for finite dimensional Banach spaces and they are different even for bounded multi-valued
functions whenX is infinite dimensional an& * is assumed to be separable. We show that
when F takes values in the family of all non-empty convex norm compact sets of a separa-
ble Banach spac&, thenF is Pettis integrable if, and only if;’ is Birkhoff integrable; in
particular, these Pettis integrabiés can be seen as single-valued Pettis integrable func-
tions with values in some other adequate Banach space. Incidentally, to handle some of
the constructions needed we prove thaXifs an Asplund Banach space, thenk(X) is
separable for the Hausdorff distance if, and onlyXifjs finite dimensional.

1. INTRODUCTION AND PRELIMINARY RESULTS

A great deal of work about measurable and integrable multifunctions was made in the
last decades. Some pioneering and highly influential ideas and notions around the matter
were inspired by problems arising in Control Theory and Mathematical Economics. We
can cite the papers by Aumann [2] and Debreu [10], the monographs by Castaing and
Valadier [8], Klein and Thompson [23], and the survey by Hess [18].

Henceforth?" : O — cwk(X) will be a multi-valued function from a complete finite
measure spadél, >, 1) into the family of all non-empty convex weakly compact subsets
cwk(X) of the Banach spac¥.

The notion of Debreu integrability introduced in 1967 is a multi-valued counterpart to
Bochner integrability. Despite the theory of integration developed by Debreu in [10] dealt
with functions taking values in the familyt(X') of all non-empty convex norm compact
subsets ofX,, it is readily seen, as pointed out by Byrne in [5, p. 246], that this theory
extends to the case ofvk(X)-valued functions. Debreu integral is defined by means of a
certain embedding ofwk(X) into a Banach space. The brief explanation below includes
some preliminary results, e.g. Lemma 1.1, that will be needed in the subsequent sections.
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The familyC of all non-empty bounded closed subsetsXofs a metric space with the
Hausdorff distance [17], given by

h(A,B):=inf{n >0: AC B+nBx, BC A+nBx},

whereBx denotes the closed unit ball &f. Since the underlying metric iX is complete,

the spacdC, h) is complete too, see [8, Theorem 11.3] or [23, Corollary 4.3.12 (i)]. Itis
easily proved thatk(X) (resp. cwk(X)) is a closed subspace ¢, h) [23, Corollary
4.3.12 (v)] (resp. bear in mind that the set of all convex elements isf closed [23,
Corollary 4.3.12 (iii)], and use Grothendieck’s characterization of weak compactness [11,
Lemma 2, p. 227]). For a bounded d&tc X and eachx* in the dual spac& ™, we write

§*(x*, B) := sup{z*(z) : € B}.
We have the following embedding result.

Lemma 1.1 (Theorems 11.18 and 11.19 in [8])Let ¢, (Bx-) be the Banach space of
bounded real valued functions defined B - endowed with the supremum nofim|| -
Then, the map : cwk(X) — ¢ (Bx~) given byj(A) := 6*(-, A) satisfies the proper-
ties below:
() j(A+ B)=j(A)+ j(B) foreveryA, B € cwk(X);

(i) 7(AA) = Aj(A) for every\ > 0 and everyA € cwk(X);

(i) h(A,B) = ||7(A) — j(B)||« for everyA, B € cwk(X);

(iv) j(cwk(X))is closed info (Bx~).

The multi-valued functionF' : Q@ — cwk(X) is Debreu integrable[23, Defini-
tion 17.2.3 and Proposition 17.2.4] if, and only if, the compositienF" is Bochner inte-
grable. In this case, the Debreu integralfoin 2 is the unique elementD) [, F du €
cwk(X) such thatj((D) [, F' du) is the Bochner integral of o F'. In fact, Debreu in-
tegrability does not depend on the particular embeddiegnsidered, see [23, Proposi-
tion 17.2.4], and in order to define Debreu integral we can use any mapk(X) — Y,
into a Banach spackg, as long as properties (i)-(iv) in Lemma 1.1 are fulfilled. The exis-
tence of such kind of embedding was first proved Bg&bm, [29]. For information about
the Debreu integral we refer the reader to [5, 10, 20], [23, Chapter 17], [18, Section 3] and
the references therein.

Given a multi-valued functio' : Q@ — cwk(X), we writed*(z*, F') to denote the
real valued function given by*(a*, F)(t) := §*(a*, F(¢)), t € Q. WhenX is a separable
Banach space the functidnis said to bePettis integrablef §*(z*, F') € £ (1) for every
z* € X* and for everyA € X there is(P) [, F du € cwk(X) such that

6*(95*,(P)/qu) :/5*(x*,F) dy, ¥ € X*.
A A

The notion of Pettis integrable multifunction was first considered in [8, Chaptgt énd
has been pretty recently studied in [1, 14, 19, 32, 33].

Itis known that, for separabl&, a multi-valued functiorF : Q — cwk(X) is scalarly
measurable (i.ed*(z*, F') is measurable for every* € X*) if, and only if, F' is Effros
measurable (i.e{t € Q : F(¢t)NU # ()} € X for every open sel C X), see e.g. [3,
Corollary 4.10 (a)]. In this casE admits at least one strongly measurable selector, by the
selection theorem due to Kuratowski and Ryll-Nardzewski, see e.g. [8, Theorem I11.6].
The books [8, 23] and the papers [3, 18, 20, 21] are convenient references on measurability
properties of multi-valued functions.
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In particular, if X is separable and’ : Q@ — cwk(X) is a Pettis integrable multi-
valued function, thet#" is scalarly measurable and therefét@dmits strongly measurable
selectors. Moreover, each strongly measurable selectér isfPettis integrable and we
have

1) (P)/ Fdy= {(Pettis)/ fdu: fisaPettis integrable selectorB‘f}
A A

for everyA € %, [32, Theorem 3.2] and [33]. Whefi is Debreu integrable,D) [, F du

is described as in (1) but using Bochner integrable selectors instead of Pettis integrable
ones, i.e. Debreu integral coincides with Aumann integral, see [23, Theorem 17.3.2]
and [5].

This article is organized in the following manner. In Section 2 we offer the definition
of Birkhoff integral for multi-valued functiong” : Q@ — cwk(X) using the embedding
j given in Lemma 1.1. We give two different characterizations of Birkhoff integrability.
The first one is given in exclusive terms @fwk(X), k), Proposition 2.6, and it is used
to show that the notion of Birkhoff integrability does not depend on the embedding
Corollary 2.7. The second one is for bounded multi-functions, Proposition 2.9, and uses
Bourgain property that we studied in relationship to Birkhoff integrability for single-valued
functions in [7]. This characterization is used in the examples at the end of the paper.
Section 3 has two different subsections. The first one is devoted to study positive results
about the relationship between Debreu, Birkhoff and Pettis integrability. Proposition 3.1
establishes that each Debreu integrable multi-valued function is Birkhoff integrable and
that each Birkhoff integrable one is Pettis integrable. The three previous notions coincide
for finite dimensional Banach spaces, Theorems 3.2 and 3.4. In fact Theorem 3.4 is a
bit better: Birkhoff integrability coincides with Pettis integrability when the multi-valued
function F' takes values irck(X); in particular, such arF' is Pettis integrable if, and
only if, the single-valued functiori o F' is Pettis integrable, Proposition 3.5, which is,
to the best of our knowledge, a new characterization for Pettis integrable multi-valued
maps. To end up this part we prove thakifis an Asplund Banach space, thenk(X) is
separable for the Hausdorff distance if, and onlyifjs finite dimensional, Corollary 3.7.
The last subsection of the paper is devoted to provide examples showing that Birkhoff
integrability for multi-valued maps lies strictly between Debreu and Pettis integrability
when X is infinite dimensional and* is separable, even when we deal with bounded
multi-valued functions, Examples 3.10 and 3.12.

Terminology. Our Banach spaces are assumed to be real and referred to by iters
Y and Z; if the norm is explicitly needed we shall writg- ||. The weak topology of

Y is denoted byw, andw* denotes the wedktopology of the dual™. For a given set

S C Y we use| - [|-diam(S) := sup, ,eslly — ¥'[l. AsetB C By- is norming if

llyll = sup{|(y*,y)| : y* € B} for everyy € Y. The topology of pointwise convergence

in R is denoted byr,(Q). £!(u) stands for the space of reatintegrable functions
defined on2 and L*(u) for the associated Banach space of equivalence classes with its
usual norn|-||;. We denote by the Lebesgue measure on thalgebral of all Lebesgue
measurable subsets [, 1]. For the theory of Bochner and Pettis integrals we refer the
reader to [12] and [26].
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2. SERIES OF SETS INBANACH SPACES ANDBIRKHOFF INTEGRABLE MULTI-VALUED
FUNCTIONS

Recall that a single-valued functighdefined o2 with values in a Banach spageis
summablewith respect to a given countable partitibn= (A,,) of Qin X [4] if f|4, IS
bounded whenever(A,,) > 0 and the set

JOUT) = {7 uA) f(tn) + ta € An}

is made up of unconditionally convergent series. The funcfida said to beBirkhoff
integrable[4] if for every e > 0 there is a countable partitidn of £ in X for which f is
summable ang| - ||-diam(J(f,T)) < . In this case, the Birkhoff integraB) [, f du of
fis the only point in the intersection

ﬂ{co(J(f,F)) : f is summable with respect 1o}.

We stress that Birkhoff integrability lies strictly between Bochner and Pettis integrability,
[4], [27] and [28]. If f is Birkhoff integrable then we have the equalit®) |, f du =
(Pettis)[,, f du and both integrals are, from now onwards, simply writterf ag dj..

In a similar way as Debreu integral was defined, we introduce below the natural exten-
sion of Birkhoff integral to the case of multi-valued functions.

Definition 2.1. Let F : O — cwk(X) be a multi-valued function. We say thatis
Birkhoff integrable if the single-valued functigno F : Q@ — (. (Bx~) is Birkhoff
integrable.

If F is Birkhoff integrable, then for everyl € X the restrictionF'| 4 is Birkhoff inte-
grable with respect to the restriction pfto thes-algebra{ E N A : E € X}, because the
same holds true for the single-valued Birkhoff integrable funcjion' [4, Theorem 14],
and

/Aj o Fdp € p(A) - co(j o F(A)).

Sincej(cwk(X)) is a closed convex cone th,(Bx-) by Lemma 1.1, we conclude that
J4doF du e j(cwk(X)). Therefore there is a uniqué) [, F du € cwk(X), that will
be calledBirkhoff integralof F' on A, that satisfies

j((B)/Aqu):/Ajoqu.

The remaining of the section is devoted to prove two different characterizations of
Birkhoff integrability, Propositions 2.6 and 2.9. To get started we need some previous
machinery about convergent series of sets in Banach spaces.

Given a sequencBy, B, ... of subsets ofX, the symbolsz=1 B,, denotes a formal
series. The serie}. ~ | B, is said to beunconditionally convergenprovided that for
every choiceé,, € B,,n € N, the serie§jj§°=1 b, is unconditionally convergent ixX. In
this case we define

;Bn ={> bu: bue B, nen}.

n=1
If we agree to write||B|| := sup{||z| : « € B} whenB C X, then} ° B, is
unconditionally convergent if, and only if, for eveey > 0 there isN € N such that
| > ses Bill < e for every finite setS € N\ {1,..., N}, see [4, p. 362]. Indeed, the
partis clear and we prove tlealy if part by contradiction. Suppose that there is 0 such
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that for everyN < N there is a finite se§ € N\ {1,..., N} suchthat| . ¢ Bi| > .
Then there exist an infinite sequer(¢®, ) of pairwise disjoint nonempty finite subsetNof
and choice$,, € By, n € Sk, k € N, such that| >, 5 bs[| > ¢ for everyk € N. Fix
b, € B, foreveryn € N\ |J;—, Sk. Then the family(b,,),en is not summable and
therefored_ > | b,, can not be unconditionally convergent (see e.g. [9, Theorem 10.7]).

Lemma 2.2. Let (B,) be a sequence inwk(X) such that) B, is unconditionally
convergent. Thel®, B, € cwk(X).

Proof. Clearly )", B, is convex. To see that’ B, is weakly compact let us consider
the mapping
S: H B, — X, S(( Z b

Let ¥ be the product topology if],, B, obtained when eacBn is endowed with the
restriction of the weak topology of . We claim thatS is -to-weak continuous. Indeed,
fix (bp)n € 1, Bn andU € U, wherel{ is the family of all neighborhoods df in the
weak topology ofX. There exist > 0 andV € U such thaeBx +V C U. Since
> . Bn is unconditionally convergent, there /8 € N such that|| ;¢ B;|| < ¢ for
every finite setS ¢ N\ {1,...,N}. FixWh,...,Wxy € U such thath:[:1 W, C V.
DefineH,, := B,, N (b, + W,,) foreveryl < n < N, H, := B,, for everyn > N and
H =], H,. ThenH is aT-neighborhood ofb, ), such that for eactd;,), € H

b’)n):Zb’ Zb’ + 0, eZb + Y, +ZW

n>N n=1 n>N

ch +Z (b, — +Vch +szX+Vch +U.

n>N
Since(by,), € [],, B» andU € U are arbitraryS is T-to-weak continuous. Finally, since
(I1,, Bn, %) is compact (by Tychonoff's theorem [22, Theorem 13, p. 148]],[,, B,.) =
>, Bn is weakly compact. The proof is over. O

The following result can be obtained as a consequence of the previous lemma and
Propositions 2.3 and 2.5 in [13]; from the proof we give below it becomes clear that the role
played byj in our definition of Birkhoff integrability can be also played by any embedding
i from cwk(X) into a Banach spacg fulfilling (i)-(iv) in Lemma 1.1.

Lemma 2.3. Let(B,,) be a sequence invk(X). The following conditions are equivalent:
(i) >, Bn isunconditionally convergent;
(ii) thereisB € cwk(X) with the following property: for every > 0 there is a finite
setP C Nsuchthath(}_, .o B, B) < ¢ for every finite sef) C N such that
Pc@;
(i) ", j(By)is unconditionally convergent il (Bx-).
Inthis casey, B, = Bandj(>, Bn) = >, j(Bn).

Proof. (i)=(ii) Note thatB := )" B, belongs tocwk(X) by Lemma 2.2. Fix > 0.
Since) ,, B, is unconditionally convergent, there 6 € N suchthat| > ¢ B, < ¢
for every finite setS € N\ P, whereP := {1,..., N}. Take any finite se) C N with
P C Q. Then

> B,CB+eBx and BC Y B,+eBx,

neq neQ
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hencei(3_,, o Bn. B) < e. This proves (i3 (ii).
Assume now that (ii) holds, meaning that the net

{% B,: QCN, innite}

converges incwk(X), h). In particular, fors > 0, there is a finite seP C N such that
h(ZneQ By, > cp Bn) < e for every finite se) ¢ Nwith P C Q. Take any finite set
S Cc N\ P. By Lemma 1.1 we have

55 (5o = (E ),
= Hj(gS;PB") - J(; B,)|_ = h(ngsgp B, Y B.)<e.

neP
Sincee > 0 is arbitrary the serie$_ B, is unconditionally convergent and we have
proved that (ii=-(i).
To realize that (ii) and (iii) are actually equivalent we simply note that the computations

above yield
|3 22 = (3 Btod) = (3 54)
nes nes nes
for each finite sef C N.
The equality) | B, = B follows from the proof (i}=(ii) and once this is known the
equality;j (>, Bn) = >, j(By) follows from Lemma 1.1. O

)
oo

=X
nes

Remark 2.4. Observe that each one of the three equivalent statements in Lemma 2.3 is
equivalent to the following:
(iv) For any embedding from cwk(X) into a Banach spac® satisfying properties
()-(iv) in Lemma 1.1, the seri€s,,, i(B,,) is unconditionally convergent iF.

In this casei(d,, Bn) = >, i(Bn).

In [7, Proposition 2.6] we exhibited the following characterization of Birkhoff integra-
bility for single-valued functions. As usual, we say that a partifiasf 2 in X is finer than
another on&y, if each element ofF is contained in some elementB§.

Proposition 2.5. A single-valued functioyf defined orf2 with values in a Banach spadé

is Birkhoff integrable if, and only if, there ig € Y with the following property: for every
e > 0 there is a countable partitioly of 2 in X such that for every countable partition
I' = (A,) of Qin X finer thanl', and any choicd” = (t,,) inT" (i.e. t,, € A, for everyn),
the seriesy ,, 1(A,) f(t,) converges unconditionally and

| ) v <<

In this casey = |, f dp.

As an easy consequence of Lemmas 1.1 and 2.3 and Proposition 2.5 we have the fol-
lowing characterization.

Proposition 2.6. Let F' : Q@ — cwk(X) be a multi-valued function. The following
conditions are equivalent:

(i) F is Birkhoff integrable;
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(ii) there isB € cwk(X) with the following property: for every > 0 there is a
countable partitiorTy of 2 in 3 such that for every countable partitidh= (A4,,)
of Qin X finer thanl'y and any choicd” = (t,,) inT’, the series " 1(A,)F(ty)
is unconditionally convergent and

(Z“ )<a

In this case B = (B) |, F dy.
If we bear in mind Remark 2.4 we will convince ourselves that the following holds.

Corollary 2.7. The notions of Birkhoff integrability and Birkhoff integral for multi-valued
functions do not depend on the particular embeddifrgm cwk(X) into a Banach space
Y chosen, as long aissatisfies propertie€)-(iv) in Lemma 1.1.

The characterization of Birkhoff integrability that closes the section, Proposition 2.9, is
for bounded multi-valued functions. We recall some definitions first.

Definition 2.8. Let F be a family inR®.

(i) We say thatF has Bourgain property (with respect tg [30] if for everye > 0
and everyA € X with u(A) > 0 there areBy,...,B, C A, B; € X, with
w(B;) > 0, such that for every € F

Jinf |- |-diam(f(By)) <

(i) We say thatF has Blrkhoff property (with respect @) [7] if for everye > 0
there is a countable partitiol = (A4,,) of Q in ¥ such that for eachy,, ¢}, € Ay,
k € N, we have

‘ZM Ag) f(tr) iﬂ

k=1
for everym € N and everyf € F.

<e

We notice that ifF has Birkhoff property, then its pointwise cIosuT%fp(Q) and its
absolutely convex hulhco(F) also have Birkhoff property. 15 has Birkhoff property,
then F has Bourgain property. The converse holdsFifis uniformly bounded, see [7,
Lemma 2.3].

Observe that for every* € Bx- andt € 2 we have

6% (", F)(t) = (ex=, j o F(t)),
wheree,« € By_(B,.)~ is defined by(e,~, g) := g(x*) for everyg € £ (Bx-). Given a
multi-valued functionF' : Q@ — cwk(X), we fix the following terminology
Wg = {5*(x*,F) ot e Bx*} C R%.
Proposition 2.9. Let ' : Q@ — cwk(X) be a bounded (for the Hausdorff distance)
multi-valued function. The following conditions are equivalent:
(i) F'is Birkhoff integrable;

(i) Wg has Birkhoff property;

(iif) Wg has Bourgain property.
Proof. SinceF is h-bounded, the functiofio F’ : Q@ — ¢, (Bx+) is bounded. On the other
hand, since the sdt := {e,- : ™ € Bx-} C By_(By.) iS norming, the proposition
straightforwardly follows from Theorem 2.4 in [7] appliedte F andB. O
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3. BIRKHOFF INTEGRABILITY VERSUSDEBREU AND PETTIS INTEGRABILITY

This section is devoted to study the relationship between the notions of Birkhoff, Debreu
and Pettis integrability, see Subsection 3.1. We also provide some examples that show
that Birkhoff integrability lies strictly between Debreu and Pettis integrability even when
bounded multi-valued maps are considered, see Subsection 3.2.

3.1. Positive results. In our first result below the connection between Birkhoff and Au-
mann integrals is made clear too.

Proposition 3.1. Let F' : Q@ — cwk(X) be a multi-valued function.
(i) If F is Debreu integrable, ther" is Birkhoff integrable and B) [, F' du =
(D) [, F dp.
Assuming thaX is separable we have:

(ii) If I is Birkhoff integrable, therF' is Pettis integrable and for everyt € 3 we
have (B) [, F du = (P) [, F du. Moreover, F admits strongly measurable
selectors, each of them being Birkhoff integrable, and for eveey>: we have

(2) (B)/ Fdu= {/ fdu . fis aBirkhoff integrable selector df}.
A A

Proof. Statement (i) follows from the very definitions of the integrals involved.
Let us assume thaX is separable and let us prove (ii). Since F' is Pettis integrable,
we haves*(z*, F) = (eg«,j o F) € L' (u) for everyz* € Bx- and

5*(a.(B) /A P ) = (e ((B) /A P )

~ (e [ GoP = [(ergoF) du= [ 3" F)du

A
for every A € ¥ and everyr* € Byx-. Consequently is Pettis integrable and for every
A e ¥ the equality(P) [, F du = (B) [, F dp holds.

As pointed out in the introduction, sinde: Q — cwk(X) is scalarly measurablé;
admits strongly measurable selectors. In addition, sindg even Pettis integrable, each
strongly measurable selector 6fis Pettis integrable and equality (1) in page 3 holds.
Finally, for separable Banach spaces Birkhoff and Pettis integrability coincide for single-
valued functions [27], hence equality (2) follows from equality (1) in page 3 and the proof
is over. O

To prove the next result we will use that the spdek(X), h) is separable ifX is
separable, see [8, Theorem I1.8].

Theorem 3.2. If X is finite dimensional, then a multi-valued functiéh: Q@ — ck(X)
is Debreu integrable if, and only iy’ is Birkhoff integrable.

Proof. The only if part is statement (i) in Proposition 3.1. The proof of th@art is as
follows. Assume that" is Birkhoff integrable. In order to establish thatis Debreu
integrable we have to show thab F' is Bochner integrable. Singgck(X)) is separable
andj o F' is scalarly measurablg,o F' is strongly measurable by Pettis's measurability
theorem [12, Theorem 2, p. 42]. Therefore, the proof will be finished when proving

3) / 1 0 Fllo dyt < os.
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Given any setd C Q, writeF(A) = (J,., F(t). Observe that
170 F(A)| := sup{[lj(F'(t))llc : t € A} = sup{[|F(®)] : t € A} = [[F(A)].

Using thatj o F' is Birkhoff integrable, we find a countable partiti¢a,,,) of Q in X
such thatj o F(A,,) is bounded il (Bx~), wheneveru(A,,) > 0, with the series

> m M(Am)J o F(t,) unconditionally convergent for every choi¢g, ) in (4,,). Hence
|IF(Arm)| < co wheneveni(A,,) > 0, and the seriey = u(A.,)F(Ay,) is uncondition-

ally convergent inX by Lemma 2.3. In finite dimensional Banach spaces every uncondi-
tionally convergent series is absolutely convergent and we conclude that

Yo wAnlje FAn)l= Y w(An)|F(An)] < oo,

/’L(A'm)>0 N(A'm)>0
which proves (3) and finishes the proof. O

The lemma below is well known, at least for the cése- By «, see [26, Theorem 5.2].
However, we include a proof for the sake of completeness and because our approach is
easily extended to a far more general context that shall be explained at the end of the
subsection. Recall that a s&t C £!(u) is uniformly integrable ifF is || - ||;-bounded
and for everye > 0 there iss > 0 such thasup . [ |f| du < € wheneven(FE) < 4.
Equivalently, the canonical image &f in L () is relatively weakly compact, see [16,
247C].

Lemma 3.3. Let Y be a separable Banach space aikd C By- a norming set. Let
f: @ — Y be afunction such that; 5 = {(y*, f) : y* € B} is a uniformly integrable
subset ofZ!(u). Thenf is Pettis integrable.

Proof. SinceB is norming, the Hahn-Banach separation theorem applies to obtain that the
absolutely convex hull oB, aco(B), is w*-dense inBy . The separability ot” implies
that (By -, w™) is metrizable, henceco(B) is w*-sequentially dense iBy .. Therefore
the uniformly integrable setco(Z g) is 7,(£2)-sequentially dense ¥y = {(y*, f) :
y* € By~ }. An appeal to Vitali's theorem [16, 246J (a)] establishes fhais a uniformly
integrable subset of*(p).

In order to see thaf is Pettis integrable we only have to check that the canonical map

T:BY* —>L1(/1’)3 T(y*):<y*7f>7
is w*-to-w continuous [26, Theorem and Remark 4.3]. To this end’fix By - and take
anyy* € C" . SinceY is separable, there is a sequerigg) in C thatw*-converges

toy*. Thereforg(T'(y;;)) is a sequence iff converging pointwise t@'(y*) and, sinceZ;
is uniformly integrable, another appeal to Vitali's theorem ensures us that

lim [T (yz) = T(y")] = 0.
In particular,T(y*) € T(C)". HenceTl'(C" ) c T(C)" for everyC' C By-. It follows
thatT is w*-to-w continuous and is Pettis integrable. |

To prove Theorem 3.4 and Proposition 3.5 below we will use the following character-
ization of Pettis integrable multi-valued functiona:multi-valued function” : Q@ —
cwk(X) is Pettis integrable if, and only ilyr = {0*(z*, F) : * € Bx~} is a uniformly
integrable subset of! (1), see [32, Theorem 3.2] and [33].

Theorem 3.4. Assume thafX is separable. LeF' : Q@ — cwk(X) be a multi-valued

function such thaf’'(2) is h-separable (e.g.F(2) C ck(X)). ThenF is Birkhoff inte-
grable if, and only if,F" is Pettis integrable.
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Proof. In view of Proposition 3.1 it only remains to show ttiepart. Assume thaf’ is
Pettis integrable. We begin with the proof of the claim below.

Claim.- The single-valued functigie F': Q@ — /. (Bx~) is Pettis integrable.

From theh-separability of F'(2) we deduce thal” := span(j o F(2)) is a closed
separable subspace 6f,(Bx~) in which j o F' takes its values. Let us notice that the
setB := {e,-|y : * € Bx+} C By~ is norming. By the Pettis integrability df, the
family Wr = Z;or p is a uniformly integrable subset @f' (1) and Lemma 3.3 tells us
thatj o F'is Pettis integrable, as claimed. Since Birkhoff and Pettis integrability coincide
for single-valued functions with values in a separable Banach space [27], it follows that
j o F'is Birkhoff integrable. The proof is complete. O

Given a separable Banach spa%eand a multi-valued mag’ : Q@ — cwk(X) we
could not find in the literature any reference to prior study about the relationship between
F being Pettis integrable ando F' being Pettis integrable too. In Proposition 3.5 we
analyze this matter.

Proposition 3.5. Assume thak is separable and lef' : 2 — cwk(X') be a multi-valued
function. Let us consider the following statements:

(i) jo F'is Pettis integrable;

(i) F is Pettis integrable.
Then(i) always implies(ii) and in this casej((P) [, F du) = [,j o F du for every
A € 3. If moreoverF'(R2) is h-separable (e.gF' () C ck(X)) then(ii) implies(i).

Proof. Assume that (i) holds. We know th&t’r = {(ey~,j o F) : z* € Bx-}is a
uniformly integrable subset of'(u), see [26, Corollary 4.1], and therefore the multi-
valued functionF’ is Pettis integrable.

Moreover, for everyd € ¥ and everyr* € Bx- we have

(e [ G0F i) = [ (eriio ) du
A A

:/A(S*(x*,F) d,uzé*(x*,(P)/AFd,u> :(el.*,j<(P)/AFd,u)).

Hencej((P) [, F du) = [, jo F dyuforeveryA € 3.
The implication (ii)=-(i) when F'(f2) is h-separable is a straightforward consequence
of Theorem 3.4. The proof is finished. ]

The reader is well aware at this point of the role played by the hypothd&if) is
h-separable”in the implication (ii}= (i) above: we have to fulfill the requirements in
Lemma 3.3 that is used in the proof of Theorem 3.4. In other words, we have to ensure
thatY := sSpan(j o F'(Q2)) is a closed separable subspacégf Bx~). So in order to get
possible extensions of Proposition 3.5 two natural questions arise:

(A) ¢when iscwk(X) h-separable?
(B) ¢can we extend Lemma 3.3 for a class of Banach spaces wider than the class of
separable ones?
Question (B) has a pretty reasonable answer. Lemma 3.3 can be extended to those Banach
spaceg” with dual unit ball satisfying the following property:

For every subset’ of By -, if y* € éw*, then there is a sequencen
thatw*-converges t@g* — shortly,(By «, w*) is angelic (Fremlin)



BIRKHOFF INTEGRAL FOR MULTI-VALUED FUNCTIONS 11

Whereas the class of Banach spaces witkangelic dual unit ball is difficult to handle
(there is no intrinsic characterization of spaces in this class) there are, however, notorious
wide subclasses of it with pretty good properties, as for instance, the class of weakly count-
ably K-determined Banach spaces — this class properly extends the classes of separable
and weakly compactly generated Banach spaces, see [31]. From the above, it follows that
Lemma 3.3 extends, in particular, to the class of weakly countabbietermined Banach
spaces. Since every Banach space is weakly counfallgtermined provided that it con-
tains a total weakly countabli(-determined subset [31, €breme 3.6], our Theorem 3.4
is true under thea priori, more general assumptionweakly countably<-determination
for j o F(Q2) instead of separability. Unfortunately, Lemma 3.6 shows that this extension
is futile. This lemma also gives an answer to previous question (A) for Banach spaces with
separable dual. The lemma will be used once again later in the paper.

Recall that a topological spa¢®, 7) is said to becountablyK -determinedf there is a
separable metric spadd and an upper semi-continuous multi-valued nfap M — 27
such thatF'(m) is compact for eacln € M andT = |J{F(m) : m € M}. Here the
multi-valued magpF’ is calledupper semi-continuousfor eachm € M and for each open
subsety of T such thatF'(m) C U there exists a neighborhodd of m with F(v) C U
for eachv € V. Every countablyi{-determined topological space is Lindglsee [15].

Lemma 3.6. Assume thakX is separable. LeT" be any subset ofwk(X). The following
statements are equivalent:

(i) T is h-separable;

(ii) j(T)is countablyK -determined with the weak topologyinduced by, (Bx+ ).
If, moreover,X* is separable and” = cwk(X), then each of the above is equivalent to:

(iii) X is finite dimensional.

Proof. The implication (i}=(ii) is obvious because (i) implies thatT") is separable for the
topology® induced by the normi,, (Bx~ ), after Lemma 1.1, an@(7'), w) is a continuous
image of(j(T),%).

The other way around. Assume (ii) holds. Observe first that for eéaehcwk(X) the
functiono*(., A) : Bx~ — R given byo*(., A)(z*) = §*(«*, A) is bounded and contin-
uous whenBx - is endowed with the topology induced by the Mackey topolegyvith
respect to the dual paitX, X*)) in X* [24, Mackey-Arens Theorer§21.4.(2)]. If we
denote byC;,(Bx~) the space of real bounded and continuous functiong®g:, ), our
previous comment is rephrasedjéswk (X)) C Cy(Bx-). Then the topology induced by
the weak topology of..(Bx+) in j(T') coincides with the topology induced by the weak
topology of the Banach spa¢€',(Bx+), || - |l«)- SinceX is separable there is a countable

setC C By~ such thalC" = By-. If D is the set of convex combinations 6fwith
rational coefficients, then we deduce ttiat- = D’ —bear in mind that the dual of the
locally convex space€X™, 7) is againX and thusw* andr have the same closed convex
sets [24,520.8.(6)]. The topology, (D) on C,(Bx-) of pointwise convergence ab is
metrizable and coarser than the weak topology of the Banach é§péBs - ). Hencej(T')

is w-countablyK -determined and has a metrizable coarser topolodince(j(T), w) is
Lindeldf, its continuous metrizable imadg¢(T), v) is Lindelf too, thus second countable.
Now [6, Theorem 8] applies to ensure us thAtT), w) is separable. ThugT) is separa-
ble for the topology induced by the norm 6f(Bx-) (or by the norm of,(Bx~)), and
consequently a new appeal to Lemma 1.1 tells usthath-separable and the implication
(ii)=-(i) has been established.
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For X finite dimensional we know thatwk(X) = ck(X) is h-separable and so to
finish the proof of the lemma we only have to prove thgtibk(X), h) and X* are sep-
arable, thenX is finite dimensional. This is proved by contradiction. If we assume that
X isinfinite dimensional an&* is separable, the Ovsepian-Pelczynski theorem [25, The-
orem 1.f.4] ensures us of the existence of an infinite countable shrinking Markushevich
basis ofX which is bounded, i.e. a sequenge:,, z},) }neny C X x X* such that

() =} (zm) = On,m (the Kronecker symbol) for eveny, m € N;

(“) m{zn}nel\l = X!

(iii) spanl {3}, en = X*;

(V) sup,e [lzn [z ] < oo
We can assume (normalize!) that,) is bounded and that! € Bx- for everyn € N.
Observe thatz,,) is weakly convergent t0, hence the sefz,, : n € N} is relatively
weakly compact and, by the Krein-Smulian theorem [12, Theorem 11, p. 51], for every
() # P c Nthe set

Cp:=co{x, : n € P}

belongs tacwk(X). We claim that
(4) h(Cp,Cq) >1 wheneverP # Q.

Indeed, assume that ¢ P and fixn € Q \ P. Letn > 0 be such thaCy c Cp + nBx
and fixe > 0. Sincez,, € Cg, there isy € co{x,, : m € P} suchthal|z, —y| <n+e.
Butn ¢ P, hencel =z, (z, —y) < |lzn — yl| < n+e. Sinces > 0 is arbitrary, we get
n > 1 and thereforé(Cp, Cg) > 1, as claimed. Finally, being the collection of all non-
empty subsets di uncountable, it follows that the spatewk(X), k) is not separable.
The proof is over. O

Given a closed subspacé ¢ X, we havecwk(Z) = {B € cwk(X) : B C Z}
and the Hausdorff distance (relative to the metric spgacketween two arbitrary elements
B, B’ € cwk(Z) is exactlyh(B, B’). As a consequence we get the following result.

Corollary 3.7. Assume thak * has the Radon-Nikdan property (i.eX is Asplund). The
following conditions are equivalent:

(i) cwk(X) is h-separable;

(ii) X is finite dimensional.

Proof. It follows straightforwardly from Lemma 3.6, since the duat of each closed
separable subspa¢eC X is separable, see [12, Theorem 6, p. 195]. |

We stress that the hypothesis® separable in the implication &}(iii) in Lemma 3.6
cannot be weakened t& separable: indeedy = ¢; with its natural norm is an infinite
dimensional separable Banach space with Schur’s property [11, p. 85]¢ithi) =
ck(X) is h-separable.

3.2. Examples. It is well known that the notions of Bochner and Birkhoff integrability
coincide forboundedsingle-valued functions defined dn with values in a separable
Banach space. However, when bounded multi-valued maps are considered the previous
equivalence does not hold in general, see Example 3.10 below. For the proof we need
Lemmas 3.8 and 3.9.

Lemma 3.8. The familyQ := {x(o.s) : s € [0,1]} U {x(s,1) : s € [0,1]} € ROY has
Birkhoff property with respecto té.
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Proof. From the equalityy(s,1; = 1 — Xxjo,s), s € [0, 1], we deduce tha@ has Birkhoff
property if{xo,s) : s € [0,1]} does. We prove the latter. Fix> 0 and choose: € N

large enough such thayn < e. SetA; := [(i — 1)/n,i/n) for everyl <i <n —1and
A, :=[(n—1)/n,1]. Given arbitraryt;, t; € A;, 1 <1i < n, for eachs € [0, 1] we have

‘ZA i)X[0,5)(t Z/\ )X[0,5)( ’Z X[0,5) (ti) = X, )(')))
= E . ’Z(X(ti,l] (8) = X, (S))’
i=1
1 1 2
< ‘ > X(ti,tg](s)‘ +o ‘ > X(t;,ti](s)‘ <~ se
ti <t ti>t]

Sincee > 0 is arbitrary, we have proved th@k( ) : s € [0, 1]} has Birkhoff property.
([l

From now on{qi, ¢o, . . . } is a fixed enumeration dp N [0, 1]. Givenby,...,by € R,
we definehy, 1, : [0,1] — R by the formula

Py ...by (1) ::max({bn: 1 <n <N, qngt}U{O}).
Lemma 3.9. For anyr > 0 the family

Hy:={hoy, by b1,...,bn € [-1,7], N e N} C RO
has Birkhoff property with respecto fo

Proof. We first prove that{,, C aco(3rQ), where@ is the family defined in Lemma 3.8.
Fix by,...,by € [-r,r]. Choose a permutationof {1, ..., N} such that
do(1) < Go2) <+ < gg(N)
and define
ci :==max ({by;): 1 <j<i}u{0}), 1<i<N.
Notice thatd < ¢; < ¢y < --- < ey < r and that we have

N-1

ho, ... bn = Z CiX[ao(i)qo(i+1)) + CNX[qo(n)1]
=1
N-—1
Z cl X[0,q0(i4+1)) X[O1qa(i))) + CN X[go(ny,1]
i=1
N-—1
= —CG1X[0,q5(1)) + Z (Ci—l - Ci)X[Ow(JU(i)) + CN—-1X[0,q0(n)) + CNX[go (1]
=2
On the other hand
N—-1
| —el+ D leimr =il + len—a| + len]
=2
N-—1
=c + Z(Ct — Ci—l) +ceny_1t+ ey =2en-_1+ceny < 3r.
=2

Thereforehy, .., € ac3rQ). It follows thatH, C acd3rQ).

.....
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Since by Lemma 3.8 the famil@ has Birkhoff property, the familyrQ also does.
ThereforeH, C acq3rQ) has Birkhoff property, and the proof finishes. O

Example 3.10. If X is infinite dimensional and\* is separable, then there exists a
bounded Birkhoff integrable multi-valued functién: [0,1] — cwk(X) which is not
Debreu integrable.

Proof. As in the proof of Lemma 3.6, takf{x.,, 23 ) }..en an infinite countable shrinking
Markushevich basis ok such thatr := sup,,cy ||7,| < oo andz}, € By for every
n € N. The same line of arguments we did for the proof of({)ii) in Lemma 3.6 ensures
that the bounded multi-valued functidgndefined by
F(t) :=aco{z, : g, <t}, te€]0,1].
takes values inwk(X).
We first prove that is not Debreu integrable by showing thétis not A\-essentially
h-separably valued. This follows from the fact that for any s in [0, 1], we have
{neN:q, <t} #{neN:q, <s}
and thereforei(F'(t), F((s)) > 1 (see the proof of Lemma 3.6; inequality (4) also holds
for absolutely convex hulls).
We now prove that' is Birkhoff integrable. According to Proposition 2.9 we only have
to check thaWVy = {6*(z*, F) : z* € Bx~} has Birkhoff property. Define
G:={6"(a*,F): 2 € Bx~ Nspan{z,, : m € N}}.

We claim thatG C H,., whereH,. is the family defined in Lemma 3.9. Indeed, given
¥ = Zleanm;; € Bx-, we haver*(z,) = a, and|a,| < ||z,| < r for every
1 < n < N. Moreover, for each € [0, 1] we have

0" (z*, F(t)) = sup{x*(x) 1 x € aco{Tm 1 ¢m < t}}

N
=sup {3 D" anAwbum s D Al 1, A = 0for all but finitely manym }

n=1 g, <t qm <t

N
= sup {Z AnAp Z [Am| <1, A, = 0 for all but finitely manym}.
n=1

q7<t gm <t
nS

It is now clear that
0% (z*, F(t)) = max ({|an| :1<n<N, ¢ <t}U {0}) = Rjqy),....Jan | (t)

for everyt € [0, 1]. Sincex™ € Bx- Nspan{z,, : m € N} is arbitrary, we conclude that
G C H,, as we claimed.

From the above and Lemma 3.9 we deduce thdtas Birkhoff property, hence its
pointwise cIosur@T”([O’m has Birkhoff property too. In order to finish the proof we will
see thatl’y C an([o,u). To this end fixz* € Bx«. Sincespan{z} : n € N} is horm
dense inX*, there is a sequencg’) in Bx- Nspan{z’ : n € N} converging tax* for
the dual norm. For eache [0, 1] we havelim,, y (z) = x*(x) uniformly for x € F(t),
hencelim, 6 (y?, F(t)) = 6* (¢, F(t)). Thuss*(«*, F) belongs t&G ™"V, Therefore,

Wp C ?Tp([o’l]) has Birkhoff property and the proof ends. O
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Given a closed subspa¢e C X and a multi-valued functiod” : Q@ — cwk(Z), itis
easy to see thdt is Birkhoff (resp. Debreu) integrable if, and only , is Birkhoff (resp.
Debreu) integrable when viewed asw@k(X )-valued function. In this case the respective
integrals coincide. Bearing this in mind, Example 3.10 yields the following result.

Corollary 3.11. Assume thafX* has the Radon-Nikdan property (i.e.X is Asplund).
The following conditions are equivalent:

(i) every bounded Birkhoff integrable multi-valued function [0, 1] — cwk(X)
is Debreu integrable;
(i) X is finite dimensional.

We have already mentioned that Birkhoff and Pettis integrability coincide for single-
valued functions with values in a separable Banach space. In general, for multi-valued
functions Pettis integrability is strictly weaker than Birkhoff integrability, as we show next.

Example 3.12. If X is infinite dimensional and\* is separable, then there exists a
bounded Pettis integrable multi-valued functiéh : [0,1] — cwk(X) which is not
Birkhoff integrable.

Proof. Let us consider the complete probability spage, 1}, %, 1) obtained after com-
pleting the usual product probability measure Borel({0, 1}), i.e. the denumerable
product of the measunreon {0, 1} given byv({0}) = v({1}) = 3. Itis well known that
({0, 13N, 3, ) and ([0, 1], £, \) are isomorphic as measure spaces, see [16, 254K], and
therefore, in order to have the claimed example, it is sufficient to find a bounded Pettis in-
tegrable multi-valued functiof : {0, 1} — cwk(X) which is not Birkhoff integrable
(with respect tqu).

We already know thaX admits an infinite countable shrinking Markushevich basis
{(zn,x}) }nen such that{z,, : n € N} is bounded and;, € Bx- for everyn € N, and
that we can define a bounded multi-valued function {0, 1} — cwk(X) by

F2) aco{xTy : 2y =1} if 2= (2,)52, € {0,1}\ {0}
Z) =
{0} if z=0:=(0,0,...)
(see the proof of Example 3.10).
On the one hand;' is not Birkhoff integrableln order to prove this it suffices to check

that the family{6*(«}, F) : n € N} C W does not have Bourgain property and then use
Proposition 2.9. Let us notice that for eacke N the functionf,, := §*(«}, F) satisfies

fulz) =0" (), F(z)) = sup{mfl(x) sz € aco{xy, : Zym = 1}} =z

for everyz € {0,1}V\ {0}, with f,,(0) = 0.

We will prove that{f, : n € N} does not have Bourgain property by contradiction.
Suppose thaf f,, : n € N} has Bourgain property. Then there ate, ..., A4,, € ¥ of
positiveu-measure such that

N = G{n e N: |- |-diam(f,(4;)) < 1}.
=1
Hence there i§ < i < m such that
P:={neN: |- |-diam(f,(4;)) <1}
={neN: f,'{0)NnA; =0 or f;'({1})NA; =0}
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is infinite. Sincez,, = 2/, for everyz, 2’ € A; and everyn € P, we haved; C [[2, T,
whereT,, is a singleton for every, € P andT,, = {0, 1} whenevem € N\ P. SinceP
is infinite andv(T,,) = 1 for everyn € P, it follows thatu(4;) < u([1,",T») =0, a
contradiction which proves thdt is not Birkhoff integrable.

On the other hand, in order to establish that Pettis integrableve only need to show
thatWr is a uniformly integrable subset @f (1), as we pointed out before Theorem 3.4.
SinceF is boundedVr is uniformly bounded and the proof will be finished when proving
thato*(z*, F') is measurable for every* € Bx-. We begin with a particular case.

Claim.-§*(y*, F') is measurable for every* € span{z} : n € N}.

Indeed, fixy* € span{z} : n € N} and writey* = ZnNzl anz), o € R. Notice that
for everyz € {0,1}\ {0} we have

0" (y*, F(2)) = sup{y*(x) D x €aco{Ty, i Zm = 1}}

N
= sup {Z Zl U MmO : Z [Am| < 1, A = 0 for all but finitely manym}

n=1z,= Zm=1

N
= sup { Z Oy, Z [Am| < 1, A, = 0 for all but finitely manym}.
n=1

Zm=1
zp=1 "

It is now easy to see that

. max {|a,|: 1<n<N, z,=1} fze A
My’F(Z)):{o e }ifzeQ\A

whereA = Ufj:l{z € {0,1}V: 2, = 1}. Since the coordinate projections— z, are
continuousg*(y*, F') is measurable, as we claimed.

Finally, fix * € By.. Sincespan!l{z},cn = X*, there is a sequendgy;) in
span{x} : n € N} converging tar* for the dual norm. Therefore, for eache {0, 1}
we havelim,, y; (z) = z*(x) uniformly for z € F(z), and thuslim,, §*(y;, F'(z)) =
d*(z*, F(z)). By Claim above each*(y}, F') is measurable, hen@é (z*, F') is measur-
able and the proof is over. O
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REFERENCES

[1] A. Amrani, Lemme de Fatou pour l'iégrale de PettisPubl. Mat.42(1998), no. 1, 67—-79. MR9h:28027

[2] R.J. Aumannntegrals of set-valued function3. Math. Anal. Appl12(1965), 1-12. MR 32 #2543

[3] A. Barbati and C. HessThe largest class of closed convex valued multifunctions for which Effros measura-
bility and scalar measurability coincid&et-Valued Anal6 (1998), no. 3, 209-236. MRO00b26033

[4] G. Birkhoff, Integration of functions with values in a Banach spatens. Amer. Math. So@8 (1935),
no. 2, 357-378. MR 1 501 815

[5] C. L. Byrne,Remarks on the set-valued integrals of Debreu and Aumarvath. Anal. Appl62 (1978),
no. 2, 243-246. MRB0a:28006

[6] B. Cascales and J. Orihuel&, sequential property of set-valued mags Math. Anal. Appl.156 (1991),
no. 1, 86—-100. MA2m:54038

[7] B. Cascales and J. Rdduez,Birkhoff integral and the property of Bourgaipreprint (2003), available at
URL http://www.um.es/beca/.

[8] C. Castaing and M. ValadieGonvex analysis and measurable multifuncti®ringer-Verlag, Berlin, 1977,
Lecture Notes in Mathematics, Vol. 580. MR 57 #7169



BIRKHOFF INTEGRAL FOR MULTI-VALUED FUNCTIONS 17

[9] G. ChoquetTopology Translated from the French by Amiel Feinstein. Pure and Applied Mathematics, Vol.

XIX, Academic Press, New York, 1966. MR 33 #1823

[10] G. Debreu,Integration of correspondenceProc. Fifth Berkeley Sympos. Math. Statist. and Probability
(Berkeley, Calif., 1965/66), Vol. II: Contributions to Probability Theory, Part 1, Univ. California Press,
Berkeley, Calif., 1967, pp. 351-372. MR 37 #3835

[11] J. DiestelSequences and series in Banach spaGeaduate Texts in Mathematics, vol. 92, Springer-Verlag,
New York, 1984. MR85i:46020

[12] J. Diestel and J. J. Uhl, JMector measuresAmerican Mathematical Society, Providence, R.1., 1977, With
a foreword by B. J. Pettis, Mathematical Surveys, No. 15. MR 56 #12216

[13] L. Drewnowski,Additive and countably additive correspondendgsmment. Math. Prace Mat9 (1976),
no. 1, 25-54. MR 54 #10550

[14] K. ElI Amri and C. HessOn the Pettis integral of closed valued multifunctip8st-Valued Anal8 (2000),
no. 4, 329-360. MR002e26025

[15] D. H. Fremlin, K-analytic spaces with metrizable compadiéathematike?4 (1977), no. 2, 257-261. MR
58 #24210

[16] D. H. Fremlin,Measure Theory. Volume 2: Broad Foundatipmgrres Fremlin, Colchester, 2001.

[17] F. HausdorffGrundZige der Mengenlehré.eipzig, 1914.

[18] C. Hess,Set-valued integration and set-valued probability theory: an overvidandbook of measure
theory, Vol. |, Il, North-Holland, Amsterdam, 2002, pp. 617-673. MR 1 954 624

[19] C. Hess and H. ZiafTheoreme de Kondis pour des multifonctions iagrables au sens de Pettis et applica-
tions, Ann. Sci. Math. Qébec26 (2002), no. 2, 181-198. MR 1 980 843

[20] F. Hiai and H. Umegakilntegrals, conditional expectations, and martingales of multivalued functibns
Multivariate Anal.7 (1977), no. 1, 149-182. MR 58 #22463

[21] C. J. HimmelbergMeasurable relationg~und. Math87 (1975), 53—72. MR 51 #3384

[22] J. L. Kelley,General topologySpringer-Verlag, New York, 1975, Reprint of the 1955 edition [Van Nostrand,
Toronto, Ont.], Graduate Texts in Mathematics, No. 27. MR 51 #6681

[23] E. Kleinand A. C. Thompsori,heory of correspondenceSanadian Mathematical Society Series of Mono-
graphs and Advanced Texts, John Wiley & Sons Inc., New York, 1984, Including applications to mathemat-
ical economics, A Wiley-Interscience Publication. NMBa:90012

[24] G. Kothe, Topological vector spaces, Translated from the German by D. J. H. Garling. Die Grundlehren
der mathematischen Wissenschaften, Band 159, Springer-Verlag New York Inc., New York, 1969. MR 40
#1750

[25] J. Lindenstrauss and L. TzafrirClassical Banach spaces, $pringer-Verlag, Berlin, 1977, Sequence
spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92. MR 58 #17766

[26] K. Musiat, Topics in the theory of Pettis integratioRend. Istit. Mat. Univ. Triest23(1991), no. 1, 177-262
(1993), School on Measure Theory and Real Analysis (Grado, 1991)04kR6084

[27] B. J. PettisOn integration in vector spacg¥rans. Amer. Math. Soe4(1938), no. 2, 277-304. MR 1 501
970

[28] R.S. Phillips|ntegration in a convex linear topological spad@ans. Amer. Math. Soé.7(1940), 114-145.
MR 2,103c

[29] H. Radstbm, An embedding theorem for spaces of convex Betge. Amer. Math. So@® (1952), 165-169.
MR 13,659c¢

[30] L. H. Riddle and E. Saaln functions that are universally Pettis integrapliinois J. Math.29 (1985),
no. 3, 509-531. MR36i:28012

[31] M. TalagrandEspaces de Banach faiblemégtanalytiquesAnn. of Math. (2)110(1979), no. 3, 407-438.
MR 81a:46021

[32] H. Ziat, Convergence theorems for Pettis integrable multifuncti@udl. Polish Acad. Sci. Mat45(1997),
no. 2, 123-137. MM8i:46035

, On a characterization of Pettis integrable multifunctipBsill. Polish Acad. Sci. Math48 (2000),

no. 3, 227-230. MR001d46063

(33]

DEPARTAMENTO DEMATEMATICAS, UNIVERSIDAD DE MURCIA, 30.100 BSPINARDO, MURCIA, SPAIN
E-mail addressbeca@um.es and joserr@um.es



