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ABSTRACT. This paper is devoted to showing that Asplund operators with range
in a uniform Banach algebra have the Bishop-Phelps-Bollobás property, i.e., they
are approximated by norm attaining Asplund operators at the same time that a
point where the approximated operator almost attains its norm is approximated
by a point at which the approximating operator attains it. To prove this result
we use the weak∗-to-norm fragmentability of weak∗-compact subsets of dual of
Asplund spaces and we need to observe a Urysohn type result producing peak
complex-valued functions in uniform algebras that are small outside a given open
set and whose image is inside a Stolz region.

1. INTRODUCTION

Mathematical optimization is associated to maximizing or minimizing real func-
tions. James’s compactness theorem [16] and Bishop-Pehlps’s theorem [5] are two
landmark results along this line in functional analysis. The former characterizes re-
flexive Banach spacesX as those for which continuous linear functionals x∗ ∈ X∗
attain their norm in the unit sphere SX . The latter establishes that for any Ba-
nach space X every continuous linear functional x∗ ∈ X∗ can be approximated
(in norm) by linear functionals that attain the norm in SX . This paper is concerned
with the study of a strengthening of Bishop-Phelps’s theorem that mixes ideas of
Bollobás [6] –see Theorem 3.1 here– and Lindenstrauss [19] –who initiated the
study of the Bishop-Phelps property for bounded operators between Banach spaces.
Our starting point is the following definition brought in by Acosta, Aron, Garcı́a
and Maestre in 2008:

Definition 1 ([1]). A pair of Banach spaces (X,Y ) is said to have the Bishop-
Phelps-Bollobás property (BPBp for short) if for any ε > 0 there exists a δ(ε) > 0,
such that for all T ∈ SL(X,Y ), if x0 ∈ SX is such that ‖T (x0)‖ > 1 − δ(ε), then
there exist u0 ∈ SX and T̃ ∈ SL(X,Y ) satisfying∥∥∥T̃ (u0)

∥∥∥ = 1, ‖x0 − u0‖ < ε and
∥∥∥T − T̃∥∥∥ < ε.

A good number of papers regarding BPBp have been written during the last
years, as for instance [3, 7, 8]. Very recently, a general result has been proved
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in [2], that in particular says that pairs of the form (X,C(K)) do have the BPBp
whenever X is an Asplund space and C(K) is the space of continuous functions
defined on a compact Hausdorff space K: this result provided the first examples of
pairs of the kind (c0, Y ) with BPBp for Y infinite dimensional Banach space. Our
aim here is to extend and sharpen the results of [2] and prove the following:

Theorem 3.6. Let A ⊂ C(K) be a uniform algebra and T : X → A be an Asplund
operator with ‖T‖ = 1. Suppose that 0 < ε <

√
2 and x0 ∈ SX are such that

‖Tx0‖ > 1− ε2

2 . Then there exist u0 ∈ SX and an Asplund operator T̃ ∈ SL(X,A)

satisfying that

‖T̃ u0‖ = 1, ‖x0 − u0‖ ≤ ε and ‖T − T̃‖ < 2ε.

For A = C(K) the above result was proved in [2, Theorem 2.4] with worse esti-
mates. The key points for the known proof when A = C(K) were, on one hand,
the asplundness of T hidden in Lemma 2.3 of [2] that led to a suitable open set
U ⊂ K and, on the other hand, the Urysohn’s lemma that applied to an arbitrary
t0 ∈ U produces a function f ∈ C(K) satisfying

f(t0) = ‖f‖∞ = 1, f(K) ⊂ [0, 1] and supp(f) ⊂ U.

With all this setting, T̃ was explicitly defined by

T̃ (x)(t) = f(t) · y∗(x) + (1− f(t)) · T (x)(t), x ∈ X, t ∈ K, (1.1)

where y∗ ∈ SX∗ was chosen satisfying, amongst other things, satisfying 1 =
|y∗(u0)| = ‖u0‖ and ‖x0 − u0‖ < ε. The provisos about y∗ and f were used then
to prove that T and T̃ were close and that 1 = ‖T̃‖ = ‖T̃ u0‖. With just the details
above the reader should be able to prove indeed that 1 = ‖T̃‖ = ‖T̃ u0‖, but he
or she will have to make use of the fact that f(K) ⊂ [0, 1]. Once this is said, it
becomes clear that the arguments above cannot work for a proof of Theorem 3.6
for a general uniform algebra A ⊂ C(K). Certainly, A could be too rigid (for
instance the disk algebra) to allow the construction of f ∈ A peaking at t0 and
with f(K) ⊂ [0, 1]. To overcome these difficulties we observe in Lemma 2.5
below an easy but useful statement about the existence of peak functions f ∈ A
that are small outside an open set and with f(K) contained in the Stolz’s region

Stε = {z ∈ D : |z|+ (1− ε)|1− z| ≤ 1},

see Figure 1.

Lemma 2.5. Let A ⊂ C(K) be a unital uniform algebra and Γ0 its Choquet
boundary. Then, for every open set U ⊂ K with U ∩ Γ0 6= ∅ and 0 < ε < 1, there
exist f ∈ A and t0 ∈ U ∩ Γ0 such that f(t0) = ‖f‖∞ = 1, |f(t)| < ε for every
t ∈ K \ U and f(K) ⊂ Stε, i.e.

|f(t)|+ (1− ε)|1− f(t)| ≤ 1, for all t ∈ K. (2.2)

With Lemma 2.5 in mind we can appeal at the full power of Lemma 2.3 of [2],
that is also suited for a boundary instead of K, to produce U and then modify the
definition of T̃ in (1.1) with an auxiliary ε′ as

T̃ (x)(t) = f(t) · y∗(x) + (1− ε′)(1− f(t)) · T (x)(t), x ∈ X, t ∈ K. (1.2)
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Here f is linked to ε′ and U via Lemma 2.5. Inequality (2.2) allows us to prove
again 1 = ‖T̃‖ = ‖T̃ u0‖ and the other thesis in Lemma 2.5 imply ‖T − T̃‖ < 2ε.

The explanations above cover the relevant results of this paper and isolate the
difficulties we have had to overcome to prove them. We should stress that our
results are proved for unital and non unital uniform algebras, and that to the best of
our knowledge these results are not known even for the Bishop-Phelps property.

The paper is divided as follows. This introduction finishes with a subsection
devoted to Notation and Terminology. Then, Section 2 is devoted to prove the
existence of peak functions for uniform algebras with values in Stε: this is what
we observe as our Urysohn type lemmas, see Lemma 2.5 and Lemma 2.7, that
are needed to establish our main result in this paper, Theorem 3.6. The difficulty
to prove the existence of peak functions in uniform algebras with values in our
needed Stε is the same that when Stε is replaced by the closure of any bounded
simply connected region with simple boundary points: for this reason we have
observed these general facts too in Proposition 2.8. Section 3 is devoted to prove
Theorem 3.6, its preparatives and its consequences.

Notation and terminology. By lettersX and Y we always denote Banach spaces.
Unless otherwise stated our Banach spaces can be real or complex. BX and SX
are the closed unit ball and the unit sphere of X . By X∗ –respectively X∗∗– we
denote the topological dual –respectively bidual– of X . Given a complex Banach
spaceX we will writeXR to denoteX but with its subjacent real Banach structure.
The weak topology in X is denoted by w, and w∗ is the weak∗ topology in X∗.
L(X,Y ) stands for the space of norm bounded linear operators from X into Y
endowed with its usual norm of uniform convergence on bounded sets of X . A
subset B of the dual unit ball BX∗ is said to be 1-norming if for every x ∈ X we
have ‖x‖ = sup{|x∗(x)| : x∗ ∈ B}. Given a convex subset C ⊂ X we denote by
ext(C) the set of extreme points of C, i.e., those points in C that are not midpoints
of non-degenerate segments in C. Given C ⊂ X , x∗ ∈ X∗ and α > 0 we write

S(x∗, C, α) := {y ∈ C : Rex∗(y) > sup
z∈C

Rex∗(z)− α}.

S(x∗, C, α) is called a slice of C. In particular, if C ⊂ X∗ and x∗ = x is taken
in the predual X we say that the slice S(x,C, α) is a w∗-slice of C. A classical
Choquet’s lemma says that for a convex and w∗-compact set C ⊂ X∗, given a
point x∗ ∈ ext(C), the family of w∗-slices

{S(x,C, α) : α > 0, x ∈ X,x∗ ∈ S(x,C, α)}
forms a neighborhood base of x∗ in the relative w∗-topology of C – see [9, Propo-
sition 25.13].

The letters K and L are reserved to denote compact and locally compact Haus-
dorff spaces respectively. C(K) stands for the space of complex-valued continu-
ous functions defined on K and ‖·‖∞ denotes the supremum norm on C(K). A
uniform algebra is a ‖·‖∞-closed subalgebra A ⊂ C(K) equipped with the supre-
mum norm, that separates the points of K (that is, for every x 6= y in K there
exists f ∈ A such that f(x) 6= f(y)). Given x ∈ K, we denote by δx : A→ C the
evaluation functional at x given by δx(f) = f(x), for f ∈ A. The natural injection
ı : K → A∗ defined by ı(t) = δt for t ∈ K is a homeomorphism from K onto
(ı(K), w∗). A set S ⊂ K is said to be a boundary for the uniform algebra A if for
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every f ∈ A there exists x ∈ S such that |f(x)| = ‖f‖∞. We say that the uniform
algebra A ⊂ C(K) is unital if the constant function 1 belongs to A. Given x ∈ K
we denote by Nx the family of the open sets in K containing x.

In what follows D := {z ∈ C : |z| < 1} is the open unit disk of the complex
plane, D = {z ∈ C : |z| ≤ 1} is the the closed unit disk and T = {z ∈ C : |z| = 1}
is the unit circle. By A(D) we denote the disk algebra, i.e., the uniform subalgebra
of C

(
D
)

made of functions whose restrictions to D are analytic. Given z ∈ C and
r > 0, we write D(z; r) –respectively D[z; r]– to denote the open disk z + rD
–respectively the closed disk z + rD.

Our standard references are: [15] for Banach space theory, [10] for Banach
algebras, [23] for complex analysis and [17] for harmonic analysis.

2. A URYSOHN TYPE LEMMA FOR UNIFORM ALGEBRAS

As we mentioned in the introduction our main goal in this paper is to extend
[2, Theorem 2.4] to any uniform algebra. As noted, this result in [2] depends
on Urysohn’s lemma, that for a compact K allows us to find for a given x ∈ K
and U ∈ Nx, a continuous real valued function of norm one, taking value 1 at x
and vanishing on K \ U . We can not use this lemma in the setting of a general
uniform algebra A, because the resulting function does not necessarily belong to
A. Therefore, our first task here is to prove a Urysohn type lemma for uniform
algebras on which we can rely on.

2.1. Unital algebras and Stolz regions. Throughout this subsection A is a unital
uniform algebra on K. If

S := {x∗ ∈ A∗ : ‖x∗‖ = 1, x∗(1) = 1}, (2.1)

then Γ0 = {t ∈ K : δt ∈ ext(S)} is a boundary for A that is called the Choquet
boundary of A, see [10, Lemma 4.3.2 and Proposition 4.3.4].

A stronger version of Lemma 2.1 below can be proved taking into account that in
unital uniform algebras the Choquet boundary consists exactly of the strong bound-
ary points ofK for the algebra, see [10, Theorem 4.3.5] (see also Proposition 2.8 in
this paper where this result is applied). Nonetheless, we prefer to state Lemma 2.1
as follows because this is exactly what is needed to prove our main result in Sec-
tion 3. On the other hand the proof that we provide makes this part self-contained
and our arguments will be later adapted when proving the corresponding result for
non-unital algebras, see Lemma 2.6.

Lemma 2.1. Let A ⊂ C(K) be as above. Then, for every open set U ⊂ K with
U ∩ Γ0 6= ∅ and δ > 0, there exists f = fδ ∈ A and t0 ∈ U ∩ Γ0 such that
‖f‖∞ = f(t0) = 1 and |f(t)| < δ for every t ∈ K \ U .

Proof. Observe first that ı(U) is a w∗-open set in ı(K). Therefore, there exists a
w∗-open set V ⊂ S such that ı(U) = V ∩ ı(K). Fix x ∈ U ∩ Γ0. Since δx is
an extreme point of the w∗-compact set S and δx belongs to V ⊂ S, Choquet’s
lemma ensures the existence of f0 ∈ A and r ∈ R such that the w∗-slice of S,
{x∗ ∈ S : Rex∗(f0) > r}, is included into V ∩ S and contains δx. In particular,
Re f0(x) > r and Re f0(t) ≤ r for all t ∈ K \ U .

Note that maxt∈K Re f0(t) =: m > r and consider g(t) := ef0(t) for t ∈ K.
It is clear that g ∈ A –see Lemma 2.2–, g(K) ⊂ emD and that g maps K \ U
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into erD, i.e., strictly inside of emD. Since Γ0 is a boundary for A, there exists
t0 ∈ U ∩ Γ0 such that |g(t0)| = em. Now, take n ∈ N such that en(r−m) < δ.
Then, the function defined by

f(t) =

(
g(t)

g(t0)

)n
, for t ∈ K,

is the one that we need. �

We also need the following two lemmas that gather some basic and known re-
sults about uniform algebras. Lemma 2.3 that we write down without a proof can
be proved in several different easy ways; it also appears as a very particular and
straightforward consequence of some other much stronger result, see for instance
Mergelyan’s theorem [23, Theorem 20.5].

Lemma 2.2. Let A ⊂ C(K) be a uniform algebra, M ⊂ C and g : M → C a
function that is the uniform limit of a sequence of complex polynomials restricted
to M . For every f ∈ A with f(K) ⊂M the following statements hold true:

(i) If A is unital, then g ◦ f ∈ A.
(ii) If A is non-unital, 0 ∈M and g(0) = 0, then g ◦ f ∈ A.

Proof. Let us fix a sequence pn : C→ C of polynomials that converges uniformly
to g on M . In case (i), pn ◦ f ∈ A for n ∈ N and g ◦ f is the uniform limit on K
of (pn ◦ f)n, and therefore g ◦ f ∈ A. In case (ii), we define qn := pn − pn(0) for
every n ∈ N. Now, qn ◦ f ∈ A for n ∈ N and g ◦ f is the uniform limit on K of
(qn ◦ f)n, and therefore g ◦ f ∈ A. �

Lemma 2.3. Every φ ∈ A(D) is the uniform limit of a sequence of complex poly-
nomials on D.

As already recalled in the Introduction for 0 < ε < 1 the Stolz region is defined
by

Stε := {z ∈ C : |z|+ (1− ε)|1− z| ≤ 1}.
Let us note that Stε is convex, Stε ⊂ D and 1 is the only point of the unit circle T
that belongs to (the boundary of) Stε. Note also that ε2D ⊂ Stε and therefore 0 is
an interior point of Stε. Indeed, for every z ∈ ε2D we have that

|z|+ (1− ε)|1− z| ≤ ε2 + (1− ε)(1 + ε2) < ε2 + (1− ε)(1 + ε) = 1.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

FIGURE 1. Stolz’s region

Theorem 14.19 of [23] implies that the Stolz region has the following property.
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Remark 2.4. There exists a homeomorphism φ : D→ Stε such that:
(i) φ restricted to D is a conformal mapping onto the interior int(Stε) of Stε;
(i) φ(1) = 1;

(ii) φ(0) = 0.

Finally we can prove the auxiliary lemma, announced in the Introduction:

Lemma 2.5. Let A ⊂ C(K) be a unital uniform algebra. Then, for every open set
U ⊂ K with U ∩ Γ0 6= ∅ and 0 < ε < 1, there exist f ∈ A and t0 ∈ U ∩ Γ0 such
that f(t0) = ‖f‖∞ = 1, |f(t)| < ε for every t ∈ K \ U and f(K) ⊂ Stε, i.e.

|f(t)|+ (1− ε)|1− f(t)| ≤ 1, for all t ∈ K. (2.2)

Proof. Let φ ∈ A(D) be the function from Remark 2.4. The set φ−1(ε2D) ⊂ D
is an open neighbourhood of 0. Let δ > 0 be such that δD ⊂ φ−1(ε2D) and let
fδ be the function of norm one and t0 the corresponding point in U ∩ Γ0 provided
by Lemma 2.1. Then the function f = φ ◦ fδ is the one that we need. Indeed, on
one hand Lemmas 2.2 and 2.3 assure us that f ∈ A. On the other hand, we have
that f(K) ⊂ Stε that gives us inequality (2.2), and also f(t0) = φ(fδ(t0)) = 1 =
‖f‖∞. Finally we have that,

f(K \ U) = φ(fδ(K \ U)) ⊂ φ(δD) ⊂ ε2D ⊂ εD.
Thus, |f(z)| < ε for every t ∈ K \ U and the proof is finished. �

2.2. Non-unital algebras and Stolz regions. Throughout this subsection B is a
non-unital uniform algebra, that is, a closed subalgebra of C(K), separating points
and with 1 /∈ B. Denote by A := {c1 + f : c ∈ C, f ∈ B} the ‖·‖∞-closed sub-
algebra generated by B ∪ {1}. Since the natural embedding of A into the space of
continuous functions on the set of characters of A is an isometry, we can assume
without loss of generality that K is the Gelfand compactum –i.e. set of characters–
of A. Consider the Choquet boundary of A, Γ0(A) ⊂ K. Since B is a maximal
ideal ofA (note that it is 1-codimensional), Gelfand-Mazur theorem assures us that
there exists ν ∈ K such thatB = {f ∈ A : δν(f) = 0}. Denote Γ0 = Γ0(A)\{ν}.
Observe that Γ0 is a boundary for B. For general background on Gelfand repre-
sentation theory we refer to [13].

With a bit of extra work in the proof of Lemma 2.1, its non-unital version is
proved below.

Lemma 2.6. Let B ⊂ C(K) be as above. Then, for every open set U ⊂ K with
U∩Γ0 6= ∅ and δ > 0, there is f ∈ B and t0 ∈ U∩Γ0 such that ‖f‖∞ = f(t0) = 1
and |f(t)| < δ for every t ∈ K \ U .

Proof. Without loss of generality we can assume that ν /∈ U . We use the natural
identification of K with ı(K) as we did in the proof of Lemma 2.1. Let us fix
x ∈ U ∩ Γ0. Since x is an extreme point of S as defined in (2.1), by Choquet’s
lemma, there exists a w∗-slice of S that contains x and lies inside U . This slice that
can be assumed generated by an element f0 ∈ B –note that 1 is constant on S– is
of the form {y∗ ∈ S : Re y∗(f0) > r} for some r ∈ R. So, Re f0(x) > r, and for
every t ∈ K \ U we have Re f0(t) ≤ r and in particular 0 = Re f0(ν) ≤ r.

Note that maxt∈K Re f0(t) =: m > r. Since Γ0 is a boundary for B, there
exists a t0 ∈ Γ0 ∩ U such that Re f0(t0) = m. Define g(t) = ef0(t) − 1, t ∈ K.
Then we have that g ∈ B after Lemma 2.2, g(K) ⊂ emD − 1, and g(K \ U) ⊂
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erD − 1, i.e., strictly inside of emD − 1. Observe that 0 ∈ emD − 1 because
m > r ≥ Re f0(ν) = 0. Now, consider a Möbius transformation h(z) = az+b

cz+d that
conformally maps emD − 1 onto D, the boundary of emD − 1 onto the boundary
of D and such that h(0) = 0. Since g(t0) = ef0(t0) − 1 belongs to the boundary of
emD− 1, its image h(g(t0)) belongs to the boundary of D. Then

f(t) :=

(
(h ◦ g)(t)

(h ◦ g)(t0)

)n
, t ∈ K,

for suitable n ∈ N, is the function that we need. �

The main result of this subsection reads as follows:

Lemma 2.7. Let B ⊂ C(K) be as in the previous lemmas. Then, for every open
set U ⊂ K with U ∩ Γ0 6= ∅ and 0 < ε < 1, there exist f ∈ B and t0 ∈ U ∩ Γ0

such that f(t0) = ‖f‖∞ = 1, |f(t)| < ε for every t ∈ K \ U and

|f(t)|+ (1− ε)|1− f(t)| ≤ 1, for all t ∈ K.

Proof. The proof that is left to the reader is the same as for the analogous Lemma
2.5 for unital algebras: the idea now is to combine again Lemmas 2.2, 2.3, 2.6 and
Remark 2.4 taking into account that since φ(0) = 0 our arguments work for the
non-unital case as well. �

2.3. General case: simply connected regions. For our applications in this pa-
per to the Bishop-Phelps-Bollobás property included in Section 3 we just need the
Lemmas 2.5 and 2.7 as presented already. Nonetheless the reader might have re-
alized that our previous arguments work for arbitrary bounded simply connected
region with simple boundary points. Although we do not need it we complete this
section with a few comments about this general case.

Recall that a boundary point β of a simply connected region Ω of C is said to be
a simple boundary point of Ω if β has the following property: to every sequence
(zn)n in Ω such that zn → β there corresponds a curve γ : [0, 1] → C and a
sequence (tn)n,

0 < t1 < t2 < · · · < tn < tn+1 < . . . with tn → 1,

such that γ(tn) = zn for every n ∈ N and γ
(
[0, 1]

)
⊂ Ω, see [23, p. 289]. All

points in the boundary of D and Stε are simple boundary points.
Every bounded simply connected region Ω such that all points in its boundary

∂Ω are simple has the property that every conformal mapping of Ω onto D extends
to a homeomorphism of Ω onto D, see [23, Theorem 14.19].

Proposition 2.8. Let A ⊂ C(K) be a unital uniform algebra, Ω ⊂ C a bounded
simply connected region such that all points in its boundary ∂Ω are simple. Let us
fix two different points a and b with b ∈ ∂Ω, a ∈ Ω and a neighbourhood Va ⊂ Ω
of a. Then, for every open set U ⊂ K with U ∩ Γ0 6= ∅ and for every t0 ∈ U ∩ Γ0,
there exists f ∈ A such that

(i) f(K) ⊂ Ω;
(i) f(t0) = b;
(i) f(K \ U) ⊂ Va.
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Proof. According to [10, Theorem 4.3.5] any point t0 ∈ Γ0 is a strong boundary
point for A and therefore for every δ > 0 there exists a function gδ ∈ A such that
gδ(t0) = 1 = ‖gδ‖∞ and gδ(K \ U) ⊂ δD.

We distinguish two cases for the proof:

CASE 1: a ∈ Ω. According to [23, Theorem 14.19] we can produce a homeo-
morphism φ : D → Ω such that φ is a conformal mapping from D onto Ω with
φ(1) = b and φ(0) = a. Using and adequate gδ as described above and φ the proof
goes along the path that we followed in the proof of Lemma 2.5.

CASE 2: a ∈ ∂Ω. Since int(Va) ∩ Ω 6= ∅ we can take a′ ∈ Ω and δ′ > 0 such that
D(a′, δ′) ⊂ Va ∩ Ω. Now, we apply CASE 1 to a′, its neighbourdhood D(a′, δ′)
and b. The thesis follows. �

Needless to say that in the non-unital case other results in the vein of the above
proposition with the right hypothesis could be proved too.

3. BISHOP-PHELPS-BOLLOBÁS PROPERTY

The result below that appears as Theorem 1 in [6] is known nowadays in the
literature as the Bishop-Phelp-Bollobás theorem:

Theorem 3.1. Let X be a Banach space, x∗0 ∈ SX∗ and x0 ∈ SX such that
|1 − x∗0(x0)| ≤ ε2/2 (0 < ε < 1/2). Then there exists x∗ ∈ SX∗ that attains the
norm at some x ∈ SX such that

‖x∗0 − x∗‖ ≤ ε and ‖x0 − x‖ < ε+ ε2.

It is easily seen that in the real case, if we assume that x∗0(x0) ≥ 1−ε2/4 then the
points x∗ and x above can be taken satisfying ‖x∗0 − x∗‖ ≤ ε and ‖x0 − x‖ ≤ ε.

Note that a direct application of Brøndsted-Rockafellar variational principle, [22,
Theorem 3.17], gives a better result:

Corollary 3.2. Let X be a real Banach space, x∗0 ∈ SX∗ and x0 ∈ SX such that
x∗0(x0) ≥ 1 − ε2/2 (0 < ε <

√
2). Then there exists x∗ ∈ SX∗ that attains the

norm at some x ∈ SX such that

‖x∗0 − x∗‖ ≤ ε and ‖x0 − x‖ ≤ ε. (3.1)

We remark that in the previous corollary the hypothesis x∗0(x0) ≥ 1− ε2/2 can
not be weakened if we still wish to obtain the estimates (3.1), see [6, Remark].

Corollary 3.2 is easily extended to the complex case. Recall that given a complex
Banach space X , the canonical map < : X∗ → (XR)∗ defined by Re (x∗)(x) :=
Rex∗(x), for x∗ ∈ X∗ and x ∈ X , is an isometry and also an homeomorphism
from (X∗, w∗) onto ((XR)∗, w∗).

Corollary 3.3. Let X be a Banach space, x∗0 ∈ SX∗ and x0 ∈ SX such that
|x∗0(x0)| ≥ 1 − ε2/2 (0 < ε <

√
2). Then there exists x∗ ∈ SX∗ that attains the

norm at some x ∈ SX such that

‖x∗0 − x∗‖ ≤ ε and ‖x0 − x‖ ≤ ε.
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Proof. Let us take λ ∈ C such that |x∗0(x0)| = λx∗0(x0). Then, we can apply
Corollary 3.2 to the norm one real functional <(x∗0) and the norm one vector λx0,
to obtain u∗ ∈ S(XR)∗ and u ∈ SX with u∗(u) = 1 and such that

‖u∗ −<(x∗0)‖ ≤ ε and ‖u0 − λx0‖ ≤ ε.
If we set x∗ = <−1(u∗) and x = λ−1u, then x∗ is a norm one complex con-
tinuous functional on X that satisfies |x∗(x)| = |λ−1| = 1. On the other hand
‖x0 − x‖ = ‖λx0 − u‖ ≤ ε. Since < is an isometry, we deduce that ‖x∗0 − x∗‖ =
‖Re(x∗0)− u∗‖ ≤ ε, and the proof is over. �

A complex Banach space X is said to be an Asplund space if its underlying
real space XR is Asplund, that is, whenever ψ is a convex continuous real valued
function defined on an open convex subset U of X , the set of all points of U where
ψ is Fréchet differentiable is a dense Gδ-subset of U . This definition is due to
Asplund [4] under the name strong differentiability space. Combined efforts of
Namioka, Phelps and Stegall led to Theorem 3.4 below that is valid both for real
and complex Banach spaces. This result already hints at the power of the concepts
involved.

Theorem 3.4 ([21, 24, 25]). Let X be a Banach space. Then the following condi-
tions are equivalent:

(i) X is an Asplund space;
(ii) every w∗-compact subset of (X∗, w∗) is fragmented by the norm;

(iii) each separable subspace of X has separable dual;
(iv) X∗ has the Radon-Nikodým property.

For the notion of the Radon-Nikodým property we refer to [12] and for the
concept of fragmentability we refer to [20].

An operator T ∈ L(X,Y ) is said to be an Asplund operator if it factors through
an Asplund space,

X
T //

T1   @
@@

@@
@@

@ Y

Z

T2

??~~~~~~~~

i.e., there are an Asplund space Z and operators T1 ∈ L(X,Z), T2 ∈ L(Z, Y )
such that T = T2 ◦ T1, see [14, 26]. Note that every weakly compact operator
T ∈ W(X,Y ) factors through a reflexive Banach space, see [11], and hence T is
an Asplund operator.

A careful reading of [2, Lemma 2.3] together with the fact that (i)⇔ (ii) in The-
orem 3.4, for real and complex spaces, should give the reader the tools to establish
the validity of the following lemma. As usual T ∗ denotes the adjoint of T .

Lemma 3.5. Let T : X → Y be an Asplund operator with ‖T‖ = 1 and x0 ∈ SX
such that ‖Tx0‖ > 1 − ε2

2 (0 < ε <
√

2). For any given 1-norming set Γ ⊂ BY ∗
if we write M = T ∗(Γ) then, for every r > 0 there exist:

(i) a w∗-open set Ur ⊂ X∗ with Ur ∩M 6= ∅, and
(ii) points y∗r ∈ SX∗ and ur ∈ SX with |y∗r (ur)| = 1 such that

‖x0 − ur‖ ≤ ε and ‖z∗ − y∗r‖ ≤ r +
ε2

2
+ ε for every z∗ ∈ Ur ∩M. (3.2)
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We can prove now our main result in this paper as application of all the above.

Theorem 3.6. Let A ⊂ C(K) be a uniform algebra and T : X → A be an Asplund
operator with ‖T‖ = 1. Suppose that 0 < ε <

√
2 and x0 ∈ SX are such that

‖Tx0‖ > 1− ε2

2 . Then there exist u0 ∈ SX and an Asplund operator T̃ ∈ SL(X,A)

satisfying that

‖T̃ u0‖ = 1, ‖x0 − u0‖ ≤ ε and ‖T − T̃‖ < 2ε.

Proof. Fix arbitrary r > 0 and 0 < ε′ < 1. If A = A is unital then take Γ0 = Γ(A)
the Choquet boundary of A. If A = B is not unital then change K and take
Γ0 as we did at the beginning of subsection 2.2. In any case, we can assume
that we are dealing with an Asplund operator T : X → A ⊂ (C(K), ‖·‖∞) for
which we can apply Lemma 3.5 for Y := A, Γ = {δs ∈ A∗ : s ∈ Γ0}, r and
ε > 0. We produce the w∗-open set Ur, the point ur and the functional y∗r ∈ SX∗
satisfying the properties in the aforementioned lemma. Since Ur ∩ M 6= ∅ we
can pick s0 ∈ Γ0 such that T ∗δs0 ∈ Ur. The w∗-continuity of T ∗ ensures that
U = {s ∈ K : T ∗δs ∈ Ur} is an open neighborhood of s0. Using Lemma 2.5
–or Lemma 2.7 in the not unital case– for the open set U –that clearly satisfies
U ∩ Γ0 6= ∅– and ε′ we obtain a function f ∈ A and t0 ∈ U ∩ Γ0 satisfying

f(t0) = ‖f‖∞ = 1, (3.3)

|f(t)| < ε′ for every t ∈ K \ U (3.4)
and

|f(t)|+ (1− ε′)|1− f(t)| ≤ 1 for every t ∈ K. (3.5)

Define now the linear operator T̃ : X → A by the formula

T̃ (x)(t) = f(t)y∗r (x) + (1− ε′)(1− f(t))T (x)(t). (3.6)

It is easily checked that T̃ is well-defined. Bearing in mind (3.5) we prove that
‖T̃‖ ≤ 1. On the other hand,

1 = |y∗r (ur)|
(3.3)
= |T̃ (ur)(t0)| ≤ ‖T̃ (ur)‖ ≤ 1

and therefore T̃ attains the norm at the point u0 = ur ∈ SX for which we already
had that ‖u0 − x0‖ ≤ ε.

Now, for every x ∈ BX , since Γ0 is a boundary for A, we have that∥∥Tx− T̃ x∥∥∞ = sup
t∈Γ0

∣∣f(t)(y∗r (x)− T (x)(t))− ε′(1− f(t))T (x)(t)
∣∣

≤ sup
t∈Γ0

{
|f(t)| |y∗r (x)− T ∗δt(x)|+ ε′|1− f(t)| |T (x)(t)|

}
(3.3)
≤ sup

t∈Γ0

{|f(t)| ‖y∗r − T ∗δt‖}+ 2ε′.

On one hand, since T ∗δt ∈ Ur ∩M for every t ∈ U ∩ Γ0, we deduce that

sup
t∈U∩Γ0

|f(t)| ‖y∗r − T ∗δt‖
(3.2)
≤ r +

ε2

2
+ ε.

On the other hand, since t ∈ Γ0 \ U implies t ∈ K \ U , we obtain that

sup
t∈Γ0\U

|f(t)|‖y∗r − T ∗δt‖
(3.4)
≤ 2ε′.
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Gathering the information of the last three inequalities we conclude that

‖T − T̃‖ ≤ max{4ε′, 2ε′ + r + ε2/2 + ε}.
Since r > 0 and 0 < ε′ < 1 are arbitrary, for suitable values

max{4ε′, 2ε′ + r + ε2/2 + ε} < 2ε.

To finish the proof we show that T̃ is also an Asplund operator. To this end it
suffices to observe that Asplund operators between Banach spaces form an operator
ideal, and that T̃ in (3.6) appears as a linear combination of a rank one operator,
the operator T and the operator x 7→ f · T (x). The latter is the composition of a
bounded operator from A into itself with T . Therefore T̃ is an Asplund operator
and the proof is over. �

We conclude the paper with a list of remarks concerning the peculiarities and
scope of the results that we have proved here:

R1: If we denote by A the ideal of Asplund operators between Banach
spaces and I ⊂ A is a sub-ideal, Theorem 3.6 naturally applies for any
operator T ∈ I(X,A) and the provided T̃ belongs again to I(X,A).

R2: Theorem 3.6 applies in particular to the ideals of finite rank operators
F , compact operators K, p-summing operators Πp and of course to the
weakly compact operators W themselves. To the best of our knowledge
even in the case W(X,A) the Bishop-Phelps property that follows from
Theorem 3.6 is a brand new result.

R3: Let L be a scattered and locally compact space. The space of contin-
uous functions vanishing at infinity C0(L) on L endowed with its sup
norm ‖·‖∞ is an Asplund space, see comments after Corollary 2.6 in [2].
Therefore (C0(L),A) has the BPBp for any uniform algebra. More in
particular, for any set Γ the pair, (c0(Γ),A) has the BPBp. Note that
the paper [2] provided the first example of an infinite dimensional Ba-
nach space Y such that (c0, Y ) has the Bishop-Phelps-Bollobás property,
namely for any Y = C0(L) as before. In a different order of ideas, it
has been established in the paper [18] that (c0, Y ) has the BPBp for every
uniformly convex Banach space Y .
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tened to our results about uniform algebras and informed us about other related
results and useful references. After we sent for publication the first version of
this paper we learned from Professors Antonio Cordoba and José Luis Fernández
that our original proofs for Lemmas 2.5 and 2.7 could be shortened and simplified.
While revising the paper we have simplified our original proofs even more. Thanks
to them and to the referee, who asked us to rethink our results and present them in
a more pedagogical way, we have been pushed to shorten and clarify our original
manuscript.
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