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ABSTRACT. Kuratowski and Ryll-Nardzewski’s theorem about the existence of measur-
able selectors for multi-functions is one of the keystones for the study of set-valued inte-
gration; one of the drawbacks of this result is that separability is always required for the
range space. In this paper we study Pettis integrability for multi-functions and we obtain a
Kuratowski and Ryll-Nardzewski’s type selection theorem without the requirement of sep-
arability for the range space. Being more precise, we show that any Pettis integrable multi-
functionF : Ω → cwk(X) defined in a complete finite measure space(Ω, Σ, µ) with
values in the familycwk(X) of all non-empty convex weakly compact subsets of a general
(non-necessarily separable) Banach spaceX always admits Pettis integrable selectors and
that, moreover, for eachA ∈ Σ the Pettis integral

∫
A F dµ coincides with the closure of

the set of integrals overA of all Pettis integrable selectors ofF . As a consequence we prove
that if X is reflexive then every scalarly measurable multi-functionF : Ω → cwk(X)
admits scalarly measurable selectors; the latter is also proved when(X∗, w∗) is angelic
and has density character at mostω1. In each of these two situations the Pettis integra-
bility of a multi-functionF : Ω → cwk(X) is equivalent to the uniform integrability of
the family{sup x∗(F (·)) : x∗ ∈ BX∗} ⊂ RΩ. Results about norm-Borel measurable
selectors for multi-functions satisfying stronger measurability properties but without the
classical requirement of the range Banach space being separable are also obtained.

1. INTRODUCTION

Set-valued integration has its origin in the seminal papers by Aumann [2] and Debreu [9]
and has been a very useful tool in areas like optimization and mathematical economics.
The set-valued Pettis integral theory, which goes back to the monograph by Castaing and
Valadier [7], has attracted recently the attention of several authors, see for instance [1, 5,
6, 11, 12, 15, 24, 44] and [45]. All these studies deal with multi-functions whose values
are subsets of a Banach spaceX that is always assumed to beseparable. The main reason
for this limitation onX relies on the fact that an integrable multifunction should have
integrable (measurable) selectors and the tool to find these measurable selectors has always
been the well-known selection theorem of Kuratowski and Ryll-Nardzewski [29] that only
works when the range space is separable. For a detailed account on measurable selection
results and set-valued integration we refer the reader to the monographs [7, 27] and the
survey [23].

Our main goal here is to show that most of the Pettis integral theory for multi-functions
can be done without the restriction of separability on the range space. The extension from
the separable case to the non-separable one is not so obvious and to do so we have to obtain
a number of new measurable selection results for multi-functions in the non-separable case.

Throughout this paper(Ω,Σ, µ) is a complete finite measure space,X is a Banach space
andcwk(X) (resp.ck(X)) denotes the family of all convex weakly compact (resp. norm
compact) non-empty subsets ofX. We writeδ∗(x∗, C) := sup{x∗(x) : x ∈ C} for any
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bounded setC ⊂ X andx∗ ∈ X∗. A multi-functionF : Ω → cwk(X) is said to bePettis
integrableif

I δ∗(x∗, F ) is integrable for eachx∗ ∈ X∗;
I for eachA ∈ Σ, there is

∫
A

F dµ ∈ cwk(X) such that

δ∗
(
x∗,

∫
A

F dµ
)

=
∫

A

δ∗(x∗, F ) dµ for everyx∗ ∈ X∗.

Here the functionδ∗(x∗, F ) : Ω → R is defined byδ∗(x∗, F )(ω) = δ∗(x∗, F (ω)).
The paper is organized as follows. In Section 2 we study Pettis integrable multi-

functions via their selectors. Our Theorem 2.5 states that every Pettis integrable multi-
function F : Ω → cwk(X) admits indeed Pettis integrable selectors. Moreover, in this
case, for eachA ∈ Σ the integral

∫
A

F dµ coincides with theclosureof the set of integrals
overA of all Pettis integrable selectors ofF , Theorem 2.6. In the previous statement, the
“closure” can be dropped provided thatX∗ is w∗-separable, Corollary 2.7. These results
are the non-trivial extension of part of Theorem A below that is considered as the milestone
result in the set-valued Pettis integral theory for separable Banach spaces.

Theorem A ([15, 44, 45] and [7, Chapter V,§4]). LetX be a separable Banach space and
F : Ω → cwk(X) a multi-function. The following conditions are equivalent:

(i) F is Pettis integrable.
(ii) The familyWF = {δ∗(x∗, F ) : x∗ ∈ BX∗} is uniformly integrable.

(iii) The familyWF is made up of measurable functions and any scalarly measurable
selector ofF is Pettis integrable.

In this case, for eachA ∈ Σ the integral
∫

A
F dµ coincides with the set of integrals overA

of all Pettis integrable selectors ofF .

To get ready for the proof of a full counterpart to Theorem A for non-separable Banach
spaces we quote in Section 3 some known facts about the existence of countably addi-
tive selectors and the Orlicz-Pettis theorem formulti-measureswhich are due to Godet-
Thobie [20], Cost́e [8] and Pallu de la Barrière [33]: new proofs for these results are
included.

In Section 4 we discuss the possible extensions of Theorem A to the non-separable
setting. The implications (i)⇒(ii) and (i)⇒(iii) hold without any assumption onX, The-
orem 4.1 and Corollary 2.3. We show in Theorem 4.2 that the equivalence (i)⇔(iii)
holds true ifX has the following property: everyscalarly measurablemulti-function
F : Ω → cwk(X) (meaning thatδ∗(x∗, F ) is measurable for allx∗ ∈ X∗) admits a
scalarly measurable selector. This condition, which we callScalarly Measurable Selector
Propertywith respect toµ, shortlyµ-SMSP, is shared by many Banach spaces besides the
separable ones, as explained a few lines below. On the other hand, to prove (ii)⇒(i) we
have to require, in addition to theµ-SMSP, thatX has the so-called Pettis Integral Property
with respect toµ (shortlyµ-PIP), Corollary 4.3. The last part of Section 4 is devoted to
characterize Pettis integrability of multi-valued functions via single-valued ones and we
pay particular attention to the the case of multi-functions with norm compact values.

In Section 5 we are concerned with the existence of “measurable” selectors for multi-
functionsF : Ω → cwk(X) which satisfy one of the following measurability properties:

(α) {ω ∈ Ω : F (ω)∩M 6= ∅} ∈ Σ for every closed half-spaceM ⊂ X (equivalently,
F is scalarly measurable).

(β) {ω ∈ Ω : F (ω) ∩M 6= ∅} ∈ Σ for every convex closed setM ⊂ X.
(γ) {ω ∈ Ω : F (ω) ∩M 6= ∅} ∈ Σ for every norm closed setM ⊂ X.

WhenX is separable, it is known that (α), (β) and (γ) are equivalent to theEffros measur-
ability of F (i.e. the same property than (γ) but replacing “closed” by “open”, cf. [7, The-
orem III.37]). In this case, the selection theorem of Kuratowski and Ryll-Nardzewski, cf.
[7, Theorem III.30], ensures that such anF admits aBorel(X, norm)-measurable (hence
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strongly measurable) selector. In the non-separable case these measurability notions are
not equivalent in general and the situation becomes more complicated. Subsection 5.1 is
started with Theorem 5.1 by proving that reflexive Banach spaces haveµ-SMSP. Beyond
that, our Theorem 5.4 shows that many other Banach spaces haveµ-SMSP: for instance,
this happens if the dual space isw∗-angelic and hasw∗-density character less than or equal
to theuncountablecardinal numberκ(µ), Example 5.5 – we recall that the class of Banach
spaces havingw∗-angelic dual is very large and contains all weakly Lindelöf determined
spaces and, in particular, all weakly compactly generated ones. Amongst other things
we provide in Theorem 5.15 a different proof of Valadier’s result [43] saying that spaces
with w∗-separable dual also haveµ-SMSP. To this end we prove that a multi-function
F : Ω → cwk(X) is scalarly measurable if and only if{ω ∈ Ω : F (ω) ∩ M 6= ∅} ∈ Σ
for every setM ⊂ X which can be written as a finite intersection of closed half-spaces,
Theorem 5.10. The paper is closed by Subsection 5.2 where we study the existence of
Borel(X, norm)-measurable selectors for multi-functionsF : Ω → cwk(X) satisfy-
ing (β). We prove, for instance, that such selectors always exist provided thatX admits
an equivalent locally uniformly rotund norm, Corollary 5.19: this improves a result by
Leese [30] who obtained the same conclusion for multi-functions satisfying (γ) whenX
admits an equivalent uniformly rotund norm.

Terminology. Our unexplained terminology can be found in our standard references for
multi-functions [7, 27], Banach spaces [16] and vector integration [13, 42].

The cardinality of a setΓ is denoted bycard(Γ). The cardinality ofN (resp. R) is
denoted byℵ0 (resp.c). The symbolω1 stands for the first uncountable ordinal.

Our topological spaces(T,T) are always assumed to be Hausdorff. The density char-
acter of(T,T), denoted bydens(T,T) or simply bydens(T ), is the minimal cardinality
of a dense set inT .

All vector spaces here are assumed to be real. Given a subsetS of a vector space, we
write co(S) andspan(S) to denote, respectively, the convex and linear hull ofS. By letters
X andY we always denote Banach spaces.BY is the closed unit ball ofY andY ∗ stands
for the topological dual ofY . Giveny∗ ∈ Y ∗ andy ∈ Y , we write either〈y∗, y〉 or y∗(y)
to denote the evaluation ofy∗ at y. The weak (resp. weak∗) topology onY (resp.Y ∗) is
denoted byw (resp.w∗). Given a non-empty setΓ (resp. a compact topological spaceK),
we write`∞(Γ) (resp.C(K)) to denote the Banach space of all bounded (resp. continuous)
real-valued functions onΓ (resp.K), equipped with the supremum norm.

A function f : Ω → Y is said to bescalarly measurableif, for eachy∗ ∈ Y ∗, the
composition〈y∗, f〉 := y∗ ◦ f : Ω → R is measurable. By a result of Edgar [14],f is
scalarly measurable if and only if it isBaire(Y,w)-measurable. Recall also thatf is said
to bePettis integrableif

(i) y∗ ◦ f is integrable for everyy∗ ∈ Y ∗;
(ii) for eachA ∈ Σ, there is an element

∫
A

f dµ ∈ Y such that

〈y∗,
∫

A

f dµ〉 =
∫

A

y∗ ◦ f dµ for everyy∗ ∈ Y ∗.

A function f : Ω → Y is strongly measurableif it is the µ-a.e. limit of a sequence
of simple functions or, equivalently, if it isBorel(Y,norm)-measurable (or just scalarly
measurable) and there isE ∈ Σ with µ(Ω \ E) = 0 such thatf(E) is separable, cf. [13,
Theorem 2, p. 42].

2. SET-VALUED PETTIS INTEGRAL AND SELECTORS

In order to prove our main result in this section stating that any Pettis integrable multi-
function admits Pettis integrable selectors, Theorem 2.5, we need some previous work.

Recall first that a functionϕ : X∗ → R is said to be positively homogeneous if
ϕ(αx∗) = αϕ(x∗) for every α > 0 and x∗ ∈ X∗. ϕ is said to be subadditive if
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ϕ(x∗+ y∗) ≤ ϕ(x∗)+ϕ(y∗) for all pairs(x∗, y∗) ∈ X∗×X∗. ϕ is said to be sublinear if
it is both positively homogeneous and subadditive. We note that ifC ∈ cwk(X) then the
mapx∗ 7→ δ∗(x∗, C) is a sublinear functional inX∗ that isτ(X∗, X)-continuous. Here
τ(X∗, X) stands for theMackey topologyonX∗, that is, the topology of uniform conver-
gence on weakly compact subsets ofX, cf. [28,§21.4]. Recall that, by the Mackey-Arens
theorem,τ(X∗, X) is the finest locally convex topology onX∗ whose topological dual
is X, hence thew∗-closure and theτ(X∗, X)-closure of any convex setC ⊂ X∗ coincide,
cf. [28, §21.4(2) and§20.8(6)].

Lemma 2.1. Let F : Ω → cwk(X) be a multi-function such thatδ∗(x∗, F ) is integrable
for everyx∗ ∈ X∗. The following statements are equivalent:

(i) F is Pettis integrable.
(ii) For eachA ∈ Σ, the mapping

ϕF
A : X∗ → R, x∗ 7→

∫
A

δ∗(x∗, F ) dµ,

is τ(X∗, X)-continuous.

Proof. The implication (i)⇒(ii) follows from the fact that

δ∗
(
x∗,

∫
A

F dµ
)

=
∫

A

δ∗(x∗, F ) dµ for everyx∗ ∈ X∗,

and theτ(X∗, X)-continuity of the mapx∗ 7→ δ∗(x∗,
∫

A
F dµ). Conversely, assume that

(ii) holds and fixA ∈ Σ. SinceϕF
A is a sublinear function, it is convex. This fact and the

τ(X∗, X)-continuity ofϕF
A allow us to deduce that for everyt ∈ R the set{x∗ ∈ X∗ :

ϕF
A(x∗) ≤ t} is convex andτ(X∗, X)-closed, hencew∗-closed. ThereforeϕF

A is w∗-lower
semicontinuous and [7, Theorem II-16] applies to provide us with a non-empty convex,
closed and bounded setC ⊂ X such thatϕF

A(x∗) = δ∗(x∗, C) for everyx∗ ∈ X∗. Finally,
the fact thatϕF

A is τ(X∗, X)-continuous can be applied again to conclude thatC is weakly
compact. Indeed, the setU := {x∗ ∈ X∗ : ϕF

A(x∗) < 1} ∩ {x∗ ∈ X∗ : ϕF
A(−x∗) < 1} is

aτ(X∗, X)-neighborhood of0 and thus its polarU◦ = {x ∈ X : |x∗(x)| ≤ 1 for all x∗ ∈
U} is weakly compact, [28,§21.4.1]. SinceC is weakly closed and contained inU◦, C is
weakly compact as well. �

Observe that for every bounded setC ⊂ X and everyx∗ ∈ X∗ we have

inf{x∗(x) : x ∈ C} = −δ∗(−x∗, C).

Lemma 2.2. Let F,G : Ω → cwk(X) be two multi-functions such thatF is Pettis inte-
grable,G is scalarly measurable and, for eachx∗ ∈ X∗, we haveδ∗(x∗, G) ≤ δ∗(x∗, F )
µ-a.e. ThenG is Pettis integrable and

∫
A

G dµ ⊂
∫

A
F dµ for everyA ∈ Σ.

Proof. Given x∗ ∈ X∗, we have−δ∗(−x∗, F ) ≤ δ∗(x∗, G) ≤ δ∗(x∗, F ) µ-a.e. and
so δ∗(x∗, G) is integrable. FixA ∈ Σ. The mappingϕG

A is subadditive and satisfies
ϕG

A(x∗) ≤ ϕF
A(x∗) for all x∗ ∈ X∗, hence

|ϕG
A(x∗)− ϕG

A(y∗)| ≤ |ϕF
A(x∗ − y∗)|+ |ϕF

A(y∗ − x∗)|

for everyx∗, y∗ ∈ X∗. SinceF is Pettis integrable,ϕF
A is τ(X∗, X)-continuous and the

previous inequality implies thatϕG
A is alsoτ(X∗, X)-continuous. SinceA ∈ Σ is arbitrary,

an appeal to Lemma 2.1 ensures thatG is Pettis integrable. Moreover, for eachA ∈ Σ we
have

∫
A

G dµ ⊂
∫

A
F dµ, by the Hahn-Banach separation theorem and the fact that

δ∗
(
x∗,

∫
A

G dµ
)

=
∫

A

δ∗(x∗, G) dµ ≤
∫

A

δ∗(x∗, F ) dµ = δ∗
(
x∗,

∫
A

F dµ
)

for everyx∗ ∈ X∗. The proof is over. �
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Given a multi-functionF : Ω → cwk(X) andA ∈ Σ we write

ISF (A) :=
{∫

A

f dµ : f is a Pettis integrable selector ofF
}

.

Note thatISF (A) might be empty in general and that otherwise it is a convex subset ofX.
Next corollary says, in particular, thatISF (A) ⊂

∫
A

F dµ wheneverF is Pettis integrable.

Corollary 2.3. LetF : Ω → cwk(X) be a Pettis integrable multi-function. Iff : Ω → X
is a scalarly measurable selector ofF , thenf is Pettis integrable and∫

A

f dµ ∈
∫

A

F dµ for everyA ∈ Σ.

Proof. Apply Lemma 2.2 to the multi-functionG(ω) := {f(ω)}. �

To prove the main result of this section we also need the following lemma:

Lemma 2.4 ([43, Lemme 3]). Let F : Ω → cwk(X) be a scalarly measurable multi-
function. Fixx∗0 ∈ X∗ and consider the multi-function

G : Ω → cwk(X), G(ω) := {x ∈ F (ω) : x∗0(x) = δ∗(x∗0, F (ω))}.
ThenG is scalarly measurable.

Theorem 2.5. LetF : Ω → cwk(X) be a Pettis integrable multi-function. ThenF admits
a Pettis integrable selector.

Proof. Since
∫

A
F dµ ∈ cwk(X), we can find anexposed pointx0 ∈

∫
A

F dµ (cf. [4,
Theorem 3.6.1]), that is, there is somex∗0 ∈ X∗ such thatx∗0(x0) > x∗0(x) for every
x ∈

∫
A

F dµ \ {x0}. Let us consider the multi-function

G : Ω → cwk(X), G(ω) := {x ∈ F (ω) : x∗0(x) = δ∗(x∗0, F (ω))}.
By Lemma 2.4,G is scalary measurable. SinceG(ω) ⊂ F (ω) for everyω ∈ Ω andF
is Pettis integrable, an appeal to Lemma 2.2 ensures thatG is Pettis integrable too, with∫
Ω

G dµ ⊂
∫
Ω

F dµ. Let g : Ω → X be any selector ofG. Clearly,g is also a selector
of F . We will prove thatg is scalarly measurable. Observe that

δ∗
(
x∗0,

∫
Ω

G dµ
)

=
∫

Ω

δ∗(x∗0, G) dµ =

=
∫

Ω

δ∗(x∗0, F ) dµ = δ∗
(
x∗0,

∫
Ω

F dµ
)

= x∗0(x0) =

=
∫

Ω

(−δ∗(−x∗0, G)) dµ = −δ∗
(
−x∗0,

∫
Ω

G dµ
)
.

It follows that
∫
Ω

G dµ = {x0}. Givenx∗ ∈ X∗, we have−δ∗(−x∗, G) ≤ δ∗(x∗, G) and∫
Ω

(−δ∗(−x∗, G)) dµ = x∗(x0) =
∫

Ω

δ∗(x∗, G) dµ,

hence−δ∗(−x∗, G) = δ∗(x∗, G) µ-a.e. Therefore,x∗ ◦ g = δ∗(x∗, G) µ-a.e. and, in
particular,x∗ ◦ g is measurable. Sincex∗ ∈ X∗ is arbitrary,g is scalarly measurable.
Finally, an appeal to Corollary 2.3 allows us to conclude thatg is Pettis integrable. �

In our next result we establish that in fact any Pettis integrable multi-function admits
a collection of Pettis integrable selectors which are dense in it (a kind of “generalized”
Castaing representation).

Theorem 2.6. LetF : Ω → cwk(X) be a Pettis integrable multi-function. ThenF admits
a collection{fα}α<dens(X∗,w∗) of Pettis integrable selectors such that

F (ω) = {fα(ω) : α < dens(X∗, w∗)} for everyω ∈ Ω.

Moreover,
∫

A
F dµ = ISF (A) for everyA ∈ Σ.
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Proof. Notice first thatκ := dens(X∗, w∗) = dens(X∗, τ(X∗, X)). Fix a τ(X∗, X)-
dense set{x∗α : α < κ} ⊂ X∗. For eachα < κ, the multi-function

Lα : Ω → cwk(X), Lα(ω) := {x ∈ F (ω) : x∗α(x) = δ∗(x∗α, F (ω))},
is scalarly measurable by Lemma 2.4 and so Pettis integrable by Lemma 2.2. Then Theo-
rem 2.5 applied toLα ensures that there is a Pettis integrable selectorsα : Ω → X of Lα.
Clearly, eachsα is also a selector ofF . We claim that

F (ω) = co({sα(ω) : α < κ}) for everyω ∈ Ω.

Indeed, fixω ∈ Ω and setC := co({sα(ω) : α < κ}) ⊂ F (ω). ThenC ∈ cwk(X) and

δ∗(x∗α, F (ω)) ≥ δ∗(x∗α, C) ≥ x∗α(sα(ω)) = δ∗(x∗α, F (ω))

for everyα < κ. Since the set{x∗α : α < κ} is τ(X∗, X)-dense inX∗ and the maps
x∗ 7→ δ∗(x∗, C) andx∗ 7→ δ∗(x∗, F (ω)) areτ(X∗, X)-continuous we obtain the equality
δ∗(x∗, F (ω)) = δ∗(x∗, C) for everyx∗ ∈ X∗ and, therefore,F (ω) = C as asserted.
Observe that the collection{fα}α<κ made up of all convex combinations of thesα’s with
rational coefficients fulfills the required properties.

In order to prove the last assertion, fixA ∈ Σ. Using Corollary 2.3, we obtain that
ISF (A) ⊂

∫
A

F dµ. On the other hand, for eachα < κ, the following holds:

x∗α

(∫
A

sα dµ
)

=
∫

A

x∗α ◦ sα dµ =
∫

A

δ∗(x∗α, F ) dµ = δ∗
(
x∗α,

∫
A

F dµ
)
,

and soδ∗(x∗α, ISF (A)) ≥ δ∗(x∗α,
∫

A
F dµ). Since{x∗α : α < κ} is τ(X∗, X)-dense

in X∗, the inequalityδ∗(x∗, ISF (A)) ≥ δ∗(x∗,
∫

A
F dµ) holds true for everyx∗ ∈ X∗

and we infer that
∫

A
F dµ ⊂ ISF (A). ThereforeISF (A) =

∫
A

F dµ and the proof is
finished. �

It turns out that,whenX∗ is w∗-separable, the setsISF (A) are closed for any Pet-
tis integrable multi-functionF : Ω → cwk(X). The proof imitates that given in [15,
Proposition 5.2] for a separableX and so we omit the details. Combining this fact with
Theorem 2.6 we get the following result.

Corollary 2.7. SupposeX∗ is w∗-separable. LetF : Ω → cwk(X) be a Pettis integrable
multi-function. Then

∫
A

F dµ = ISF (A) for everyA ∈ Σ.

3. MULTI -MEASURES AND COUNTABLY ADDITIVE SELECTORS

Given a sequence(Cn) in cwk(X), the series
∑

n Cn is said to beunconditionally
convergentprovided that for every choicexn ∈ Cn, n ∈ N, the series

∑
n xn is uncondi-

tionally convergent inX. In this case, the set∑
n

Cn :=
{∑

n

xn : xn ∈ Cn for all n ∈ N
}

also belongs tocwk(X), see [6, Lemma 2.2]. Recall that the familycwk(X), equipped
with the Hausdorff metrich, is a complete metric space that can be isometrically embedded
into the Banach spacè∞(BX∗) by means of the mapping

j : cwk(X) → `∞(BX∗), j(C)(x∗) := δ∗(x∗, C),

see e.g. [7, Chapter II]. It is known that a series
∑

n Cn as above is unconditionally con-
vergent if and only if the series

∑
n j(Cn) is unconditionally convergent iǹ∞(BX∗) (in

this case, we havej(
∑

n Cn) =
∑

n j(Cn)), cf. [6, Lemma 2.3].

Definition 3.1. A mappingM : Σ → cwk(X) is said to be a finitely additive (resp.
countably additive) multi-measure ifM(A ∪ B) = M(A) + M(B) wheneverA,B ∈
Σ are disjoint (resp. if for every disjoint sequence(En) in Σ the series

∑
n M(En) is

unconditionally convergent andM(
⋃

n En) =
∑

n M(En)).



MEASURABLE SELECTORS AND SET-VALUED PETTIS INTEGRAL 7

Note thatM : Σ → cwk(X) is a finitely (resp. countably) additive multi-measure
if and only if the compositionj ◦ M : Σ → `∞(BX∗) is a finitely (resp. countably)
additive measure. Therefore, if forx∗ ∈ X∗ we defineδ∗(x∗,M) : Σ → R by A 7→
δ∗(x∗,M(A)), thenM is a finitely additive multi-measure if and only ifδ∗(x∗,M) is
finitely additive for everyx∗ ∈ X∗. For countably additive multi-measures the analogue
characterization is also true, see Theorem 3.4, but requires some work that we present in
this section: this result, due to Costé [8] and Pallu de la Barrière [33], can be seen as the
set-valued version of the well-known fact that weakly countably additive vector measures
are norm countably additive (Orlicz-Pettis theorem, cf. [13, Corollary 4, p. 22]).

From a technical point of view, the novelty of our approach to Theorem 3.4 relies mostly
in the way of finding “finitely additive selectors” for finitely additive multi-measures, see
Theorem 3.3, via a method of “linearization” of Lipschitz functions on Banach spaces that
goes back to Pelczynski [34, p. 61].

Let Lip0(X∗) be the Banach space of all Lipschitz functionsh : X∗ → R satisfying
h(0) = 0, equipped with the norm

‖h‖Lip0(X
∗) := sup

{ |h(x∗1)− h(x∗2)|
‖x∗1 − x∗2‖

: x∗1, x
∗
2 ∈ X∗, x∗1 6= x∗2

}
.

Fix an invariant meanon X∗ (considered as additive abelian group), that is, a linear
mappingI : `∞(X∗) → R such thatI(g) ≥ 0 wheneverg ≥ 0, I(1) = 1 and
I(g) = I(g(· + x∗)) for everyg ∈ `∞(X∗) and everyx∗ ∈ X∗, cf. [25, Theorem 17.5].
It is known that we can define an operatorP : Lip0(X∗) → X∗∗ by the formula

〈P (h), x∗〉 := I(h(·+ x∗)− h(·)), h ∈ Lip0(X
∗), x∗ ∈ X∗,

cf. [3, Proposition 7.5].

Lemma 3.2. LetC ∈ cwk(X). Thenδ∗(·, C) ∈ Lip0(X∗) andP (δ∗(·, C)) ∈ C.

Proof. The first assertion is clear, since

|δ∗(x∗1, C)− δ∗(x∗2, C)| ≤ ‖x∗1 − x∗2‖ · sup{‖x‖ : x ∈ C} for everyx∗1, x
∗
2 ∈ X∗.

The proof of the second assertion is by contradiction. Suppose thatP (δ∗(·, C)) 6∈ C. Since
C is a convexw∗-closed subset ofX∗∗, the Hahn-Banach separation theorem guarantees
the existence of somex∗ ∈ X∗ such that

(1) 〈P (δ∗(·, C)), x∗〉 > sup{x∗(x) : x ∈ C} = δ∗(x∗, C).

On the other hand, we haveδ∗(y∗ + x∗, C)− δ∗(y∗, C) ≤ δ∗(x∗, C) for everyy∗ ∈ X∗,
and the properties ofI yield

P (δ∗(·, C)) = I(δ∗(·+ x∗, C)− δ∗(·, C)) ≤ I(δ∗(x∗, C)) = δ∗(x∗, C),

which contradicts (1). The proof is over. �

We are now ready to deal with the aforementioned results about multi-measures.

Theorem 3.3([20], [8] and [33]). Let M : Σ → cwk(X) be a finitely additive multi-
measure. Then there is a finitely additive measurem : Σ → X such thatm(A) ∈ M(A)
for everyA ∈ Σ.

Proof. Lemma 3.2 ensures thatδ∗(·,M(A)) ∈ Lip0(X∗) and

m(A) := P (δ∗(·,M(A))) ∈ M(A) for everyA ∈ Σ.

SinceM is a finitely additive multi-measure andP is linear,m is finitely additive. �

For a givenx∗ ∈ BX∗ , let ex∗ denote the element ofB`∞(BX∗ )∗ defined by the formula
ex∗(ϕ) := ϕ(x∗).

Theorem 3.4(Cost́e-Pallu de la Barrìere). Let M : Σ → cwk(X) be a mapping. The
following statements are equivalent:



8 B. CASCALES, V. KADETS, AND J. RODŔIGUEZ

(i) M is a countably additive multi-measure.
(ii) δ∗(x∗,M) is countably additive for everyx∗ ∈ X∗.

(iii) δ∗(x∗,M) is countably additive for everyx∗ ∈ X∗ and there is a countably
additive measurem : Σ → X such thatm(A) ∈ M(A) for everyA ∈ Σ.

Proof. The implication (i)⇒(ii) follows from the fact thatδ∗(x∗,M) = 〈ex∗ , j ◦M〉 for
everyx∗ ∈ BX∗ .

Let us prove (ii)⇒(iii). By Theorem 3.3 there is a finitely additive measurem : Σ → X
such thatm(A) ∈ M(A) for everyA ∈ Σ. We claim thatm is countably additive. To
prove that it suffices to show that the compositionx∗ ◦ m is countably additive for every
x∗ ∈ X∗ and then appeal to the Orlicz-Pettis theorem, see [13, Corollary 4, p. 22]. Given
x∗ ∈ X∗, we have−δ∗(−x∗,M(A)) ≤ (x∗ ◦m)(A) ≤ δ∗(x∗,M(A)) for everyA ∈ Σ.
Since both−δ∗(−x∗,M) and δ∗(x∗,M) are countably additive andx∗ ◦ m is finitely
additive, it follows thatx∗ ◦m is countably additive, as claimed.

To finish we prove (iii)⇒(i). We will prove that the finitely additive measureν :=
j ◦M : Σ → `∞(BX∗) is countably additive. The proof is divided into two cases.

Particular case. Supposem(A) = 0 for everyA ∈ Σ. Take a disjoint sequence(An)
in Σ. We will show first that the series

∑
n ν(An) is unconditionally convergent. This

is equivalent to saying that the series of sets
∑

n M(An) is unconditionally convergent.
Fix xn ∈ M(An) for everyn ∈ N, and take a sequencen1 < n2 < . . . in N. Define
sk =

∑k
i=1 xni for everyk ∈ N. Note that

sk = sk + 0 ∈
k∑

i=1

M(Ani
) + M

(
Ω \

k⋃
i=1

Ani

)
= M(Ω) for everyk ∈ N.

On the other hand, for eachx∗ ∈ X∗ the series
∑∞

i=1 x∗(xni) is convergent. Indeed, it
suffices to bear in mind that

∞∑
i=1

|x∗(xni
)| ≤

∞∑
i=1

|δ∗(x∗,M(Ani
))|+

∞∑
i=1

|δ∗(−x∗,M(Ani
))| < +∞.

This ensures that the sequence(sk) has at most one weak cluster point inX. Since(sk) is
contained in the weakly compact setM(Ω), it follows that the series

∑∞
i=1 xni

is weakly
convergent. As the sequencen1 < n2 < . . . is arbitrary, the Orlicz-Pettis theorem (cf.
[13, Corollary 4, p. 22]) ensures that the series

∑
n xn is unconditionally convergent. This

proves that the series
∑

n ν(An) converges unconditionally iǹ∞(BX∗).
We claim now that

∑∞
n=1 ν(An) = ν(

⋃∞
n=1 An). Indeed, for eachx∗ ∈ BX∗ we have

( ∞∑
n=1

ν(An)
)
(x∗) = lim

N→∞

N∑
n=1

ν(An)(x∗) = lim
N→∞

N∑
n=1

δ∗(x∗,M(An)) =

= δ∗
(
x∗,M

( ∞⋃
n=1

An

))
= ν

( ∞⋃
n=1

An

)
(x∗).

The proof of theParticular caseis finished.
General case.Define the mapping

M ′ : Σ → cwk(X), M ′(A) = −m(A) + M(A).

It is clear thatδ∗(x∗,M ′) = −x∗ ◦ m + δ∗(x∗,M) for everyx∗ ∈ X∗. Note also that
0 ∈ M ′(A) for everyA ∈ Σ. TheParticular casealready proved ensures that the mapping
ν′ := j ◦ M ′ : Σ → `∞(BX∗) is a countably additive measure. On the other hand, the
mappingν′′ : Σ → `∞(BX∗) given byν′′(A)(x∗) := x∗(m(A)) is obviously a countably
additive measure. It follows thatν = ν′ + ν′′ is countably additive, as required. �

For further information on the theory of multi-measures, we refer the reader to [23,
Section 7], [27, Chapter 19] and the references therein.
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4. CHARACTERIZATION OF PETTIS INTEGRABILITY FOR MULTI-FUNCTIONS

The aim of this section is to discuss the validity of Theorem A in the introduction within
the setting of non-separable Banach spaces. Note that Corollary 2.3 gives us the extension
to the non-separable case of (i)⇒(iii) in Theorem A.

With the help of the results about multi-measures isolated in Section 3 we start by
proving Theorem 4.1 below that extends to the non-separable case the implication (i)⇒(ii)
in Theorem A, see (d)⇒(e) in [15, Theorem 5.4]. GivenF : Ω → cwk(X) we write

WF := {δ∗(x∗, F ) : x∗ ∈ BX∗} ⊂ RΩ.

Recall that a familyH of real-valued integrable functions defined onΩ is said to beuni-
formly integrableif it is bounded for‖ · ‖1 and for eachε > 0 there isδ > 0 such that
suph∈H

∫
E
|h| dµ ≤ ε wheneverµ(E) ≤ δ.

Theorem 4.1. Let F : Ω → cwk(X) be a Pettis integrable multi-function. Define the
indefinite Pettis integral ofF by

IF : Σ → cwk(X), IF (A) :=
∫

A

F dµ.

Then:

(i) IF is a countably additive multi-measure.
(ii) WF is uniformly integrable.

Proof. Clearly, δ∗(x∗, IF ) is countably additive for everyx∗ ∈ X∗ and we can apply
Theorem 3.4 to conclude thatIF is a countably additive multi-measure. This proves (i).

We prove now statement (ii). The compositionν := j ◦ IF : Σ → `∞(BX∗) is a count-
ably additive vector measure that vanishes on allµ-null sets. Henceν is µ-continuous, that
is, limµ(A)→0 ‖ν‖(A) = 0 (cf. [13, Theorem 1, p. 10]). On the other hand, observe that
〈ex∗ , ν〉(A) =

∫
A

δ∗(x∗, F ) dµ for everyx∗ ∈ BX∗ and everyA ∈ Σ. In view of the
above, the uniform integrability ofWF now follows from the fact that

‖ν‖(A) ≥ sup
x∗∈BX∗

|〈ex∗ , ν〉|(A) = sup
x∗∈BX∗

∫
A

|δ∗(x∗, F )| dµ

for everyA ∈ Σ. �

We turn our attention now to the implication (iii)⇒(i) in Theorem A for the non sepa-
rable case: the proof below is inspired by some of the ideas in [15, Theorems 3.9 and 5.4].
We say that a Banach spaceX has theScalarly Measurable Selector Propertywith respect
to µ, shortlyµ-SMSP, if every scalarly measurable multi-functionF : Ω → cwk(X) has a
scalarly measurable selector.

Theorem 4.2. SupposeX has theµ-SMSP. LetF : Ω → cwk(X) be a scalarly measur-
able multi-function such that every scalarly measurable selector ofF is Pettis integrable.
ThenF is Pettis integrable.

Proof. For any fixedA ∈ Σ the setISF (A) is closed and convex. We prove now that
ISF (A) ∈ cwk(X). By James’ theorem (cf. [17,§5]) we only have to prove that every
x∗ ∈ X∗ attains its supremum onISF (A). Fix x∗ ∈ X∗ and consider the multi-function

Gx∗ : Ω → cwk(X), Gx∗(ω) := {x ∈ F (ω) : x∗(x) = δ∗(x∗, F (ω))}.
SinceGx∗ is scalarly measurable (by Lemma 2.4) andX has theµ-SMSP, there is a
scalarly measurable selectorgx∗ of Gx∗ . In particular,gx∗ is a selector ofF and so it
is Pettis integrable. Henceδ∗(x∗, F ) = x∗ ◦ gx∗ is integrable. By the very definition, we
have

∫
A

gx∗ dµ ∈ ISF (A). We claim that

sup{x∗(x) : x ∈ ISF (A)} = x∗
(∫

A

gx∗ dµ
)
.
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Indeed, notice that for each Pettis integrable selectorf of F we have

x∗
(∫

A

gx∗ dµ
)

=
∫

A

x∗ ◦ gx∗ dµ =
∫

A

δ∗(x∗, F ) dµ ≥

≥
∫

A

x∗ ◦ f dµ = x∗
(∫

A

f dµ
)
,

hence

sup{x∗(x) : x ∈ ISF (A)} = sup{x∗(x) : x ∈ ISF (A)} = x∗
(∫

A

gx∗ dµ
)
.

This proves thatISF (A) is weakly compact. Moreover, the previous equality can be read
asδ∗(x∗, ISF (A)) =

∫
A

δ∗(x∗, F ) dµ. It follows thatF is Pettis integrable. �

Recall that the Banach spaceX is said to have theµ-Pettis Integral Property(shortly
µ-PIP) if every scalarly measurable and scalarly bounded functionf : Ω → X is Pettis
integrable. Heref : Ω → X is said to be scalarly bounded if there isM > 0 such
that for eachx∗ ∈ BX∗ we have|x∗ ◦ f | ≤ M µ-a.e. (the exceptional set depending
onx∗). Equivalently,X has theµ-PIP if and only if the Pettis integrability of any function
f : Ω → X is equivalent to the fact that the family

Zf = {x∗ ◦ f : x∗ ∈ BX∗} ⊂ RΩ

is uniformly integrable.

Corollary 4.3. SupposeX has theµ-SMSP and theµ-PIP. LetF : Ω → cwk(X) be a
multi-function. ThenF is Pettis integrable if and only ifWF is uniformly integrable.

Proof. It only remains to prove the “if” part. Observe thatF is scalarly measurable. Each
scalarly measurable selectorf of F satisfies−δ∗(−x∗, F ) ≤ x∗ ◦ f ≤ δ∗(x∗, F ) for all
x∗ ∈ BX∗ . SinceWF is uniformly integrable, the same holds forZf and thusf is Pettis
integrable (becauseX has theµ-PIP). The result now follows from Theorem 4.2. �

The Banach spaceX has the PIP if it has theµ-PIP for any complete probability mea-
sureµ. The class of Banach spaces with the PIP is very large and contains, for instance, all
spaces having Corson’s property (C), see [42, Theorem 5-2-4], hence all weakly Lindelöf
Banach spaces and all Banach spaces withw∗-angelic dual [35]. Recall that a topological
spaceT is said to beangelicif each relatively countably compact setC ⊂ T is relatively
compact and, moreover, each point in the closure ofC is the limit of a sequence inC.

The following cardinal number will be used in several examples that follow:

κ(µ) = min{card(E) : E ⊂ Σ, µ(E) = 0 for everyE ∈ E , µ∗(∪E) > 0},

defined if there exist such infinite familiesE (this happens, for instance, ifµ is not purely
atomic). Hereµ∗ denotes the outer measure induced byµ. Notice thatκ(µ) ≥ ω1. We
point out thatthe intersection of less thanκ(µ) elements ofΣ also belongs toΣ, cf. [38,
Lemma 4.4]. Whenκ(µ) cannot be defined, the intersection of any family of measurable
sets is measurable and all our results involvingκ(µ) are true without the restrictions on the
cardinalities or density characters appearing in their statement. It is well known (cf. [40])
that Martin’s Axiom implies the statement

“κ(Lebesgue measure on[0, 1]) = c” (Axiom M).

The Banach spaceX has both theµ-SMSP and the PIP in each of the following cases:

I X is separable.
I X is reflexive, Theorem 5.1.
I (X∗, w∗) is angelic anddens(X∗, w∗) ≤ κ(µ), Example 5.5.
I X = Y ∗ has property (C) anddens(Y ) ≤ κ(µ), Example 5.6.
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On the other hand, we will also see thatX has theµ-SMSP wheneverX∗ is w∗-separable,
Theorem 5.15. However, such anX does not have theµ-PIP in general. Indeed, Fremlin
and Talagrand [18] showed that`∞(N) fails theµ-PIP for certain pathological measureµ.
They also proved that, at least under Axiom M, ifBX∗ is w∗-separable for some equivalent
norm onX (equivalently,X is isomorphic to a subspace of`∞(N)), thenX has the PIP
with respect to anyperfectmeasure (for instance, a Radon finite measure on a topological
space), cf. [42, Theorems 6-1-2 and 6-1-3].

We end up this section turning our attention to the following question, thoroughly stud-
ied in [5] and [6] within the setting of separable Banach spaces:

What is the relationship between the Pettis integrability of the multi-
functionF : Ω → cwk(X) and that of the single-valued composition
j ◦ F : Ω → `∞(BX∗)?

As in the separable case, see [6, Proposition 3.5],F is Pettis integrable wheneverj ◦ F is.
The proof of this fact given here is more direct.

Proposition 4.4. Let F : Ω → cwk(X) be a multi-function such thatj ◦ F is Pettis
integrable. ThenF is Pettis integrable and

j(IF (A)) =
∫

A

j ◦ F dµ for everyA ∈ Σ.

Proof. Sincej ◦ F is Pettis integrable, the composition〈ex∗ , j ◦ F 〉 = δ∗(x∗, F ) is in-
tegrable for everyx∗ ∈ BX∗ . Fix A ∈ Σ. The Pettis integrability ofj ◦ F and the
Hahn-Banach separation theorem ensure that∫

A

j ◦ F dµ ∈ µ(A) · co((j ◦ F )(A)),

cf. [13, proof of Corollary 8, p. 48]. Sincej(cwk(X)) is a closed convex cone, we
conclude that

∫
A

j ◦ F dµ = j(CA) for someCA ∈ cwk(X). Then∫
A

δ∗(x∗, F ) dµ =
∫

A

〈ex∗ , j ◦ F 〉 dµ = 〈ex∗ ,

∫
A

j ◦ F dµ〉 = δ∗(x∗, CA)

for everyx∗ ∈ BX∗ . This shows thatF is Pettis integrable, withj(IF (A)) =
∫

A
j ◦ F dµ

for everyA ∈ Σ. �

It is known that the converse of Proposition 4.4 does not hold in general even for sep-
arable Banach spaces, see [5, Theorem 2.1]. However, it is valid under some additional
assumptions on the given multi-function.

Proposition 4.5. Let F : Ω → cwk(X) be a multi-function such that(j ◦ F )(Ω) is
contained in a subspace of`∞(BX∗) havingw∗-angelic dual (this happens, for instance,
if F (Ω) is separable for the Hausdorff distance). The following statements are equivalent:

(i) F is Pettis integrable;
(ii) WF is uniformly integrable;

(iii) j ◦ F is Pettis integrable.

Proof. The implication (i)⇒(ii) follows from Theorem 4.1 and (iii)⇒(i) from Proposi-
tion 4.4. Let us prove (ii)⇒(iii): let Y ⊂ `∞(BX∗) be a subspace containing(j ◦ F )(Ω)
such thatY ∗ is w∗-angelic. Notice that the setB := {ex∗ |Y : x∗ ∈ BX∗} ⊂ BY ∗ is
norming. The desired conclusion now follows by applying [6, Lemma 3.3] to theY -valued
functionj ◦ F , see the comments in [6, p. 552]. �

Recall that a convex, closed, bounded, non-empty setC ⊂ X is norm compact if and
only if the real-valued mapping given byx∗ 7→ δ∗(x∗, C) is w∗-continuous onBX∗ , cf.
[31, Section 7]. Thusj(ck(X)) ⊂ C(BX∗) = C(BX∗ , w∗).
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Proposition 4.6. SupposeX∗ is w∗-angelic. LetF : Ω → cwk(X) be a multi-function
with norm compact values such thatWF is uniformly integrable. ThenF is Pettis inte-
grable andIF (A) is norm compact for everyA ∈ Σ.

Proof. Fix A ∈ Σ. We claim that the mappingϕF
A : X∗ → R given by ϕF

A(x∗) =∫
A

δ∗(x∗, F ) dµ is w∗-continuous when restricted toBX∗ . Indeed, fixB ⊂ BX∗ and take

x∗ ∈ B
w∗

. Since(X∗, w∗) is angelic, there is a sequence(x∗n) in B converging tox∗

in the w∗-topology. Givenω ∈ Ω, the setF (ω) is norm compact and so the mapping
δ∗(·, F (ω)) is w∗-continuous onBX∗ , henceδ∗(x∗n, F (ω)) → δ∗(x∗, F (ω)) asn → ∞.
SinceWF is uniformly integrable, an appeal to Vitali’s convergence theorem ensures that

ϕF
A(x∗n) =

∫
A

δ∗(x∗n, F ) dµ →
∫

A

δ∗(x∗, F ) dµ = ϕF
A(x∗) asn →∞.

Asx∗ ∈ B
w∗

is arbitrary, we conclude thatϕF
A(B

w∗

) ⊂ ϕF
A(B). Since this inclusion holds

for any setB ⊂ BX∗ , the restrictionϕF
A|BX∗ is w∗-continuous, as claimed. Similarly,

ϕF
A|nBX∗ is w∗-continuous for everyn ∈ N. Bearing in mind thatϕF

A is convex, an appeal
to the Banach-Dieudonné theorem (cf. [16, Theorem 4.44]) ensures thatϕF

A is w∗-lower
semicontinuous. By [7, Theorem II-16], there is a convex, closed, bounded, non-empty set
C ⊂ X such thatϕF

A(x∗) = δ∗(x∗, C) for everyx∗ ∈ X∗. Thew∗-continuity ofϕF
A|BX∗

guarantees thatC is norm compact and the proof is over. �

5. MEASURABLE SELECTORS

5.1. Scalarly measurable selectors.The first measurable selection results of this sub-
section follow from the existence of scalarly measurable selectors for Pettis integrable
cwk(X)-valued functions, Theorem 2.5 above.

Theorem 5.1. If X is reflexive, then it has theµ-SMSP.

Proof. Let F : Ω → cwk(X) be a scalarly measurable multi-function. Since

{δ∗(x∗, F ) : x∗ ∈ X∗, ‖x∗‖ = 1}
is a pointwise bounded family of measurable functions, we can find a countable partition
E1, E2, . . . of Ω in Σ and a sequence(Mn) of positive real numbers such that, for each
n ∈ N and eachx∗ ∈ X∗ with ‖x∗‖ = 1, we have|δ∗(x∗, F )|En

| ≤ Mn µ-a.e. (cf. [32,
Proposition 3.1]). Fixn ∈ N and consider the (constant) Pettis integrable multi-function
Hn : En → cwk(X) given byHn(ω) := MnBX . Observe that for eachx∗ ∈ X∗ we
haveδ∗(x∗, F |En) ≤ δ∗(x∗,Hn) µ-a.e. From Lemma 2.2 it follows thatF |En is Pettis
integrable. By Theorem 2.5, we know thatF |En admits a scalarly measurable selector
fn : En → X. Definef : Ω → X by f(ω) := fn(ω) if ω ∈ En, n ∈ N. Clearly,f is a
scalarly measurable selector ofF . �

Theorem 5.2. SupposeX∗ is w∗-angelic. Then every scalarly measurable multi-function
F : Ω → ck(X) admits a scalarly measurable selector.

Proof. Again, sinceWF is a pointwise bounded family of measurable functions, there is
a countable partitionE1, E2, . . . of Ω in Σ and a sequence(Mn) of positive real numbers
such that, for eachn ∈ N and eachx∗ ∈ BX∗ , we have|δ∗(x∗, F )|En

| ≤ Mn µ-a.e. Given
n ∈ N, the previous inequality ensures that the familyWF |En

is uniformly integrable and
Proposition 4.6 can be applied to conclude thatF |En

is Pettis integrable. The proof finishes
as in Theorem 5.1. �

At this point it is convenient to introduce the following terminology. Given a topological
spaceT , we denote byk(T ) the collection of all compact non-empty subsets ofT . LetM
be a non-empty family of closed subsets ofT . We say that a multi-functionF : Ω → k(T )
isM-measurableif {ω ∈ Ω : F (ω) ∩M 6= ∅} ∈ Σ for everyM ∈ M. Clearly, with this
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terminology, a multi-functionF : Ω → cwk(X) is scalarly measurable if and only if it is
M-measurable forM = collection of all closed half-spaces ofX.

Lemma 5.3. Let T be a topological space andM a non-empty family of closed subsets
of T . Let γ < κ(µ) and, for eachα < γ, let Fα : Ω → k(T ) be aM-measurable
multi-function. SupposeFβ(ω) ⊃ Fα(ω) for everyβ < α < γ and everyω ∈ Ω. Then:

(i) For eachω ∈ Ω, the setF (ω) :=
⋂

α<γ Fα(ω) is compact and non-empty.
(ii) The multi-functionF : Ω → k(T ) isM-measurable.

Proof. Givenω ∈ Ω, the net of compact non-empty sets(Fα(ω))α<γ is decreasing and
so it has compact non-empty intersection. In order to prove the second assertion, take
M ∈M and observe that, since(Fα(ω) ∩M)α<γ is a decreasing net of compact sets, we
have

{ω ∈ Ω : F (ω) ∩M 6= ∅} =
⋂

α<γ

{ω ∈ Ω : Fα(ω) ∩M 6= ∅}.

TheM-measurability of eachFα ensures that{ω ∈ Ω : Fα(ω) ∩ M 6= ∅} ∈ Σ. Since
card(γ) < κ(µ), it follows that{ω ∈ Ω : F (ω) ∩M 6= ∅} ∈ Σ. �

Our approach to the next theorem is inspired somehow by some of the ideas in the
original proof of Valadier’s result [43] saying that Banach spaces withw∗-separable dual
always have theµ-SMSP (Theorem 5.15 below).

Theorem 5.4. Suppose there is a setΓ ⊂ X∗ satisfying the following properties:

(i) card(Γ) ≤ κ(µ).
(ii) Γ separates the points ofX.

(iii) A functionf : Ω → X is scalarly measurable if and only ifx∗ ◦ f is measurable
for everyx∗ ∈ Γ.

ThenX has theµ-SMSP.

Proof. EnumerateΓ = {x∗α : α < card(Γ)}. Fix a scalarly measurable multi-function
F : Ω → cwk(X). We divide the proof of the existence of a scalarly measurable selector
of F into several steps.

Step 1. DefineF0 := F . We will construct by transfinite induction a family of scalarly
measurable multi-functionsFα : Ω → cwk(X), with α < card(Γ), such that

(2) Fα(ω) =
⋂

β<α

{x ∈ Fβ(ω) : x∗β(x) = δ∗(x∗β , Fβ(ω))} for all ω ∈ Ω

for every0 < α < card(Γ). To this end, assume that0 < γ < card(Γ) and that we have
already constructed a family(Fα)α<γ of scalarly measurable multi-functions satisfying (2)
for every0 < α < γ. Givenα < γ, Lemma 2.4 applies to conclude that the multi-function
Gα : Ω → cwk(X) given by

Gα(ω) := {x ∈ Fα(ω) : x∗α(x) = δ∗(x∗α, Fα(ω))}

is scalarly measurable. Observe thatGβ(ω) ⊃ Gα(ω) for everyβ < α < γ and every
ω ∈ Ω. Sinceγ < card(Γ) ≤ κ(µ), Lemma 5.3 allows us to define a scalarly measurable
multi-functionFγ : Ω → cwk(X) by the formulaFγ(ω) :=

⋂
α<γ Gα(ω). Obviously,Fγ

satisfies (2) by construction.
Step 2. Givenω ∈ Ω, the net of weakly compact non-empty sets(Fα(ω))α<card(Γ)

is decreasing and so
⋂

α<card(Γ) Fα(ω) 6= ∅. In fact, this intersection contains only one
point. Indeed, ifx1, x2 ∈

⋂
α<card(Γ) Fα(ω), then

x∗β(x1) = δ∗(x∗β , Fβ(ω)) = x∗β(x2)
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for everyβ < card(Γ), and the fact thatΓ separates the points ofX implies x1 = x2.
Therefore, there is a functionf : Ω → X such that⋂

α<card(Γ)

Fα(ω) = {f(ω)} for everyω ∈ Ω.

Step 3. Clearly,f is a selector ofF . By assumption, in order to prove thatf is scalarly
measurable we only have to check thatx∗β◦f is measurable for everyβ < card(Γ). Indeed,
takeβ < α < card(Γ). Thenf(ω) ∈ Fα(ω) and thereforex∗β(f(ω)) = δ∗(x∗β , Fβ(ω))
for everyω ∈ Ω. SinceFβ is scalarly measurable, we conclude thatx∗β ◦ f is measurable.
The proof is over. �

A well known result of Edgar, see [14, Theorem 2.3], states that the Baireσ-algebra of
a locally convex space endowed with its weak topology is exactly theσ-algebra generated
by all the elements of the topological dual. In particular, ifΓ ⊂ X∗ is a set separating
the points ofX andσ(X, Γ) denotes the topology onX of pointwise convergence onΓ,
thenBaire(X, σ(X, Γ)) is just theσ-algebra onX generated byΓ. Thus, condition (iii) in
Theorem 5.4 is equivalent to “f is Baire(X, σ(X, Γ))-measurable”. Bearing this in mind,
observe that Theorem 5.4 ensures thatX has theµ-SMSP in the following two cases:

Example 5.5. (X∗, w∗) is angelic anddens(X∗, w∗) ≤ κ(µ). By a result of Gulisas-
hvili [21], when (X∗, w∗) is angelic, the equalityBaire(X, σ(X, Γ)) = Baire(X, w)
holds for any setΓ ⊂ X∗ separating the points ofX. A wide class of spaces having
w∗-angelic dual is that ofweakly Lindel̈of determined (WLD)Banach spaces. This class
contains all weakly compactly generated spaces (cf. [16, Chapters 11 and 12]) and for ev-
ery WLD spaceX the equalitydens(X∗, w∗) = dens(X) holds. In particular, any weakly
compactly generated Banach space with density character less than or equal toω1 has the
µ-SMSP. For instance, this applies toc0(ω1), separable Banach spaces, etc.

Example 5.6. X = Y ∗ has property (C) anddens(Y ) ≤ κ(µ). Indeed, any norm dense
setΓ ⊂ Y separates the points ofX and satisfiesBaire(X, σ(X, Γ)) = Baire(X, w∗). On
the other hand, sinceX is a dual space having property (C), the equalityBaire(X, w∗) =
Baire(X, w) holds, see [39, Corollary 3.10].

Next three lemmas are needed to prove Theorem 5.10.

Lemma 5.7. Let A ∈ cwk(X) andx∗0 ∈ X∗ satisfyinginf x∗0(A) < b < supx∗0(A) for
someb ∈ R. Letx ∈ A such thatx∗0(x) ≥ b. Then for everyε > 0 there isy ∈ A such
that‖x− y‖ ≤ ε andx∗0(y) ∈ [b, supx∗0(A)] ∩Q.

Proof. SinceA ∈ cwk(X), we havex∗0(A) = [inf x∗0(A), supx∗0(A)]. There are two
possibilities:

Case 1. Supposex∗0(x) < supx∗0(A). Fix z ∈ A such thatx∗0(z) = supx∗0(A) and
consider the mappingϕ : [0, 1] → [x∗0(x), supx∗0(A)] given byϕ(θ) := x∗0(θz+(1−θ)x).
We can choose0 < θ < min{ε/‖x − z‖, 1} such thatϕ(θ) ∈ Q. Then the vector
y := θz + (1− θ)x satisfies the required properties.

Case 2. Supposex∗0(x) = supx∗0(A). Takez ∈ A such thatx∗0(z) = b and consider
now the mappingϕ : [0, 1] → [b, supx∗0(A)] given byϕ(θ) := x∗0(θz +(1−θ)x). Choose
0 < θ < min{ε/‖x− z‖, 1} such thatϕ(θ) ∈ Q. Theny := θz + (1− θ)x works. �

Lemma 5.8 ([43, Lemme 3] or [7, Proposition I-24]). Let C ∈ cwk(X), x∗0 ∈ X∗ and
α ∈ R. SupposeH := {x ∈ X : x∗0(x) = α} intersectsC. ThenC ∩H ∈ cwk(X) and

δ∗(x∗, C ∩H) = inf{δ∗(x∗ − λx∗0, C) + λα : λ ∈ Q} for everyx∗ ∈ X∗.

Lemma 5.9. LetF : Ω → cwk(X) be a scalarly measurable multi-function and consider
a measurable functionh : Ω → R. Fix x∗0 ∈ X∗ and write

L(ω) := {x ∈ X : x∗0(x) ≥ h(ω)} for everyω ∈ Ω.
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ThenE := {ω ∈ Ω : F (ω) ∩ L(ω) 6= ∅} ∈ Σ and the multi-function

G : E → cwk(X), G(ω) := F (ω) ∩ L(ω),

is scalarly measurable.

Proof. Clearly, the setE = {ω ∈ Ω : δ∗(x∗0, F (ω)) ≥ h(ω)} belongs toΣ. Note that
−δ∗(−x∗0, F (ω)) = inf x∗0(F (ω)) for everyω ∈ Ω. The sets

E1 := {ω ∈ E : inf x∗0(F (ω)) ≥ h(ω)}
E2 := {ω ∈ E : supx∗0(F (ω)) = h(ω)}

E3 := {ω ∈ E : inf x∗0(F (ω)) < h(ω) < supx∗0(F (ω))}
belong toΣ andE = E1 ∪ E2 ∪ E3. We haveG(ω) = F (ω) wheneverω ∈ E1, thus the
restrictionG|E1 is scalarly measurable. On the other hand, we also have

G(ω) = {x ∈ F (ω) : x∗0(x) = δ∗(x∗0, F (ω))} for everyω ∈ E2,

hence Lemma 2.4 can be applied to conclude thatG|E2 is scalarly measurable. In order to
finish the proof it only remains to show thatG|E3 is scalarly measurable as well.

By Lemma 5.7, for eachω ∈ E3 we have

(3) G(ω) =
⋃

q∈I(ω)

F (ω) ∩ {x ∈ X : x∗0(x) = q}
norm

,

whereI(ω) := {q ∈ Q : h(ω) ≤ q ≤ δ∗(x∗0, F (ω))}. Define

J(q) := {ω ∈ E3 : h(ω) ≤ q ≤ δ∗(x∗0, F (ω))} ∈ Σ

for everyq ∈ Q. Fix x∗ ∈ X∗ anda ∈ R, and writeW := {x ∈ X : x∗(x) > a}.
Given q ∈ Q, Lemma 5.8 ensures that the multi-functionJ(q) → cwk(X) given by
ω 7→ F (ω) ∩ {x ∈ X : x∗0(x) = q} is scalarly measurable, so the set

{ω ∈ J(q) : F (ω) ∩ {x ∈ X : x∗0(x) = q} ∩W 6= ∅}
belongs toΣ. SinceW is open, equality (3) yields

{ω ∈ E3 : G(ω) ∩W 6= ∅} =

=
{

ω ∈ E3 :
( ⋃

q∈I(ω)

F (ω) ∩ {x ∈ X : x∗0(x) = q}
)
∩W 6= ∅

}
=

=
⋃
q∈Q

{
ω ∈ J(q) : F (ω) ∩ {x ∈ X : x∗0(x) = q} ∩W 6= ∅

}
∈ Σ.

This shows thatG is scalarly measurable. �

LetMw be the collection of all finite intersections of closed half-spaces ofX.

Theorem 5.10.LetF : Ω → cwk(X) be a multi-function. ThenF is scalarly measurable
if and only ifF isMw-measurable.

Proof. It only remains to check the “only if”. We prove the following statement by induc-
tion onn ∈ N:

(*) For each scalarly measurable multi-functionG : E → cwk(X), whereE ∈ Σ,
the set{ω ∈ E : G(ω) ∩ C 6= ∅} belongs toΣ wheneverC is the intersection of
n closed half-spaces ofX.

The casen = 1 follows directly from the scalar measurability. Assumen > 1 and
the induction hypothesis. Fix a scalarly measurable multi-functionG : E → cwk(X),
whereE ∈ Σ. TakeC :=

⋂n
i=1{x ∈ X : x∗i (x) ≥ ai}, wherex∗1, . . . , x

∗
n ∈ X∗ and

a1, . . . , an ∈ R. DefineE′ := {ω ∈ E : δ∗(x∗n, G(ω)) ≥ an} ∈ Σ and consider the
multi-function

G′ : E′ → cwk(X), G′(ω) := G(ω) ∩ {x ∈ X : x∗n(x) ≥ an},
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which is scalarly measurable by Lemma 5.9. DefineC ′ :=
⋂n−1

i=1 {x ∈ X : x∗i (x) ≥ ai}.
Now, by induction hypothesis, the set

{ω ∈ E′ : G′(ω) ∩ C ′ 6= ∅} = {ω ∈ E : G(ω) ∩ C 6= ∅}
belongs toΣ. The proof is over. �

The following lemma is a nice tool to get measurable selectors that will also be applied
in the next subsection.

Lemma 5.11. Let T be a topological space andM a non-empty family of closed subsets
of T . SupposeM is closed under finite intersections. Letg : T → [0,∞) be a function
such thatg−1([0, a]) ∈ M for everya ≥ 0. Let F : Ω → k(T ) be aM-measurable
multi-function. Then:

(i) For eachω ∈ Ω, the set

G(ω) := {t ∈ F (ω) : g(t) = inf{g(t′) : t′ ∈ F (ω)}}
is compact and non-empty.

(ii) The multi-functionG : Ω → k(T ) isM-measurable.

Proof. SinceM is made up of closed sets,g is lower semicontinuous and (i) follows
straightforwardly bearing in mind that eachF (ω) is compact and non-empty. We divide
the proof of (ii) into several steps.

Step 1. Fix n ∈ N. For eachm ∈ N we defineAn,m := g−1([0,m/2n]) ∈ M and
Bn,m := {ω ∈ Ω : F (ω) ∩ An,m 6= ∅} ∈ Σ. Clearly,Bn,m ⊂ Bn,m+1 for everym ∈ N
andΩ =

⋃∞
m=1 Bn,m. DefineCn,1 := Bn,1 andCn,m := Bn,m \ Bn,m−1 for every

m ≥ 2, so thatCn,1, Cn,2, . . . is a countable partition ofΩ in Σ. Consider the multi-
functionFn : Ω → k(T ) defined byFn(ω) := F (ω) ∩ An,m wheneverω ∈ Cn,m. Then
Fn isM-measurable. Indeed, givenM ∈M, note thatAn,m ∩M ∈M for everym ∈ N
and we have

{ω ∈ Ω : Fn(ω) ∩M 6= ∅} =

=
∞⋃

m=1

(
Cn,m ∩ {ω ∈ Ω : F (ω) ∩ (An,m ∩M) 6= ∅}

)
∈ Σ

sinceF isM-measurable.
Step 2. Clearly,Cn,m = Cn+1,2m−1 ∪ Cn+1,2m andAn+1,2m−1 ⊂ An+1,2m = An,m

for everyn, m ∈ N, by the very definitions. It follows thatFn+1(ω) ⊂ Fn(ω) for every
ω ∈ Ω and everyn ∈ N. In view of Lemma 5.3, we can define aM-measurable multi-
functionH : Ω → k(T ) by H(ω) :=

⋂∞
n=1 Fn(ω).

Step 3. Givenω ∈ Ω, note that a pointt ∈ F (ω) does not belong toG(ω) if and only
if g(t′) < m/2n < g(t) for somet′ ∈ F (ω) and somen, m ∈ N, which is equivalent to
saying thatω ∈ Cn,m′ for some1 ≤ m′ ≤ m andt 6∈ An,m. It follows thatG(ω) = H(ω)
for everyω ∈ Ω and the proof is over. �

Lemma 5.12. Let T be a topological space andM a non-empty family of closed subsets
of T . SupposeM is closed under finite intersections. Letκ < κ(µ) be a cardinal and
writeM(κ) to denote the collection of all intersections of at mostκ elements ofM. Then
a multi-functionF : Ω → k(T ) isM-measurable if and only if it isM(κ)-measurable.

Proof. It only remains to prove the “only if”. We will check thatF isM(κ)-measurable
for every cardinalκ < κ(µ) by transfinite induction. Fix such a cardinal and assume
that F is M(κ′)-measurable for every cardinalκ′ < κ. Clearly, the conclusion follows
automatically ifκ is finite, sinceM is closed under finite intersections. So assume thatκ
is infinite. Take a family{Mα : α < κ} ⊂ M and define, for each ordinalβ < κ, the set

Nβ :=
⋂

α<β

Mα ∈M(card(β)),
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so that{ω ∈ Ω : F (ω) ∩Nβ 6= ∅} ∈ Σ by induction hypothesis. Givenω ∈ Ω, the net of
compact sets(F (ω) ∩Nβ)β<κ is decreasing and, therefore, we have⋂

β<κ

{ω ∈ Ω : F (ω) ∩Nβ 6= ∅} =
{

ω ∈ Ω : F (ω) ∩
( ⋂

β<κ

Nβ

)
6= ∅

}
.

Observe that
⋂

β<κ Nβ =
⋂

α<κ Mα. Since the intersection of less thanκ(µ) elements
of Σ also belongs toΣ andκ < κ(µ), we conclude that{

ω ∈ Ω : F (ω) ∩
( ⋂

α<κ

Mα

)
6= ∅

}
∈ Σ.

This shows thatF isM(κ)-measurable, as required. �

In the next two theorems we apply the previous work to present sufficient conditions
on X to have theµ-SMSP. Recall that a norm‖ · ‖ on X is said to bestrictly convexif
x = x′ wheneverx, x′ ∈ X are such that‖x‖ = ‖x′‖ = 1 and‖x + x′‖ = 2.

Theorem 5.13. If X admits an equivalent strictly convex norm with the property that
dens(BX∗ , w∗) < κ(µ), thenX has theµ-SMSP.

Proof. Write κ := dens(BX∗ , w∗). LetF : Ω → cwk(X) be a scalarly measurable multi-
function. By Theorem 5.10 and Lemma 5.12,F is Mw(κ)-measurable. Let‖ · ‖ be an
equivalent strictly convex norm withdens(BX∗ , w∗) < κ(µ) and defineg : X → [0,∞)
by g(x) := ‖x‖. Observe that

g−1([0, a]) =
⋂

x∗∈D

{x ∈ X : |x∗(x)| ≤ a} ∈ Mw(κ) for everya ≥ 0,

whereD ⊂ BX∗ is anyw∗-dense set withcard(D) = κ. Givenω ∈ Ω, the set

G(ω) := {x ∈ F (ω) : ‖x‖ = inf{‖x′‖ : x′ ∈ F (ω)}}
contains only one point, sayf(ω), becauseF (ω) ∈ cwk(X) and‖ · ‖ is w-lower semicon-
tinuous and strictly convex. Note that the functionf : Ω → X is a selector ofF . We can
now apply Lemma 5.11 (working with the topological space(X, w) and considering the
family M = Mw(κ)) to conclude thatf−1(C) ∈ Σ for everyC ∈ Mw(κ), so thatf is
scalarly measurable. �

A norm ‖ · ‖ on X is calledlocally uniformly rotund(shortlyLUR) if ‖xn − x‖ → 0
whenever the sequence(xn) in X andx ∈ X satisfy‖xn‖ → ‖x‖ and‖xn +x‖ → 2‖x‖.
Clearly, this property implies strict convexity. Many Banach spaces admit an equivalent
LUR norm, for instance, the WLD ones, cf. [10, Corollary 1.10, p. 286]. For complete
information about renormings in Banach spaces we refer the reader to [10], [19] and [46].

As an application of the previous theorem we obtain:

Example 5.14. C([0, ω1]) has theµ-SMSP wheneverκ(µ) > ω1. Indeed, it is known that
C([0, ω1]) admits an equivalent LUR (in particular, strictly convex) norm, because[0, ω1]
is a Valdivia compactum, cf. [10, Corollary 1.10, p. 286]. On the other hand, the dual unit
ball of any equivalent norm onC([0, ω1]) hasw∗-density characterω1 (bear in mind that
this space contains a subspace isomorphic toc0(ω1)).

A similar argument allows us to give an alternative proof of the previously announced
result of Valadier, see [43, Proposition 6].

Theorem 5.15(Valadier). If X∗ is w∗-separable, thenX has theµ-SMSP.

Proof. Let F : Ω → cwk(X) be a scalarly measurable multi-function. By Theorem 5.10
and Lemma 5.12, we know thatF isMw(ℵ0)-measurable. Fix a countablew∗-dense set
{x∗n : n ∈ N} ⊂ X∗ and consider the operator

T : X → `2(N), T (x) :=
(x∗n(x)

2n

)
.
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Defineg : X → [0,∞) by g(x) := ‖T (x)‖`2(N). SinceB`2(N)∗ is w∗-separable, we have
g−1([0, a]) ∈ Mw(ℵ0) for everya ≥ 0. Sinceg is a w-lower semicontinuous strictly
convex norm onX (non necessarily equivalent to the original one!), the arguments in
the proof of Theorem 5.13 (dealing now with the family of weakly closed setsMw(ℵ0))
ensure thatF admits a scalarly measurable selector. �

It is well known thatX admits an equivalent strictly convex norm wheneverX∗ is
w∗-separable, cf. [10, Theorem 2.4, p. 46]. However, the fact that such anX has the
µ-SMSP cannot be deduced, in general, from Theorem 5.13 above. Indeed, the Johnson-
Lindentrauss spaceJL2 hasw∗-separable dual but, for any equivalent norm onJL2, the
corresponding dual unit ball is notw∗-separable, see [26, Example 1].

The technique used in the proof of Theorem 2.6 can be used to prove Theorem 5.16
below: the particular case of Banach spaces havingw∗-separable dual was first proved by
Valadier in [43, Proposition 7].

Theorem 5.16. SupposeX has theµ-SMSP. LetF : Ω → cwk(X) be a scalarly measur-
able multi-function. Then there is a collection{fα}α<dens(X∗,w∗) of scalarly measurable
selectors ofF such that

F (ω) = {fα(ω) : α < dens(X∗, w∗)} for everyω ∈ Ω.

5.2. Borel measurable selectors.In this subsection we exploit Lemma 5.11 in order to
find nice selectors for multi-functions with stronger measurability properties. It is conve-
nient to recall first some facts concerning measurability in Banach spaces.

LetMnc (resp.Mcc) be the collection of all norm closed (resp. convex closed) subsets
of X. Write σ(Mcc) to denote the smallestσ-algebra onX containingMcc. In general,
we have

Baire(X, w) ⊂ σ(Mcc) ⊂ Borel(X, w) ⊂ Borel(X, norm).
All theseσ-algebras coincide for separableX but some inclusions may be strict beyond
the separable case. Talagrand [41] showed thatBorel(`∞(N), w) 6= Borel(`∞(N),norm)
and Edgar [14] proved that the equalityBorel(X, w) = Borel(X, norm) holds whenever
X admits an equivalent Kadec norm (i.e. a norm for which the weak and norm topologies
coincide on the unit sphere; clearly, every LUR norm is Kadec). A result of Raja [36,
Theorem 1.2] states thatX admits an equivalent LUR norm if and only if every norm open
setU ⊂ X can be written asU =

⋃∞
n=1(Cn \ Dn), whereCn, Dn ∈ Mcc for every

n ∈ N; in this case, we haveσ(Mcc) = Borel(X, norm). On the other hand, it is known
thatBaire(X, w) 6= σ(Mcc) wheneverX∗ is notw∗-separable, cf. [22, Theorem 1.5.3],
but also for̀ ∞(N) and the Johnson-Lindenstrauss spaces [26], see [37, Theorem 2.3].

Theorem 5.17. SupposeX admits an equivalent strictly convex norm. Then everyMcc-
measurable multi-functionF : Ω → cwk(X) admits aσ(Mcc)-measurable selector.

Proof. Fix an equivalent strictly convex norm‖ · ‖ onX. Givenω ∈ Ω, the set

G(ω) := {x ∈ F (ω) : ‖x‖ = inf{‖x′‖ : x′ ∈ F (ω)}}
contains only one pointf(ω) becauseF (ω) ∈ cwk(X) and‖·‖ isw-lower semicontinuous
and strictly convex. The functionf : Ω → X is a selector ofF . Obviously, the mapping
g : X → [0,∞) given byg(x) := ‖x‖ satisfiesg−1([0, a]) ∈ Mcc for everya ≥ 0. We
can apply Lemma 5.11 (working with the topological space(X, w) and takingM = Mcc)
to conclude thatf is σ(Mcc)-measurable. �

In fact, under the same assumption we can say more:

Theorem 5.18. SupposeX admits an equivalent strictly convex norm. Then everyMcc-
measurable multi-functionF : Ω → cwk(X) admits a collection{fα}α<dens(X) of
σ(Mcc)-measurable selectors such that

F (ω) = {fα(ω) : α < dens(X)} for everyω ∈ Ω.
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Proof. Fix a dense set{xα : α < κ} ⊂ X, whereκ := dens(X), and take an equivalent
strictly convex norm‖ · ‖ on X. Fix α < κ. Since the multi-functionFα : Ω → cwk(X)
given byFα(ω) := −xα+F (ω) isMcc-measurable, a glance at the proof of Theorem 5.17
reveals thatFα admits aσ(Mcc)-measurable selectorgα : Ω → X with the property that

(4) ‖gα(ω)‖ = inf{‖x− xα‖ : x ∈ F (ω)} for everyω ∈ Ω.

Let us consider theσ(Mcc)-measurable selectorfα : Ω → X of F defined by the formula
fα(ω) := gα(ω)+xα. We claim that the collection{fα}α<κ fulfills the required property.
Indeed, fixω ∈ Ω andx ∈ F (ω). Givenε > 0, there isα < κ such that‖x − xα‖ ≤ ε,
hence (4) yields

‖fα(ω)− x‖ ≤ ‖gα(ω)‖+ ‖x− xα‖ ≤ 2‖x− xα‖ ≤ 2ε.

As x ∈ F (ω) andε > 0 are arbitrary, we getF (ω) = {fα(ω) : α < κ}. �

As we have mentioned at the beginning of the subsection, ifX admits an equivalent
LUR norm thenσ(Mcc) = Borel(X, norm). Bearing in mind that every LUR norm is
strictly convex, from Theorem 5.18 we deduce the following corollary.

Corollary 5.19. SupposeX admits an equivalent LUR norm. LetF : Ω → cwk(X)
be aMcc-measurable multi-function. ThenF admits a collection ofBorel(X, norm)-
measurable selectors{fα}α<dens(X) such that

F (ω) = {fα(ω) : α < dens(X)} for everyω ∈ Ω.

We stress that the previous corollary improves a result of Leese [30, Theorem 2], who
proved the existence ofBorel(X, norm)-measurable selectors forMnc-measurable multi-
functions whenX admits an equivalentuniformly rotundnorm.

Similar arguments to those of Theorems 5.17 and 5.18, now dealing with the norm
topology ofX, allow us to deduce the following result.

Theorem 5.20. SupposeX admits an equivalent strictly convex norm. LetF : Ω →
ck(X) be aMnc-measurable multi-function. ThenF admits a collection{fα}α<dens(X)

of Borel(X, norm)-measurable selectors such that

F (ω) = {fα(ω) : α < dens(X)} for everyω ∈ Ω.

Under such assumptions, the existence of at least oneBorel(X, norm)-measurable se-
lector was first proved by Leese [30, Theorem 1].

To the best of our knowledge, the question below remains unanswered in full generality:

OPEN PROBLEM.- Does every Banach space have theµ-SMSP for anyµ?
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[9] G. Debreu,Integration of correspondences, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability
(Berkeley, Calif., 1965/66), Vol. II: Contributions to Probability Theory, Part 1, Univ. California Press,
Berkeley, Calif., 1967, pp. 351–372. MR 0228252 (37 #3835)

[10] R. Deville, G. Godefroy, and V. Zizler,Smoothness and renormings in Banach spaces, Pitman Monographs
and Surveys in Pure and Applied Mathematics, vol. 64, Longman Scientific & Technical, Harlow, 1993.
MR 1211634 (94d:46012)

[11] L. Di Piazza and K. Musiał,Set-valued Kurzweil-Henstock-Pettis integral, Set-Valued Anal.13 (2005),
no. 2, 167–179. MR2148134 (2006a:28013)

[12] L. Di Piazza and K. Musiał,A decomposition theorem for compact-valued Henstock integral, Monatsh.
Math.148(2006), no. 2, 119–126. MR 2235359

[13] J. Diestel and J. J. Uhl, Jr.,Vector measures, American Mathematical Society, Providence, R.I., 1977, With
a foreword by B. J. Pettis, Mathematical Surveys, No. 15. MR 0453964 (56 #12216)

[14] G. A. Edgar,Measurability in a Banach space, Indiana Univ. Math. J.26 (1977), no. 4, 663–677. MR
0487448 (58 #7081)

[15] K. El Amri and C. Hess,On the Pettis integral of closed valued multifunctions, Set-Valued Anal.8 (2000),
no. 4, 329–360. MR1802239 (2002e:26025)

[16] M. Fabian, P. Habala, P. H́ajek, V. Montesinos Santalucı́a, J. Pelant, and V. Zizler,Functional analysis and
infinite-dimensional geometry, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 8,
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[34] A. Pełczýnski,Linear extensions, linear averagings, and their applications to linear topological classifica-
tion of spaces of continuous functions, Dissertationes Math. Rozprawy Mat.58 (1968), 92. MR 0227751
(37 #3335)

[35] R. Pol,On a question of H. H. Corson and some related problems, Fund. Math.109(1980), no. 2, 143–154.
MR 597061 (82a:46022)



MEASURABLE SELECTORS AND SET-VALUED PETTIS INTEGRAL 21

[36] M. Raja,First Borel class sets in Banach spaces and the asymptotic-norming property, Israel J. Math.138
(2003), 253–270. MR2031959 (2005f:46031)
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