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ABSTRACT. Kuratowski and Ryll-Nardzewski's theorem about the existence of measur-
able selectors for multi-functions is one of the keystones for the study of set-valued inte-
gration; one of the drawbacks of this result is that separability is always required for the
range space. In this paper we study Pettis integrability for multi-functions and we obtain a
Kuratowski and Ryll-Nardzewski’s type selection theorem without the requirement of sep-
arability for the range space. Being more precise, we show that any Pettis integrable multi-
function F' : Q@ — cwk(X) defined in a complete finite measure spé@eX, 1) with
values in the family:wk(X) of all non-empty convex weakly compact subsets of a general
(non-necessarily separable) Banach spsEcaways admits Pettis integrable selectors and
that, moreover, for eacH € X the Pettis integraf , ' du coincides with the closure of

the set of integrals ovet of all Pettis integrable selectors Bt As a consequence we prove
that if X is reflexive then every scalarly measurable multi-function Q@ — cwk(X)
admits scalarly measurable selectors; the latter is also proved (Wemnw*) is angelic

and has density character at mast In each of these two situations the Pettis integra-
bility of a multi-function F' : Q — cwk(X) is equivalent to the uniform integrability of

the family {sup z*(F(-)) : =* € Bx»} C R®. Results about norm-Borel measurable
selectors for multi-functions satisfying stronger measurability properties but without the
classical requirement of the range Banach space being separable are also obtained.

1. INTRODUCTION

Set-valued integration has its origin in the seminal papers by Aumann [2] and Debreu [9]
and has been a very useful tool in areas like optimization and mathematical economics.
The set-valued Pettis integral theory, which goes back to the monograph by Castaing and
Valadier [7], has attracted recently the attention of several authors, see for instance [1, 5,
6, 11, 12, 15, 24, 44] and [45]. All these studies deal with multi-functions whose values
are subsets of a Banach spacéhat is always assumed to beparable The main reason
for this limitation on X relies on the fact that an integrable multifunction should have
integrable (measurable) selectors and the tool to find these measurable selectors has always
been the well-known selection theorem of Kuratowski and Ryll-Nardzewski [29] that only
works when the range space is separable. For a detailed account on measurable selection
results and set-valued integration we refer the reader to the monographs [7, 27] and the
survey [23].

Our main goal here is to show that most of the Pettis integral theory for multi-functions
can be done without the restriction of separability on the range space. The extension from
the separable case to the non-separable one is not so obvious and to do so we have to obtain
a number of new measurable selection results for multi-functions in the non-separable case.

Throughout this pap€t?, >, 1) is a complete finite measure spad&eis a Banach space
andcwk(X) (resp.ck(X)) denotes the family of all convex weakly compact (resp. norm
compact) non-empty subsets &. We write§*(«*, C') := sup{z*(z) : z € C} for any
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bounded sef’ C X andz* € X*. A multi-function F' :  — cwk(X) is said to bePettis
integrableif

» 0*(a*, F) is integrable for each* ¢ X*;

» foreachd e X, thereisf, F du € cwk(X) such that

6*(x*,/ qu) :/ 0*(z*, F) du foreveryz* € X*.
A A

Here the functiod™* (z*, F') : Q — Ris defined by* (z*, F)(w) = §*(z*, F (w)).

The paper is organized as follows. In Section 2 we study Pettis integrable multi-
functions via their selectors. Our Theorem 2.5 states that every Pettis integrable multi-
function F : Q — cwk(X) admits indeed Pettis integrable selectors. Moreover, in this
case, for eachl € X the integralf,, F dyu coincides with thelosureof the set of integrals
over A of all Pettis integrable selectors 6f, Theorem 2.6. In the previous statement, the
“closure” can be dropped provided th&t* is w*-separable, Corollary 2.7. These results
are the non-trivial extension of part of Theorem A below that is considered as the milestone
result in the set-valued Pettis integral theory for separable Banach spaces.

Theorem A ([15, 44, 45] and [7, Chapter ¥4]). Let X be a separable Banach space and
F : Q — cwk(X) a multi-function. The following conditions are equivalent:

(i) F is Pettis integrable.
(i) The familyWg = {6*(z*, F) : * € Bx-} is uniformly integrable.
(iif) The familylWr is made up of measurable functions and any scalarly measurable
selector ofF’ is Pettis integrable.

In this case, for eachl € ¥ the integral [, F" du coincides with the set of integrals ovér
of all Pettis integrable selectors df.

To get ready for the proof of a full counterpart to Theorem A for non-separable Banach
spaces we quote in Section 3 some known facts about the existence of countably addi-
tive selectors and the Orlicz-Pettis theorem riaulti-measuresvhich are due to Godet-
Thobie [20], Cost [8] and Pallu de la Bamre [33]: new proofs for these results are
included.

In Section 4 we discuss the possible extensions of Theorem A to the non-separable
setting. The implications @&-(ii) and (i)=-(iii) hold without any assumption oX, The-
orem 4.1 and Corollary 2.3. We show in Theorem 4.2 that the equivalencii{))
holds true if X has the following property: evergcalarly measurablanulti-function
F : Q — cwk(X) (meaning thav*(z*, F') is measurable for alt* € X*) admits a
scalarly measurable selector. This condition, which we$adllarly Measurable Selector
Propertywith respect tqu, shortly u-SMSR is shared by many Banach spaces besides the
separable ones, as explained a few lines below. On the other hand, to prov@) (e
have to require, in addition to the SMSP, thatX has the so-called Pettis Integral Property
with respect tqu (shortly -PIP), Corollary 4.3. The last part of Section 4 is devoted to
characterize Pettis integrability of multi-valued functions via single-valued ones and we
pay particular attention to the the case of multi-functions with norm compact values.

In Section 5 we are concerned with the existence of “measurable” selectors for multi-
functionsF : Q — cwk(X) which satisfy one of the following measurability properties:

(@) {w e Q: F(w)NM # 0} € X for every closed half-spade C X (equivalently,
Fis scalarly measurable).

B) {weQ: Flw)ynM # 0} € X for every convex closed sétf C X.

(1) {weQ: F(w)N M # 0} € X for every norm closed sei/ C X.

When X is separable, it is known that), (3) and ) are equivalent to thEffros measur-
ability of F’ (i.e. the same property than)(but replacing “closed” by “open”, cf. [7, The-
orem 111.37]). In this case, the selection theorem of Kuratowski and Ryll-Nardzewski, cf.
[7, Theorem 111.30], ensures that such Aradmits aBorel(X, norm)-measurable (hence
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strongly measurable) selector. In the non-separable case these measurability notions are
not equivalent in general and the situation becomes more complicated. Subsection 5.1 is
started with Theorem 5.1 by proving that reflexive Banach spaces/h&MSP. Beyond

that, our Theorem 5.4 shows that many other Banach spaces/HaMSP: for instance,

this happens if the dual spaceus$-angelic and has*-density character less than or equal

to theuncountablecardinal number(p), Example 5.5 — we recall that the class of Banach
spaces havingy*-angelic dual is very large and contains all weakly Liriddeletermined
spaces and, in particular, all weakly compactly generated ones. Amongst other things
we provide in Theorem 5.15 a different proof of Valadier’s result [43] saying that spaces
with w*-separable dual also hayeSMSP. To this end we prove that a multi-function

F : Q — cwk(X) is scalarly measurable if and onlyfifo € Q : F(w)N M # (0} € &

for every setM C X which can be written as a finite intersection of closed half-spaces,
Theorem 5.10. The paper is closed by Subsection 5.2 where we study the existence of
Borel(X, norm)-measurable selectors for multi-functiods : Q — cwk(X) satisfy-

ing (3). We prove, for instance, that such selectors always exist providedttzatmits

an equivalent locally uniformly rotund norm, Corollary 5.19: this improves a result by
Leese [30] who obtained the same conclusion for multi-functions satisfying/iien X

admits an equivalent uniformly rotund norm.

Terminology. Our unexplained terminology can be found in our standard references for
multi-functions [7, 27], Banach spaces [16] and vector integration [13, 42].

The cardinality of a sef' is denoted byard(T"). The cardinality ofN (resp. R) is
denoted by, (resp.c). The symbolv; stands for the first uncountable ordinal.

Our topological spacedl’, ¥) are always assumed to be Hausdorff. The density char-
acter of (7', ¥), denoted bydens(7, ) or simply bydens(T), is the minimal cardinality
of a dense set iff".

All vector spaces here are assumed to be real. Given a sbilusfed vector space, we
write co(S) andspan(S) to denote, respectively, the convex and linear huli oBy letters
X andY we always denote Banach spac8s: is the closed unit ball of andY™* stands
for the topological dual o¥". Giveny™* € Y* andy € Y, we write either(y*, y) or y*(y)
to denote the evaluation gf aty. The weak (resp. wedktopology onY (resp.Y*) is
denoted byw (resp.w*). Given a non-empty sét (resp. a compact topological spak8,
we write/, (") (resp.C(K)) to denote the Banach space of all bounded (resp. continuous)
real-valued functions oh (resp.K), equipped with the supremum norm.

A function f : Q — Y is said to bescalarly measurabléf, for eachy* € Y*, the
composition(y*, f) := y* o f :  — R is measurable. By a result of Edgar [14]s
scalarly measurable if and only if it Baire(Y, w)-measurable. Recall also thAts said
to bePettis integrablef

(i) y* o fis integrable for every* € Y*;
(i) foreachA € 3, there is an elemenft, f du € Y such that

(y*,/ fdup) = / y*o fdu foreveryy* e Y*.
A A

A function f : Q — Y is strongly measurabld it is the u-a.e. limit of a sequence
of simple functions or, equivalently, if it iBorel(Y, norm)-measurable (or just scalarly
measurable) and there £ € ¥ with x(Q2 \ E) = 0 such thatf(FE) is separable, cf. [13,
Theorem 2, p. 42].

2. SET-VALUED PETTIS INTEGRAL AND SELECTORS

In order to prove our main result in this section stating that any Pettis integrable multi-
function admits Pettis integrable selectors, Theorem 2.5, we need some previous work.

Recall first that a functionp : X* — R is said to be positively homogeneous if
olaz*) = ap(z*) for everya > 0 andz* € X*. ¢ is said to be subadditive if
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olx* +y*) < p(z*) 4+ ¢(y*) for all pairs(z*, y*) € X* x X*. ¢ is said to be sublinear if
it is both positively homogeneous and subadditive. We note tiGtdf cwk(X) then the
mapz* — ¢*(z*,C) is a sublinear functional itk * that isT(X*, X')-continuous. Here
7(X*, X) stands for théVlackey topologyn X*, that is, the topology of uniform conver-
gence on weakly compact subsetsXofcf. [28,§21.4]. Recall that, by the Mackey-Arens
theorem,(X™*, X) is the finest locally convex topology ok* whose topological dual
is X, hence thev*-closure and the(X*, X)-closure of any convex sét C X* coincide,
cf. [28,§21.4(2) anc;20.8(6)].

Lemma 2.1. Let F : Q — cwk(X) be a multi-function such that* (z*, F') is integrable
for everyz* € X*. The following statements are equivalent:

(i) Fis Pettis integrable.
(i) ForeachA € %, the mapping

ol X* SR, x*+—>/5*(x*,F)du,
A

is 7(X™*, X)-continuous.

Proof. The implication (i}=(ii) follows from the fact that
0" (x*,/ qu) :/ 0" («*,F)du foreveryx™ € X*

and ther (X™*, X)-continuity of the mapc* — 6*(z*, [, F du). Conversely, assume that
(ii) holds and fixA € Y. Sincey? is a subllnear function, it is convex. This fact and the
7(X*, X)-continuity of % allow us to deduce that for everyc R the set{z* € X* :

ok (z*) < t}is convex and(X*, X)-closed, hence*-closed. Therefore? isw*-lower
semicontinuous and [7, Theorem 11-16] applies to provide us with a non-empty convex,
closed and bounded s6tC X such thatol (z*) = §*(z*, C) for everyz* € X*. Finally,
the fact thatp; is 7(X*, X)-continuous can be applied again to conclude @i weakly
compact. Indeed, the st:= {z* € X* : o (z*) <1} N {z* € X*: pf(—2*) < 1}is
ar(X*, X)-neighborhood 06 and thus its polat/® = {x € X : |2*(x)| < 1forall z* €

U} is weakly compact, [28;21.4.1]. Since”' is weakly closed and contained&f, C'is
weakly compact as well. O

Observe that for every bounded gétC X and everyr* € X* we have
inf{z*(z): z € C} = —6"(—2",C).

Lemma 2.2. Let F,G : Q — cwk(X) be two multi-functions such thdt is Pettis inte-
grable,G is scalarly measurable and, for eagh € X*, we haved* (z*,G) < §*(a*, F)
u-a.e. TherG is Pettis integrable an(jA Gdu C fA F du for everyA € 3.

Proof. Givenz* € X*, we have—§*(—z*, F) < §*(2*,G) < 6*(2*,F) u-a.e. and
so6*(z*, @) is integrable. FixA € X. The mappingy§ is subadditive and satisfies
©G(x*) < ki (z*) forall 2* € X*, hence

03 (@) = G ()] < leh(a™ —y)| + ehy" —2%)
for everyz*, y* € X*. SinceF is Pettis integrabley’ is 7(X*, X)-continuous and the
previous inequality implies that§ is alsor (X *, X)-continuous. Sincel € X is arbitrary,

an appeal to Lemma 2.1 ensures thas Pettis integrable. Moreover, for eaghe > we
havefA G du C [, F du, by the Hahn-Banach separation theorem and the fact that

/Gd,u /5* * du</5*m Fd,u—é* /qu

for everyz* € X*. The proof is over. O
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Given a multi-function?” : Q — cwk(X) andA € ¥ we write
ISp(A) = {/ fdu: fisaPettis integrable selectorB‘f}.
JA
Note that/ S (A) might be empty in general and that otherwise it is a convex subsét of
Next corollary says, in particular, thaf»(A) C [, F du wheneverF is Pettis integrable.

Corollary 2.3. LetF : Q — cwk(X) be a Pettis integrable multi-function. ff:  — X
is a scalarly measurable selector Bf thenf is Pettis integrable and

/fdue/qu for everyA € X.
A A

Proof. Apply Lemma 2.2 to the multi-functioty(w) := { f(w)}. O
To prove the main result of this section we also need the following lemma:

Lemma 2.4 ([43, Lemme 3]) Let F' : Q — cwk(X) be a scalarly measurable multi-
function. Fixz§ € X* and consider the multi-function

G:Q— cwk(X), Gw):={reF(w): aj(x)=0"(z}, F(w))}.
Thend is scalarly measurable.

Theorem 2.5. LetF' : Q — cwk(X) be a Pettis integrable multi-function. Théhadmits
a Pettis integrable selector.

Proof. SincefA F du € cwk(X), we can find arexposed poing, € fA F dy (cf. [4,
Theorem 3.6.1)), that is, there is somg € X* such thatxf(zg) > xf(x) for every
z € [, Fdu\{x}. Letus consider the multi-function

G:Q— cwk(X), Gw):={reF(w): xi(x)=0"(z}, F(w))}.

By Lemma 2.4,G is scalary measurable. Sin€§w) C F(w) for everyw € Q and F
is Pettis integrable, an appeal to Lemma 2.2 ensurehatPettis integrable too, with
JoGdu C [ Fdu. Letg : Q — X be any selector ofi. Clearly, g is also a selector
of F'. We will prove thatg is scalarly measurable. Observe that

5*($8,/Gdu) =/5*(%’E§,G) dp =
Q Q
— [ 5 Py da =6 (i [ F ) = (a) =
Q Q

:/(—6*(—333,G)) dp = 5" (~a5, | G ).
Q Q

It follows that [, G dju = {x0}. Givenz* € X*, we have-§*(—z*,G) < 0*(«*,G) and

/ (=6*(—2*,G)) dp = a* (o) = / 5 (2%, G) dp,
Q Q

hence—o0*(—x*,G) = 0*(z*,G) u-a.e. Thereforez* o g = 6*(2*,G) p-a.e. and, in
particular,z* o g is measurable. Since* € X* is arbitrary,g is scalarly measurable.
Finally, an appeal to Corollary 2.3 allows us to conclude thiatPettis integrable. O

In our next result we establish that in fact any Pettis integrable multi-function admits
a collection of Pettis integrable selectors which are dense in it (a kind of “generalized”
Castaing representation

Theorem 2.6. Let F' : Q — cwk(X) be a Pettis integrable multi-function. Théhadmits
a collection{ fo }o<dens(x+,w+) Of Pettis integrable selectors such that

F(w) ={fa(w) : a < dens(X*,w*)} foreveryw € .

Moreover, [, F dy = ISp(A) for everyA € X.
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Proof. Notice first thatx := dens(X*,w*) = dens(X*, 7(X*, X)). Fix ar(X*, X)-
dense sefz? : o < k} C X*. For eachy < &, the multi-function
Ly :Q— cwk(X), Ly(w):={zxeF(w): z(z)=06(z, F(w))},

is scalarly measurable by Lemma 2.4 and so Pettis integrable by Lemma 2.2. Then Theo-
rem 2.5 applied td.,, ensures that there is a Pettis integrable selegtor? — X of L,,.
Clearly, eacls,, is also a selector af'. We claim that

F(w) =co({sa(w) : o< k}) foreveryw e Q.
Indeed, fixw € Q and seC := co({sq(w) : @ < K}) C F(w). ThenC € cwk(X) and
5" (2, F(w)) 2 6%(25,C) 2 23 (sa(w)) = 07 (25, F(w))

for everya < k. Since the sefz?, : o < s} is 7(X*, X)-dense inX* and the maps
z* 6% (x*, C) andz* — §*(z*, F(w)) areT(X™*, X)-continuous we obtain the equality
0 (x*, F(w)) = 0*(z*,C) for everyz* € X* and, therefore}'(w) = C as asserted.
Observe that the collectiofyf, } <~ made up of all convex combinations of thg's with
rational coefficients fulfills the required properties.

In order to prove the last assertion, fik € 3. Using Corollary 2.3, we obtain that

ISp(A) C [, F du. Onthe other hand, for each< &, the following holds:

x’&(/Asad,u):/A:cZosaduz/A(S*(xZ,F)duzé*(mZ,/AFd/O,

and sod*(z},, ISp(A)) > 0*(a}, [, F dp). Since{z}, : a < k}is 7(X*, X)-dense
in X*, the inequalityd* (z*, ISp(A)) > 6*(z*, [, F du) holds true for every:* € X*
and we infer that, F du C ISp(A). Thereforel Sp(A) = [, F dp and the proof is
finished. O

It turns out thatwhen X™* is w*-separable, the setbSr(A) are closed for any Pet-
tis integrable multi-function” : Q@ — cwk(X). The proof imitates that given in [15,
Proposition 5.2] for a separablé and so we omit the details. Combining this fact with
Theorem 2.6 we get the following result.

Corollary 2.7. SupposeX ™ is w*-separable. Lef' : Q) — cwk(X) be a Pettis integrable
multi-function. Thery, F du = 1S (A) for everyA e 3.

3. MULTI-MEASURES AND COUNTABLY ADDITIVE SELECTORS

Given a sequenceC,,) in cwk(X), the seriesy , C, is said to beunconditionally
convergenprovided that for every choice, € C,,, n € N, the series _ z,, is uncondi-
tionally convergent inX . In this case, the set

S Coi={Y #n: w e Cpforallne N}

also belongs tewk(X), see [6, Lemma 2.2]. Recall that the familyk(X), equipped
with the Hausdorff metrié, is a complete metric space that can be isometrically embedded
into the Banach spadg, (Bx~) by means of the mapping

J i ewk(X) — loo(Bx~), j(C)(x") :=d"(z",0),
see e.g. [7, Chapter Il]. It is known that a serles, C,, as above is unconditionally con-

vergent if and only if the seriel_, j(C),) is unconditionally convergent if, (Bx-) (in
this case, we havg(}, C,) = >, j(Cy)), cf. [6, Lemma 2.3].

Definition 3.1. A mappingM : ¥ — cwk(X) is said to be a finitely additive (resp.
countably additive) multi-measure }/(A U B) = M(A) + M(B) wheneverA, B €
¥ are disjoint (resp. if for every disjoint sequencg,, ) in X the seriesy " M(E,) is
unconditionally convergent antl/ ({J,, E,.) = >_,, M(E,)).
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Note thatM : ¥ — cwk(X) is a finitely (resp. countably) additive multi-measure
if and only if the compositiory o M : X — (. (Bx-) is a finitely (resp. countably)
additive measure. Therefore, if faf € X* we defined*(z*, M) : ¥ — Rby A
0*(z*, M(A)), then M is a finitely additive multi-measure if and only & (z*, M) is
finitely additive for everyz* € X*. For countably additive multi-measures the analogue
characterization is also true, see Theorem 3.4, but requires some work that we present in
this section: this result, due to Cég8] and Pallu de la Bagre [33], can be seen as the
set-valued version of the well-known fact that weakly countably additive vector measures
are norm countably additive (Orlicz-Pettis theorem, cf. [13, Corollary 4, p. 22]).

From a technical point of view, the novelty of our approach to Theorem 3.4 relies mostly
in the way of finding “finitely additive selectors” for finitely additive multi-measures, see
Theorem 3.3, via a method of “linearization” of Lipschitz functions on Banach spaces that
goes back to Pelczynski [34, p. 61].

Let Lip,(X*) be the Banach space of all Lipschitz functigns X* — R satisfying
h(0) = 0, equipped with the norm
|h(x]) — h(z3)

ot =zl sal, a5 € X7, :C’{;éx;}

||hHLipO(X*) = sup{

Fix an invariant meanon X* (considered as additive abelian group), that is, a linear
mappingZ : ¢, (X*) — R such thatZ(g) > 0 wheneverg > 0, Z(1) = 1 and
Z(g) = Z(g(- + z*)) for everyg € ¢, (X*) and everyx* € X*, cf. [25, Theorem 17.5].

It is known that we can define an operaf®r Lip,(X*) — X** by the formula

(P(h),z*) :=Z(h(-+x*) — h(-)), h € Lipy(X*), z* € X*,
cf. [3, Proposition 7.5].
Lemma 3.2. LetC € cwk(X). Thend*(-,C) € Lip,(X™*) and P(6*(-,C)) € C.
Proof. The first assertion is clear, since
[0 (27, C) — 6% (x5, C)| < ||lz7 — a3 - sup{||z|| : = € C} foreveryz], x5 e X*.

The proof of the second assertion is by contradiction. Suppos@that-, C)) ¢ C. Since
C is a convexw*-closed subset ok **, the Hahn-Banach separation theorem guarantees
the existence of some* € X* such that

1) (P(6*(-,C)),z*) > sup{z*(z) : x € C} =0"(z",C).

On the other hand, we havé(y* + z*,C) — 6*(y*,C) < 6*(z*, C) for everyy* € X*,
and the properties f yield

P(*(-,C) =Z(0"(-+2*,C) = §(-,C)) <Z(6"(z*,C)) =0"(x*,C),
which contradicts (1). The proof is over. O
We are now ready to deal with the aforementioned results about multi-measures.

Theorem 3.3([20], [8] and [33]) Let M : ¥ — cwk(X) be a finitely additive multi-
measure. Then there is a finitely additive measure¥ — X such thatn(A) € M(A)
for everyA € ..

Proof. Lemma 3.2 ensures théit(-, M (A)) € Lip,(X*) and
m(A) .= P(6*(-,M(A))) € M(A) foreveryA e ¥.
SinceM is a finitely additive multi-measure arfélis linear,m is finitely additive. O
For a giverz* € Bx-, lete,- denote the element d, (. )- defined by the formula
ea= () := (7).

Theorem 3.4(Coseé-Pallu de la Barére) Let M : ¥ — cwk(X) be a mapping. The
following statements are equivalent:
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(i) M is a countably additive multi-measure.
(i) 0*(x*, M) is countably additive for every* € X*.
(iiiy o*(z*, M) is countably additive for every* € X* and there is a countably
additive measuren : ¥ — X such thatm(A) € M (A) for everyA € .

Proof. The implication (i}=(ii) follows from the fact thav* (z*, M) = (e,+,j o M) for
everyx* € Bx«.

Let us prove (ii}=(iii). By Theorem 3.3 there is a finitely additive measuie ¥ — X
such thatn(A) € M(A) for every A € . We claim thatm is countably additive. To
prove that it suffices to show that the compositione m is countably additive for every
x* € X* and then appeal to the Orlicz-Pettis theorem, see [13, Corollary 4, p. 22]. Given
z* € X*, we have—§*(—z*, M(A)) < (z* om)(A) < §*(a*, M(A)) for every A € 3.
Since both—§*(—a*, M) and 6*(x*, M) are countably additive and* o m is finitely
additive, it follows thatc* o m is countably additive, as claimed.

To finish we prove (iii}=(i). We will prove that the finitely additive measure :=
joM :¥ — l(Bx~) is countably additive. The proof is divided into two cases.

Particular case. Suppose(A) = 0 for everyA € X. Take a disjoint sequendel,,)
in 3. We will show first that the serie}_, v(A,,) is unconditionally convergent. This
is equivalent to saying that the series of sets M (A,,) is unconditionally convergent.
Fix x, € M(A,) for everyn € N, and take a sequeneg < ng < ... in N. Define
s, =S¥, x,, foreveryk e N. Note that

k k
sp=5,+0¢ ZM(A,“) + M(Q\ U Ani) = M(Q) foreveryk € N.
i=1 i=1
On the other hand, for eactt € X* the seriesy > | z*(x,,) is convergent. Indeed, it
suffices to bear in mind that

Sl @n)l £ 0187 (@ M A + 318 (<", M(An))] < +oc.

This ensures that the sequerfeg) has at most one weak cluster pointih Since(sy,) is
contained in the weakly compact set((2), it follows that the serie§ ., z,,, is weakly
convergent. As the sequenge < ny < ... is arbitrary, the Orlicz-Pettis theorem (cf.
[13, Corollary 4, p. 22]) ensures that the sef}€s ., is unconditionally convergent. This
proves that the seri€s,, v(A,) converges unconditionally i, (Bx-).

We claim now tha~ > | v(A4,) = v(U,—, 4,). Indeed, for each* € Bx- we have

(ivmn))(as*) Jim_ i v(A)(@*) = Jim i 5" (a*, M(Ay)) =
=i (w0 (U 4) = (U 40) o)

The proof of theParticular cases finished.
General caseDefine the mapping

M % — cwk(X), M'(A)=-m(A)+ M(A).

It is clear thatd* (z*, M') = —a* o m + §*(z*, M) for everyz* € X*. Note also that

0 € M'(A)foreveryA € X. TheParticular casealready proved ensures that the mapping
VvV i=joM : 3 — {(Bx~) is a countably additive measure. On the other hand, the
mappingr” : ¥ — l(Bx~) given byv” (A)(z*) := 2*(m(A)) is obviously a countably
additive measure. It follows that= " 4 v is countably additive, as required. O

For further information on the theory of multi-measures, we refer the reader to [23,
Section 7], [27, Chapter 19] and the references therein.
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4. CHARACTERIZATION OF PETTIS INTEGRABILITY FOR MULTI-FUNCTIONS

The aim of this section is to discuss the validity of Theorem A in the introduction within
the setting of non-separable Banach spaces. Note that Corollary 2.3 gives us the extension
to the non-separable case o&ifiil) in Theorem A.

With the help of the results about multi-measures isolated in Section 3 we start by
proving Theorem 4.1 below that extends to the non-separable case the implicati@i) (i)
in Theorem A, see (&-(e) in [15, Theorem 5.4]. GiveR' : Q — cwk(X) we write

Wp = {6*(z*,F) : z* € Bx-} C R%.

Recall that a familyH of real-valued integrable functions defined @ris said to beuni-
formly integrableif it is bounded for|| - ||; and for eacte > 0 there is§ > 0 such that
sUpyey [p |h| dp < e wheneven(E) < 4.

Theorem 4.1. Let F : Q — cwk(X) be a Pettis integrable multi-function. Define the
indefinite Pettis integral of" by

Ir : ¥ — cwk(X), Ip(A) ::/qu.
A

Then:

(i) Ir isa countably additive multi-measure.
(i) Wg is uniformly integrable.

Proof. Clearly, §*(x*, Ir) is countably additive for evergy* € X* and we can apply

Theorem 3.4 to conclude that is a countably additive multi-measure. This proves (i).
We prove now statement (ii). The compositiorn= jo I : ¥ — (. (Bx~) is a count-

ably additive vector measure that vanishes opalull sets. Hence is p-continuous, that

is, lim,,(4)—o [|V||(A) = 0 (cf. [13, Theorem 1, p. 10]). On the other hand, observe that

(ex=,V)(A) = [, 6%(x*, F) dp for everyz* € Bx- and everyA € X. In view of the

above, the uniform integrability df’» now follows from the fact that

[v[(A) = sup [(es=,»)[(A) = sup /AI5*(£B*,F)\du

T*EBx * T*EBx*
for everyA € 3. O

We turn our attention now to the implication (#)(i) in Theorem A for the non sepa-
rable case: the proof below is inspired by some of the ideas in [15, Theorems 3.9 and 5.4].
We say that a Banach spa&ehas theScalarly Measurable Selector Propetjth respect
to u, shortly .-SMSR if every scalarly measurable multi-functidh: Q — cwk(X) has a
scalarly measurable selector.

Theorem 4.2. SupposeX has theu-SMSP. Lef’ : Q — cwk(X) be a scalarly measur-
able multi-function such that every scalarly measurable selectdt isf Pettis integrable.
ThenF is Pettis integrable.

Proof. For any fixedA € 3 the set/Sr(A) is closed and convex. We prove now that

ISr(A) € cwk(X). By James’ theorem (cf. [1%5]) we only have to prove that every
x* € X* attains its supremum ahSr(A). Fix z* € X* and consider the multi-function

Gy Q — cwk(X), Gp(w):={ze€F(w): z"(x) =06"(z", F(w))}.
Since G~ is scalarly measurable (by Lemma 2.4) akdhas theu-SMSP, there is a
scalarly measurable selectgy- of G,-. In particular,g,+ is a selector off’ and so it

is Pettis integrable. Hend¥ (z*, F) = z* o g, is integrable. By the very definition, we
have [, g.- du € ISp(A). We claim that

sup{z*(z) : 2 € ISp(A)} = z* (/A G du).
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Indeed, notice that for each Pettis integrable seletwfr ' we have

fc(/ o du)=/x*ogﬁ du=/5*(x*,F)dM2
A A A
> [arofdu=a ([ 7an).
A A

sup{z*(x): z € ISp(A)} =sup{z*(x): z € ISp(A)} =z* (/A Ga= d,u).

hence

This proves thaf S (A) is weakly compact. Moreover, the previous equality can be read

asé*(z*, ISp(A)) = [, 6*(z*, F) dp. It follows thatF is Pettis integrable. O

Recall that the Banach spaggis said to have the-Pettis Integral Propertyshortly
u-PIP) if every scalarly measurable and scalarly bounded funcfior2 — X is Pettis
integrable. Heref : @ — X is said to be scalarly bounded if thereig > 0 such
that for eachuv* € Bx- we havelz* o f| < M p-a.e. (the exceptional set depending
onz™*). Equivalently, X has theu-PIP if and only if the Pettis integrability of any function
f: Q — X is equivalent to the fact that the family

Zy={z*of: x* € Bx-} CR®
is uniformly integrable.

Corollary 4.3. SupposeX has theu-SMSP and thei-PIP. LetF' :  — cwk(X) be a
multi-function. Ther¥' is Pettis integrable if and only il is uniformly integrable.

Proof. It only remains to prove the “if” part. Observe th&tis scalarly measurable. Each
scalarly measurable selectpof F' satisfies—d*(—z*, F) < z* o f < §*(a*, F) for all
x* € Bx~. SinceWp is uniformly integrable, the same holds 8 and thusf is Pettis
integrable (becaus¥ has theu-PIP). The result now follows from Theorem 4.2. [

The Banach spac& has the PIP if it has thg-PIP for any complete probability mea-
sureu. The class of Banach spaces with the PIP is very large and contains, for instance, all
spaces having Corson’s property (C), see [42, Theorem 5-2-4], hence all weaklydfindel
Banach spaces and all Banach spaces wittangelic dual [35]. Recall that a topological
spacel’ is said to beangelicif each relatively countably compact s8tC T is relatively
compact and, moreover, each point in the closur€ of the limit of a sequence i€@'.

The following cardinal number will be used in several examples that follow:

k(p) = min{card(€) : € C 3, u(E) =0foreveryE € &, u*(UE) > 0},

defined if there exist such infinite famili€s(this happens, for instance,ifis not purely
atomic). Hereu™ denotes the outer measure inducedubyNotice thatx(p) > wqi. We
point out thatthe intersection of less that(x) elements o also belongs td, cf. [38,
Lemma 4.4]. When: () cannot be defined, the intersection of any family of measurable
sets is measurable and all our results involvirig) are true without the restrictions on the
cardinalities or density characters appearing in their statement. It is well known (cf. [40])
that Martin’s Axiom implies the statement

“k(Lebesgue measure ¢ 1]) = ¢” (Axiom M).
The Banach spac¥ has both the:-SMSP and the PIP in each of the following cases:

» X is separable

» X isreflexive Theorem 5.1.

> (X*, w*)is angelic andlens(X™*, w*)
» X = Y™ has property (C) andens(Y)

k(p), Example 5.5.

<
< k(u), Example 5.6.
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On the other hand, we will also see th¥éthas theu-SMSP wheneveK * is w*-separable,
Theorem 5.15. However, such ahdoes not have thg-PIP in general. Indeed, Fremlin
and Talagrand [18] showed that, (N) fails theu-PIP for certain pathological measyie
They also proved that, at least under Axiom MBif - is w*-separable for some equivalent
norm onX (equivalently,X is isomorphic to a subspace 6f (N)), thenX has the PIP
with respect to anperfectmeasure (for instance, a Radon finite measure on a topological
space), cf. [42, Theorems 6-1-2 and 6-1-3].

We end up this section turning our attention to the following question, thoroughly stud-
ied in [5] and [6] within the setting of separable Banach spaces:

What is the relationship between the Pettis integrability of the multi-
functionF' : Q — cwk(X) and that of the single-valued composition
joF:Q— KOO(B)(*)'?
As in the separable case, see [6, Proposition 3.5 Pettis integrable whenevgp F is.
The proof of this fact given here is more direct.

Proposition 4.4. Let F : Q — cwk(X) be a multi-function such that o F' is Pettis
integrable. TherF is Pettis integrable and

J(Ir(A)) :/joFd,u for everyA € 3.
A

Proof. Sincej o F' is Pettis integrable, the compositida,,j o F') = §*(«*, F) is in-
tegrable for everyc* € Bx«. Fix A € ¥. The Pettis integrability ofi o F' and the
Hahn-Banach separation theorem ensure that

/A joFdue p(A) ol o F)(A)),

cf. [13, proof of Corollary 8, p. 48]. Sincg(cwk(X)) is a closed convex cone, we
conclude thatf, j o F' du = j(Ca) for someCy € cwk(X). Then

/5*(‘r*aF) dM:/<€I*,jOF> dp = <€x*’/joqu> =6"(2",Ca)
A A A

for everyz* € Bx-. This shows thaf" is Pettis integrable, with(1x(A)) = [, jo F du
for everyA € X.. d

It is known that the converse of Proposition 4.4 does not hold in general even for sep-
arable Banach spaces, see [5, Theorem 2.1]. However, it is valid under some additional
assumptions on the given multi-function.

Proposition 4.5. Let F' : Q@ — cwk(X) be a multi-function such thatj o F)(Q) is
contained in a subspace 6f,(Bx~) havingw*-angelic dual (this happens, for instance,
if F(Q2) is separable for the Hausdorff distance). The following statements are equivalent:
(i) F is Pettis integrable;
(i) Wg is uniformly integrable;
(i) 7o F is Pettis integrable.

Proof. The implication (i}=(ii) follows from Theorem 4.1 and (iig>(i) from Proposi-
tion 4.4. Let us prove (ig>(iii): let Y C ¢ (Bx~) be a subspace containifigo F)(12)
such thaty™* is w*-angelic. Notice that the sé® := {e,«|y : 2* € Bx+} C By- is
norming. The desired conclusion now follows by applying [6, Lemma 3.3] td'tvalued
functionj o F', see the comments in [6, p. 552]. O

Recall that a convex, closed, bounded, non-empty’set X is norm compact if and
only if the real-valued mapping given by — §*(«*, C) is w*-continuous onBx -, cf.
[31, Section 7]. Thug(ck(X)) C C(Bx~) = C(Bx~,w*).
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Proposition 4.6. SupposeX* is w*-angelic. LetF' : Q — cwk(X) be a multi-function
with norm compact values such thidfz is uniformly integrable. Thetd" is Pettis inte-
grable andlx(A) is norm compact for everyt € 3.

Proof. Fix A € . We claim that the mapping’ : X* — R given by ¢f{(z*) =
fA 0*(z*, F) du is w*-continuous when restricted 8 -. Indeed, fixB C Bx- and take

+* e B Since(X™*,w*) is angelic, there is a sequengeg’) in B converging toz*
in the w*-topology. Givenw € (), the setF(w) is norm compact and so the mapping
0*(+, F(w)) isw*-continuous omBx«, henced* (z*, F(w)) — §*(z*, F(w)) asn — oo.

SinceWr is uniformly integrable, an appeal to Vitali's convergence theorem ensures that

Pha) = [ 5@ Py = [ 86 F) du= i) asn .
A A

Asz* € B" isarbitrary, we conclude that (B ) C ¢%(B). Since this inclusion holds

for any setB C Bx-, the restrictionp§|BX* is w*-continuous, as claimed. Similarly,

ol B . isw*-continuous for every, € N. Bearing in mind tha?; is convex, an appeal

to the Banach-Dieudom@ntheorem (cf. [16, Theorem 4.44]) ensures thitis w*-lower
semicontinuous. By [7, Theorem II-16], there is a convex, closed, bounded, non-empty set
C C X such thatp!{ (z*) = §*(a*, C) for everyz* € X*. Thew*-continuity of o/ | 5.
guarantees that' is norm compact and the proof is over. O

5. MEASURABLE SELECTORS

5.1. Scalarly measurable selectorsThe first measurable selection results of this sub-
section follow from the existence of scalarly measurable selectors for Pettis integrable
cwk(X)-valued functions, Theorem 2.5 above.

Theorem 5.1. If X is reflexive, then it has the-SMSP.

Proof. Let F : Q — cwk(X) be a scalarly measurable multi-function. Since

{6%(z*, F): =¥ € X*, ||=*|| = 1}
is a pointwise bounded family of measurable functions, we can find a countable partition
Ey, E,,... of Qin ¥ and a sequencgV/,,) of positive real numbers such that, for each
n € Nand eachx* € X* with ||z*|| = 1, we have|o* (z*, F)|g,| < M, p-a.e. (cf. [32,
Proposition 3.1]). Fix» € N and consider the (constant) Pettis integrable multi-function
H, : E, — cwk(X) given by H,,(w) := M, Bx. Observe that for each* € X* we
haved*(z*, F|g,) < §*(z*, Hy,) p-a.e. From Lemma 2.2 it follows thd| g, is Pettis
integrable. By Theorem 2.5, we know thA&tz, admits a scalarly measurable selector
fn: B, — X. Definef : Q — X by f(w) := fu(w)ifw € E,,n € N. Clearly, f is a
scalarly measurable selector Bf O

Theorem 5.2. SupposeX ™ is w*-angelic. Then every scalarly measurable multi-function
F : Q — ck(X) admits a scalarly measurable selector.

Proof. Again, sincelVr is a pointwise bounded family of measurable functions, there is
a countable partitio;, E», ... of Qin ¥ and a sequendg\/,,) of positive real numbers
such that, for each € Nand eaclt* € Bx-, we havgd*(z*, F)|g, | < M,, p-a.e. Given

n € N, the previous inequality ensures that the fanilly:| , is uniformly integrable and
Proposition 4.6 can be applied to conclude thgt, is Pettis integrable. The proof finishes
asin Theorem 5.1. O

At this point it is convenient to introduce the following terminology. Given a topological
spacel’, we denote by:(7T) the collection of all compact non-empty subset§olet M
be a non-empty family of closed subsetgofWe say that a multi-functiod’ : Q — k(T")
is M-measurabléf {w € Q : F(w) N M # (0} € X for everyM € M. Clearly, with this
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terminology, a multi-functior¥ : Q — cwk(X) is scalarly measurable if and only if it is
M-measurable foM = collection of all closed half-spaces &f.

Lemma 5.3. Let T be a topological space and1 a non-empty family of closed subsets
of T. Lety < k(w) and, for eacha < ~, let F,, : Q@ — k(T) be aM-measurable
multi-function. Supposgs(w) O F,(w) for everys < a < v and everyw € 2. Then:

(i) Foreachw € Q, the setF(w) := 1, F(w) is compact and non-empty.

(i) The multi-function? : Q — k(T') is M-measurable.

Proof. Givenw € , the net of compact non-empty s¢f&, (w))a<~ iS decreasing and

so it has compact non-empty intersection. In order to prove the second assertion, take
M € M and observe that, sin¢é’, (w) N M).<~ is a decreasing net of compact sets, we
have

{weQ: Flw)NM#0} = [{weQ: Falw)NM #0}.

a<ly
The M-measurability of eaclt, ensures thafw € Q : F,(w) N M # ()} € %. Since
card(y) < k(u), it follows that{w € Q : F(w)NM # 0} € X. O

Our approach to the next theorem is inspired somehow by some of the ideas in the
original proof of Valadier’s result [43] saying that Banach spaces witfseparable dual
always have th@-SMSP (Theorem 5.15 below).

Theorem 5.4. Suppose there is a SEtC X* satisfying the following properties:

() card(T") < k(w).
(i) T separates the points of.
(iii) Afunctionf : Q — X is scalarly measurable if and only:if‘ o f is measurable
for everyz* € T.

ThenX has theu-SMSP.

Proof. Enumeratd” = {z : o < card(T")}. Fix a scalarly measurable multi-function
F: Q — cwk(X). We divide the proof of the existence of a scalarly measurable selector
of F'into several steps.

Step 1 DefineFy := F. We will construct by transfinite induction a family of scalarly
measurable multi-functiong, : 2 — cwk(X), with a < card(T"), such that

2) F,(w) = m {r € Fg(w): z3(x) = 0" (vp, Fp(w))} forallw e Q
B<a

for every0 < a < card(T"). To this end, assume that< v < card(I") and that we have
already constructed a fami{y', ) <~ of scalarly measurable multi-functions satisfying (2)
for every0 < o < «. Givena < v, Lemma 2.4 applies to conclude that the multi-function
G, : Q — cwk(X) given by

Ga(w) = {z € Fa(w) : z5(x) = 0" (2, Falw))}

is scalarly measurable. Observe tliaf(w) D> G, (w) for everys < a < « and every
w € Q. Sincey < card(I") < x(u), Lemma 5.3 allows us to define a scalarly measurable
multi-function F°, :  — cwk(X) by the formular’, (w) := .., Ga(w). Obviously,F,
satisfies (2) by construction.

Step 2 Givenw € (, the net of weakly compact non-empty séfs, (w))a<card(r)
is decreasing and 0|, _.,,qr) Fo(w) # 0. In fact, this intersection contains only one
point. Indeed, ifr1, 22 € (,<cara(r) Falw), then

wy(w1) = 0" (w3, Fp(w)) = w5(x2)
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for every3 < card(T"), and the fact thal' separates the points &f impliesz; = xs.
Therefore, there is a functioh: 2 — X such that

[ Falw)={f(w)} foreverywe Q.

a<card(T")

Step 3 Clearly, f is a selector of'. By assumption, in order to prove thAis scalarly
measurable we only have to check thgt f is measurable for every < card(T"). Indeed,
taked < a < card(l'). Thenf(w) € F,(w) and thereforer;(f(w)) = 6*(xf, F(w))
for everyw € (2. Sincel} is scalarly measurable, we conclude thato f is measurable.
The proof is over. O

A well known result of Edgar, see [14, Theorem 2.3], states that the Beaatgebra of
a locally convex space endowed with its weak topology is exactlythkyebra generated
by all the elements of the topological dual. In particulad’ifc X* is a set separating
the points ofX andco(X,T') denotes the topology o of pointwise convergence dn,
thenBaire(X, o(X,I)) is just thes-algebra onX generated by'. Thus, condition (iii) in
Theorem 5.4 is equivalent tgf*is Baire(X, o (X, I'))-measurable”. Bearing this in mind,
observe that Theorem 5.4 ensures thatas theu-SMSP in the following two cases:

Example 5.5. (X*, w*) is angelic anddens(X*, w*) < x(u). By a result of Gulisas-

hvili [21], when (X*,w*) is angelic, the equalitBaire(X,o(X,T')) = Baire(X, w)

holds for any sel” C X* separating the points oX. A wide class of spaces having
w*-angelic dual is that ofveakly Lindebf determined (WLDBanach spaces. This class
contains all weakly compactly generated spaces (cf. [16, Chapters 11 and 12]) and for ev-
ery WLD spaceX the equalitydens(X*, w*) = dens(X) holds. In particular, any weakly
compactly generated Banach space with density character less than or egubbfothe
u-SMSP. For instance, this appliesdgdw; ), separable Banach spaces, etc.

Example 5.6. X = Y* has property (C) andlens(Y) < x(u). Indeed, any norm dense
setl’ C Y separates the points &f and satisfieBaire(X, o(X,I")) = Baire(X, w*). On
the other hand, sinc& is a dual space having property (C), the equdhityire( X, w*) =
Baire(X, w) holds, see [39, Corollary 3.10].

Next three lemmas are needed to prove Theorem 5.10.

Lemma5.7. Let A € cwk(X) andx§ € X* satisfyinginf 2§(A) < b < sup z§(A) for
someb € R. Leta € A such thatx§(z) > b. Then for every > 0 there isy € A such
that ||z — y|| < eandxf(y) € [b,supzj(A4)] N Q.

Proof. Since A € cwk(X), we havezj(A) = [inf z§(A),sup x§(A)]. There are two
possibilities:

Case 1. Suppose;(x) < supzj(A). Fix z € A such thatz§(z) = supz{(A4) and
consider the mapping : [0, 1] — [z§(x), sup x§(A)] given byp(0) := 23 (0z+(1—6)z).
We can choos® < 6 < min{e/||xz — z||,1} such thatp(¢) € Q. Then the vector
y := 0z + (1 — 0)x satisfies the required properties.

Case 2. Supposs;(z) = supx{(A). Takez € A such thatz§(z) = b and consider
now the mapping : [0, 1] — [b, sup z{(A)] given byp(0) := z§(6z+ (1 —6)x). Choose
0 < 0 < min{e/||z — 2|, 1} such thatp(d) € Q. Theny := 6z + (1 — )z works. [

Lemma 5.8([43, Lemme 3] or [7, Proposition |-24])Let C' € cwk(X), z§ € X* and
a € R. Supposé := {x € X : z}(z) = o} intersectC. ThenC' N H € cwk(X) and
0" (x*,CNH) =inf{6"(z" — Az,C) + Aa: A€ Q} foreveryz™ € X*.
Lemmab.9. Let F : Q — cwk(X) be a scalarly measurable multi-function and consider
a measurable functioh : @ — R. Fix 2§ € X* and write
Lw):={zx e X: zj(z) > h(w)} foreveryw e Q.
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ThenE := {w € Q: F(w) N L(w) # 0} € ¥ and the multi-function
G:E— cwk(X), Gw):=F(w)NL(w),
is scalarly measurable.

Proof. Clearly, the setf = {w € Q : 6*(z, F(w)) > h(w)} belongs toX. Note that
—0*(—xf, F(w)) = inf 2§ (F(w)) for everyw € . The sets

Ey:={weFE: infzj(F(w)) > h(w)}

Ey:={we E: supaj(F(w)) =h(w)}

Es:={we E: infzj(F(w)) < h(w) < supzj(F(w))}
belong toX andE = E; U E5 U E3. We haveG(w) = F(w) whenevew € Ey, thus the
restrictionG| g, is scalarly measurable. On the other hand, we also have
Gw)={z e F(w): zj(x) =6 (25, F(w))} foreveryw € Es,

hence Lemma 2.4 can be applied to conclude ¢fat, is scalarly measurable. In order to

finish the proof it only remains to show th@t z, is scalarly measurable as well.
By Lemma 5.7, for eacly € F5 we have

3) Gw = |J F@n{zeX: mx)=a

q€l(w)
wherel(w) :={q € Q: h(w) < ¢ < §*(zf, F(w))}. Define
J(q)={w € E3: h(w) <q¢<§ (x5, Flw))} € X

for everyq € Q. Fixz* € X* anda € R, and writeW := {z € X : 2*(z) > a}.
Giveng € Q, Lemma 5.8 ensures that the multi-functidig) — cwk(X) given by
w— Fw)N{z € X : z{(x) = ¢} is scalarly measurable, so the set

{weld@): Flwn{re X : xf(z)=q} NW #0}
belongs tax. SincelV is open, equality (3) yields
{weBs: Gw)NW # 0} =

:{weEsz ( U Fwyn{zeX: x(*)(x):q})mw#@}:

q€l(w)
= U{wet@: Foynfoe X aj@) =qpnw £0} e %
q€Q
This shows thats is scalarly measurable. O

Let M™ be the collection of all finite intersections of closed half-space¥ of

Theorem 5.10.Let F' : 2 — cwk(X) be a multi-function. Thef' is scalarly measurable
if and only if £ is M"-measurable.

Proof. It only remains to check the “only if”. We prove the following statement by induc-
tion onn € N:
(*) For each scalarly measurable multi-functiéh: £ — cwk(X), whereE € 3,

the se{fw € E : G(w) N C # (0} belongs ta> wheneverC is the intersection of

n closed half-spaces of.
The casen = 1 follows directly from the scalar measurability. Assume> 1 and
the induction hypothesis. Fix a scalarly measurable multi-funafion £ — cwk(X),
whereE € X. TakeC := N {z € X : 2} (z) > a;}, wherez},...,z} € X* and
ai,...,a, € R. DefineE’ .= {w € F : §*(2),G(w)) > a,} € ¥ and consider the
multi-function

G E — cwk(X), Gw)=Gw)n{reX: z}(z)>an},
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which is scalarly measurable by Lemma 5.9. Defife= ﬂ?;ll{x € X: xzi(z) > a;}
Now, by induction hypothesis, the set

{weE: GwnC #0}={weE: Gw)NC #0}
belongs tax. The proof is over. O

The following lemma is a nice tool to get measurable selectors that will also be applied
in the next subsection.

Lemma 5.11. LetT be a topological space andt a non-empty family of closed subsets
of T. SupposeM is closed under finite intersections. Let T — [0, 00) be a function
such thatg=*([0,a]) € M for everya > 0. LetF : Q — k(T) be aM-measurable
multi-function. Then:

(i) Foreachw € Q, the set
Gw):={te F(w): g(t)=inf{g(t'): t' € F(w)}}

is compact and non-empty.
(i) The multi-functiorG : Q — k(T') is M-measurable.

Proof. Since M is made up of closed setg, is lower semicontinuous and (i) follows
straightforwardly bearing in mind that ea¢i(w) is compact and non-empty. We divide
the proof of (ii) into several steps.

Step 1 Fix n € N. For eachm € N we define4,, ., := ¢~'([0,m/2"]) € M and
Bpmi={weQ: Flw)NA,, #0} € X. Clearly,B,, ,, C By, +1 for everym € N
andQ = (J,°_, Bym. DefineC, 1 := B, 1 andC,, , := Bym \ Bnm-1 for every
m > 2, so thatC), 1,C,, 2,... is a countable partition of? in ¥. Consider the multi-
function F, : Q — k(T) defined byF,, (w) := F(w) N A, ., whenevew € C,, ,,. Then
F, is M-measurable. Indeed, givéd € M, note that4,, ,,, " M € M for everym € N
and we have

{weQ: F(wyNnM #£0} =
- G (C’n,mﬂ{weﬂ: F(W)H(AnﬂerM)?é@}) eX
m=1

sinceF is M-measurable.

Step 2 Clearlyvcn,m = Cnt1,2m—1U Cn+1,2m andAn+172mfl C An+1,2m = An,m
for everyn,m € N, by the very definitions. It follows thaF;,;(w) C F,(w) for every
w € Q and everyn € N. In view of Lemma 5.3, we can define/a(-measurable multi-
functionH : Q — k(T) by H(w) := (oo, Fn(w).

Step 3 Givenw € , note that a point € F(w) does not belong t6:(w) if and only
if g(t') < m/2" < ¢(t) for somet’ € F(w) and somer, m € N, which is equivalent to
saying thatw € C,, ,,,y for somel < m’ < mandt ¢ A,, ,,,. It follows thatG(w) = H(w)
for everyw € Q and the proof is over. O

Lemma 5.12. Let T be a topological space andt a non-empty family of closed subsets
of T. SupposeM is closed under finite intersections. Let< «(u) be a cardinal and
write M (x) to denote the collection of all intersections of at mesglements of\1. Then

a multi-functionF’ : Q — k(T') is M-measurable if and only if it i8VI (x)-measurable.

Proof. It only remains to prove the “only if”. We will check tha is M(x)-measurable
for every cardinakk < k(u) by transfinite induction. Fix such a cardinal and assume
that F' is M(x’)-measurable for every cardinal < «. Clearly, the conclusion follows
automatically ifx is finite, sinceM is closed under finite intersections. So assumethat
is infinite. Take a family{ M, : « < k} C M and define, for each ordingl < «, the set

Ny i= () Ma € M(card(3)),

a<f
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sothat{w € Q: F(w) N Ng # 0} € ¥ by induction hypothesis. Given € €, the net of
compact set§F' (w) N Nj3) s« is decreasing and, therefore, we have

Niwea: F(w)mNﬁﬂ}:{weQ; F(w)ﬁ(ﬂ Nﬁ) 7&(2)}.

B<K B<kK
Observe thaf;_, Ng = (),<, Ma. Since the intersection of less thafy) elements
of ¥ also belongs t& andx < (), we conclude that

{wEQ: F(w)ﬁ(ﬂ MJ%@}GZ.

a<k

This shows thaf” is M (x)-measurable, as required. O

In the next two theorems we apply the previous work to present sufficient conditions
on X to have theu-SMSP. Recall that a norrh- || on X is said to bestrictly convexf
x = a2’ wheneverr, 2’ € X are such thafjz| = ||2'|| = 1 and||lz + 2’| = 2.

Theorem 5.13. If X admits an equivalent strictly convex norm with the property that
dens(Bx~,w*) < k(u), thenX has theu-SMSP.

Proof. Write x := dens(Bx+,w*). Let F : Q — cwk(X) be a scalarly measurable multi-
function. By Theorem 5.10 and Lemma 5.12,is M™ (x)-measurable. Left - || be an
equivalent strictly convex norm witlens(Bx«, w*) < x(u) and defingg : X — [0, 00)
by g(x) := ||z||. Observe that

g7 ([0,a]) = () {z € X : |2*(x)| < a} € M"(r) foreverya >0,
z*€D
whereD C Bx- is anyw*-dense set withard(D) = x. Givenw € (2, the set
Gw) :={z € F(w): ||z| =inf{||2'|| : 2’ € F(w)}}
contains only one point, sgf(w), becausé’'(w) € cwk(X) and]| - || is w-lower semicon-
tinuous and strictly convex. Note that the functipn 2 — X is a selector of'. We can
now apply Lemma 5.11 (working with the topological sp&dg w) and considering the

family M = M"(k)) to conclude thay ~!(C) € X for everyC € M¥(x), so thatf is
scalarly measurable. O

A norm || - || on X is calledlocally uniformly rotund(shortly LUR) if ||z, — z| — 0
whenever the sequen¢e, ) in X andz € X satisfy||z,| — ||| and||z, +z| — 2|z|.
Clearly, this property implies strict convexity. Many Banach spaces admit an equivalent
LUR norm, for instance, the WLD ones, cf. [10, Corollary 1.10, p. 286]. For complete
information about renormings in Banach spaces we refer the reader to [10], [19] and [46].

As an application of the previous theorem we obtain:

Example 5.14. C([0, w;]) has theu-SMSP whenevet(1.) > w;. Indeed, it is known that
C([0,w1]) admits an equivalent LUR (in particular, strictly convex) norm, beciise, |

is a Valdivia compactum, cf. [10, Corollary 1.10, p. 286]. On the other hand, the dual unit
ball of any equivalent norm o6'([0,w]) hasw*-density charactep; (bear in mind that

this space contains a subspace isomorphig (o, )).

A similar argument allows us to give an alternative proof of the previously announced
result of Valadier, see [43, Proposition 6].

Theorem 5.15(Valadier) If X* is w*-separable, thetX has theu-SMSP.

Proof. Let F' : Q — cwk(X) be a scalarly measurable multi-function. By Theorem 5.10
and Lemma 5.12, we know that is M™ (X,)-measurable. Fix a countable'-dense set
{z} :n € N} C X* and consider the operator

T:X — AN), T(z):= (xﬁ(m)).
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Defineg : X — [0,00) by g(x) := [|T(2)||¢2(v). SinceByz )~ is w*-separable, we have

g 1([0,a]) € M™(Xy) for everya > 0. Sinceg is aw-lower semicontinuous strictly
convex norm onX (non necessarily equivalent to the original one!), the arguments in
the proof of Theorem 5.13 (dealing now with the family of weakly closed 44t5(X,))
ensure thaf” admits a scalarly measurable selector. O

It is well known thatX admits an equivalent strictly convex norm whenevét is
w*-separable, cf. [10, Theorem 2.4, p. 46]. However, the fact that sucki Aas the
#-SMSP cannot be deduced, in general, from Theorem 5.13 above. Indeed, the Johnson-
Lindentrauss spac&L, hasw*-separable dual but, for any equivalent norm.bfy,, the
corresponding dual unit ball is nat*-separable, see [26, Example 1].

The technique used in the proof of Theorem 2.6 can be used to prove Theorem 5.16
below: the particular case of Banach spaces havifigeparable dual was first proved by
Valadier in [43, Proposition 7].

Theorem 5.16. SupposeX has theu-SMSP. Lef” : 2 — cwk(X) be a scalarly measur-
able multi-function. Then there is a collecti@f, } o <dens(x+,w+) Of sScalarly measurable
selectors off’ such that

F(w) ={fa(w): a < dens(X*,w*)} foreveryw € Q.
5.2. Borel measurable selectors.in this subsection we exploit Lemma 5.11 in order to
find nice selectors for multi-functions with stronger measurability properties. It is conve-
nient to recall first some facts concerning measurability in Banach spaces.
Let M™ (resp.M<€) be the collection of all norm closed (resp. convex closed) subsets

of X. Write o(M*°) to denote the smallestalgebra onX containingM<. In general,
we have

Baire(X,w) C 0(M*) C Borel(X,w) C Borel(X, norm).
All these o-algebras coincide for separable but some inclusions may be strict beyond
the separable case. Talagrand [41] showedBoat] (£ (N), w) # Borel(£ (N), norm)
and Edgar [14] proved that the equalByrel( X, w) = Borel(X, norm) holds whenever
X admits an equivalent Kadec norm (i.e. a norm for which the weak and norm topologies
coincide on the unit sphere; clearly, every LUR norm is Kadec). A result of Raja [36,
Theorem 1.2] states that admits an equivalent LUR norm if and only if every norm open
setU C X can be written a&/ = (J,~,(C,, \ D,,), whereC,,, D,, € M for every
n € N; in this case, we have(M*®) = Borel(X, norm). On the other hand, it is known
that Baire(X, w) # o(M*®) wheneverX* is notw*-separable, cf. [22, Theorem 1.5.3],
but also for/,(N) and the Johnson-Lindenstrauss spaces [26], see [37, Theorem 2.3].

Theorem 5.17. SupposeX admits an equivalent strictly convex norm. Then evet§ -
measurable multi-functiof’ : Q@ — cwk(X) admits as(M°°)-measurable selector.

Proof. Fix an equivalent strictly convex norfh- || on X. Givenw € (), the set
Gw) :={z € F(w): ||z| =inf{||2'|| : 2’ € F(w)}}
contains only one point(w) becausé ' (w) € cwk(X) and||-|| is w-lower semicontinuous
and strictly convex. The functiofi : 2 — X is a selector ofr'. Obviously, the mapping
g: X — [0,00) given byg(x) := ||z| satisfiesg~1([0,a]) € M for everya > 0. We
can apply Lemma 5.11 (working with the topological spa&ew) and takingM = M)
to conclude thaf is o (M¢*¢)-measurable. O
In fact, under the same assumption we can say more:

Theorem 5.18. SupposeX admits an equivalent strictly convex norm. Then evety -
measurable multi-functiod : Q — cwk(X) admits a collection{ fo }o<dens(x) Of
o(Me¢)-measurable selectors such that

F(w) ={fa(w): a<dens(X)} foreveryw € Q.
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Proof. Fix a dense sefz,, : & < k} C X, wherex := dens(X), and take an equivalent
strictly convex norn| - || on X. Fix a < k. Since the multi-functiorF, : @ — cwk(X)
given byF,, (w) := —z,+F(w) is M-measurable, a glance at the proof of Theorem 5.17
reveals that,, admits ao(M°c)-measurable selectgy, : @ — X with the property that

4) lga(w)]] = inf{||lx — x4|| : € F(w)} foreveryw € Q.

Let us consider the(M*¢)-measurable selectdy, : ! — X of F defined by the formula
fa(w) := ga(w) +z4. We claim that the collectiofif, } o< fulfills the required property.
Indeed, fixw € Q andz € F(w). Givene > 0, there isa < x such that|z — z,|| < e,
hence (4) yields

[fa(w) =zl < llga()l + [l = zal < 2]z — 2ol < 2e.
As z € F(w) ande > 0 are arbitrary, we geF'(w) = {fo(w) : @ < k}. O

As we have mentioned at the beginning of the subsectioX, #dmits an equivalent
LUR norm theno(M®?) = Borel(X,norm). Bearing in mind that every LUR norm is
strictly convex, from Theorem 5.18 we deduce the following corollary.

Corollary 5.19. SupposeX admits an equivalent LUR norm. Lét : Q — cwk(X)
be a M¢°-measurable multi-function. TheR admits a collection oBorel(X, norm)-
measurable selectorsf., } o «dens(x) SUch that

F(w) ={fa(w): a<dens(X)} foreveryw € Q.

We stress that the previous corollary improves a result of Leese [30, Theorem 2], who
proved the existence ®orel( X, norm)-measurable selectors fdn"-measurable multi-
functions whenX admits an equivalentniformly rotundnorm.

Similar arguments to those of Theorems 5.17 and 5.18, now dealing with the norm
topology of X, allow us to deduce the following result.

Theorem 5.20. SupposeX admits an equivalent strictly convex norm. Lgét: Q —
ck(X) be aM"“-measurable multi-function. Then admits a collection f, } a<dens(x)
of Borel(X, norm)-measurable selectors such that

F(w) ={fa(w): a<dens(X)} foreveryw € Q.

Under such assumptions, the existence of at leasBone (X, norm)-measurable se-
lector was first proved by Leese [30, Theorem 1].

To the best of our knowledge, the question below remains unanswered in full generality:
OPEN PROBLEM.- Does every Banach space have th8MSP for any:?
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