Measurable selectors, proximinality and integration of multi-functions

B. Cascales

Universidad de Murcia/Kent State University

Brno, Czech Republic 14th-17th July, 2009 24th Summer Conference on Topology and its Applications

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The interplay between functional analysis, topology and measure theory.

What can one expect when mixing up analysis, topology and measure theory?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

What can one expect when mixing up analysis, topology and measure theory?

It's a common theme of mathematics that when one mixes different mathematical endeavors, like topology (geometry), algebra and analysis the end product is oftentimes much greater than a simple sum of the individual parts...

> Respectfully yours Joe Diestel Kent State University.

- X topological space; E Banach;
- 2^E subsets; wk(E) weakly compact sets; cwk(E) convex weakly compact sets;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- X topological space; E Banach;
- 2^E subsets; wk(E) weakly compact sets; cwk(E) convex weakly compact sets;
- (Ω, Σ, μ) complete probability space;
- Σ⁺ measurable sets of positive measure; for A ∈ Σ, Σ⁺_A measurable subsets of A of positive measure;
- measurability and scalar measurability for f : Ω → E standard; measurability for F : Ω → 2^E will be defined;

Block 1 if $F: \Omega \to 2^E$ is nice to find nice selectors $f: \Omega \to E$ of F. **Application:** integration of multi-functions.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Stay focused: kind of problems studied

Block 1 if $F: \Omega \to 2^E$ is *nice* to find *nice* selectors $f: \Omega \to E$ of F. **Application:** integration of multi-functions.

Block 2 if $Y \subset E$ proximinal to find *nice* selectors of the *metric* projection

$$E \ni x \mapsto P_Y(x) := \{y \in Y : ||x - y|| = d(x, Y)\} \neq \emptyset$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Application: proximinality of $L^1(\mu, Y) \subset L^1(\mu, E)$.

Stay focused: kind of problems studied

- Block 1 if $F : \Omega \to 2^E$ is *nice* to find *nice* selectors $f : \Omega \to E$ of F. **Application:** integration of multi-functions.
- Block 2 if $Y \subset E$ proximinal to find *nice* selectors of the *metric* projection

 $E \ni x \mapsto P_Y(x) := \{y \in Y : ||x - y|| = d(x, Y)\} \neq \emptyset$

Application: proximinality of $L^1(\mu, Y) \subset L^1(\mu, E)$.

Block 3 to use ideas as above but in *topology* to measure distances to spaces of Baire one functions. Application: quantitative versions of compactness results in spaces of Baire one functions.

Stay focused: kind of problems studied

- Block 1 if $F: \Omega \to 2^E$ is *nice* to find *nice* selectors $f: \Omega \to E$ of F. **Application:** integration of multi-functions.
- Block 2 if $Y \subset E$ proximinal to find *nice* selectors of the *metric* projection

 $E \ni x \mapsto P_Y(x) := \{y \in Y : ||x - y|| = d(x, Y)\} \neq \emptyset$

Application: proximinality of $L^1(\mu, Y) \subset L^1(\mu, E)$.

- Block 3 to use ideas as above but in *topology* to measure distances to spaces of Baire one functions. Application: quantitative versions of compactness results in spaces of Baire one functions.
- Block 4 to use ideas as above but in spaces of continuous functions. Application: weak compactness in Banach spaces can be rewritten using inequalities the true compactness result is Tijonov theorem.

The co-authors

- B. Cascales and M. Raja, Measurable selectors for the metric projection, Math. Nachr. 254/255 (2003), 27–34.
- B. Cascales and J. Rodríguez, The Birkhoff integral and the property of Bourgain, Math. Ann. 331 (2005), no. 2, 259–279.
- B. Cascales, V. Kadets, and J. Rodríguez, *Measurable selectors and set-valued Pettis integral in non-separable Banach spaces*, J. Funct. Anal. **256** (2009).
- B. Cascales, V. Kadets, and J. Rodríguez, *Measurability and selections of multi-functions in Banach spaces*, J. Convex Analysis (2009 or 2010).
- **C. Angosto** y B. Cascales *The quantitative difference between countable compactness and compactness.* J. Math. Anal. Appl. (2008).
- **C. Angosto** y B. Cascales *Measures of weak noncompactness in Banach spaces.* Topology Appl. (2009)
- **C. Angosto, I. Namioka** and B. Cascales, *Distances to spaces of Baire one functions*, Math. Z. (2009 or 2010).

http://webs.um.es/beca/ aparts a sac

Measurable selectors

Scalarly measurable selectors

Proximinality, topology 00 Distances to spaces of functions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

MEASURABLE SELECTORS

• start with a nice characterization of measurability for $f: \Omega \rightarrow E$;

Naivo approa	ch to find moscu	rable coloctors	
Measurable selectors	Scalarly measurable selectors	Proximinality, topology	Distances to spaces of functions

- start with a nice characterization of measurability for $f: \Omega \rightarrow E$;
- GUESS!!! what would be the natural extension (P) of the above for multi-functions F : Ω → 2^E;

(日) (日) (日) (日) (日) (日) (日) (日)

 Measurable selectors
 Scalarly measurable selectors
 Proximinality, topology
 Distances to spaces of functions

 Naive approach to find measurable selectors
 Selectors
 Selectors
 Selectors

- start with a nice characterization of measurability for $f: \Omega \rightarrow E$;
- GUESS!!! what would be the natural extension (P) of the above for multi-functions F : Ω → 2^E;

Try to prove that (P) REALLY gives us measurable selectors;

 Measurable selectors
 Scalarly measurable selectors
 Proximinality, topology
 Distances to spaces of functions

 Naive approach to find measurable selectors
 Selectors
 Selectors
 Selectors

- start with a nice characterization of measurability for $f: \Omega \rightarrow E$;
- Try to prove that (P) REALLY gives us measurable selectors;

How good is this approach?

 Measurable selectors
 Scalarly measurable selectors
 Proximinality, topology
 Distances to spaces of functions

 Naive approach to find measurable selectors
 Selectors
 Naive approach
 Selectors
 Selecto

- start with a nice characterization of measurability for $f: \Omega \rightarrow E$;
- **Our Constant and Set up and Set**
- Try to prove that (P) REALLY gives us measurable selectors;

How good is this approach?

As good as the real applications you can get!!!

Measurable selectors

Scalarly measurable selectors

Proximinality, topology 00 Distances to spaces of functions 0000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Starting point...an elementary result

Exercise

 $\begin{array}{l} f:\Omega \to \mathbb{R}. \ \, \mathsf{TFAE:} \\ \bullet \ \ f \ \ is \ (\mu\text{-})\mathsf{measurable}; \\ \bullet \ \ \mathsf{For \ every} \ \ \varepsilon > 0 \ \ A \in \Sigma^+ \ \mathsf{there \ } is \ \ B \in \Sigma^+_A \ \mathsf{such \ that} \\ |\cdot| - \mathsf{diam} \ f(B) < \varepsilon. \end{array}$

Measurable selectors \bullet

Scalarly measurable selectors

Proximinality, topology 00 Distances to spaces of functions 0000000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Starting point...an elementary result

Exercise

 $f: \Omega \to E. \text{ TFAE:}$ $f \text{ is } (\mu-)\text{measurable;}$ $For \text{ every } \varepsilon > 0 \ A \in \Sigma^+ \text{ there is } B \in \Sigma^+_A \text{ such that}$ $\|\|-\text{diam } f(B) < \varepsilon.$

Meası ○●○○	rable selectors ○	Scalarly measurable selectors	Proximinality, topology 00	Distances to spaces of function
A	naive appr	oach		
		<i>f</i> : Ω	$\rightarrow E$	
	For every $arepsilon$	$>$ 0 $A \in \Sigma^+$ there is B	$B\in \Sigma^+_A$ such that	
		diam	$nf(B) < \varepsilon$.	

Measu ○●○○	rable selectors O	Scalarly measurable selectors	Proximinality, topology 00	Distances to spaces of functions
A	naive appr	oach		
		<i>f</i> : Ω	$E \rightarrow E$	
	For every $arepsilon$	$>$ 0 A \in Σ^+ there is I	$B\in \Sigma^+_{\mathcal{A}}$ such that	
		— diam	$f(B) < \varepsilon$.	

Is there a reasonable extension of the above for multi-functions?

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

Measurable selectors ○●○○○	Scalarly measurable selectors	Proximinality, topology 00	Distances to spaces of function: 0000000
A naive a	pproach		
	<i>f</i> :	$\Omega ightarrow E$	
For every $\varepsilon > 0$ $A \in \Sigma^+$ there is $B \in \Sigma^+_A$ such that			t

 $\| \| - \operatorname{diam} f(B) < \varepsilon.$

Is there a reasonable extension of the above for multi-functions?

Definition

$$\begin{split} F: \Omega &\to 2^E \text{ satisfies} \\ \text{property (P) if for each } \varepsilon > 0 \\ \text{and each } A \in \Sigma^+ \text{ there exist} \\ B \in \Sigma^+_A \text{ and } D \subset E \text{ with} \\ \text{diam}(D) < \varepsilon \text{ such that} \end{split}$$

 $F(t) \cap D \neq \emptyset$ for every $t \in B$.

O●000	Scalarly measurable selectors	OO OO	OOOOOOO
A naive ap	proach		
	<i>f</i> :	$\Omega ightarrow E$	
For every	$\varepsilon > 0 \ A \in \Sigma^+$ there is	$B \in \Sigma^+_A$ such that	t

 $\| \| - \operatorname{diam} f(B) < \varepsilon.$

Is there a reasonable extension of the above for multi-functions?

(P) is the measure theory counterpart of σ -fragmentable multi-functions introduced by Jayne-Pallarés-Orihuela and Vera

Measurable selectors ○○●○○	Scalarly measurable selectors	Proximinality, topology 00	Distances to spaces of func	
Multi-funct	ions			
Property ((P)			
$F: \Omega \rightarrow 2^E$ satisf diam $(D) < \varepsilon$ such	ies property (P) if for each $\varepsilon > 0$ and a that $F(t) \cap D \neq \emptyset$ for every $t \in B$.	each $A \in \Sigma^+$ there exist $B \in \Sigma$	$^+_{ m A}$ and $D\subset E$ with	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Measurable selectors ○○●○○	Scalarly measurable selectors	Proximinality, topology 00	Distances to spaces of fur	nctions
Multi-funct	ions			
Property	(P)			
$F: \Omega \rightarrow 2^E$ satisfied diam $(D) < \varepsilon$ such	fies property (P) if for each $\varepsilon > 0$ and h that $F(t) \cap D \neq \emptyset$ for every $t \in B$.	each $A \in \Sigma^+$ there exist $B \in \Sigma$	^+_A and $D \subset E$ with	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Measurable selectors ○○●○○	Scalarly measurable selectors	Proximinality, topology 00	Distances to spaces of t	unctions
Multi-funct	ions			
Property	(P)			
$F: \Omega \rightarrow 2^E$ satisf diam $(D) < \varepsilon$ such	ies property (P) if for each $\varepsilon > 0$ and a that $F(t) \cap D \neq \emptyset$ for every $t \in B$.	each $A \in \Sigma^+$ there exist $B \in \Sigma$	^+_A and $D \subset E$ with	

Measurable selectors ○○●○○	Scalarly measurable selectors	Proximinality, topology 00	Distances to spaces of functions
Multi-funct	ions		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Property (P)

 $\begin{array}{l} F:\Omega\to 2^E \text{ satisfies property (P) if for each } \varepsilon>0 \text{ and each } A\in\Sigma^+ \text{ there exist } B\in\Sigma^+_A \text{ and } D\subset E \text{ with } \mathrm{diam}(D)<\varepsilon \text{ such that } F(t)\cap D\neq \emptyset \text{ for every } t\in B. \end{array}$

Measurable selectors ○○●○○	Scalarly measurable selectors	Proximinality, topology 00	Distances to spaces of functions
Multi-function	ons		

 $F: \Omega \to 2^E$ satisfies property (P) if for each $\varepsilon > 0$ and each $A \in \Sigma^+$ there exist $B \in \Sigma_A^+$ and $D \subset E$ with diam $(D) < \varepsilon$ such that $F(t) \cap D \neq \emptyset$ for every $t \in B$.

- Fix n = 0;
- 2 take $\varepsilon := (1/2)^n$;
- 3 apply (P) for A = Ω, ε and F;
- a maximality argument produces a partition of B's;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Measurable selectors	Scalarly measurable selectors	Proximinality, topology 00	Distances to spaces of functions
Multi-functic	ons		

 $F: \Omega \to 2^E$ satisfies property (P) if for each $\varepsilon > 0$ and each $A \in \Sigma^+$ there exist $B \in \Sigma_A^+$ and $D \subset E$ with diam $(D) < \varepsilon$ such that $F(t) \cap D \neq \emptyset$ for every $t \in B$.

Fix n = 0;
 take ε := (1/2)ⁿ;
 apply (P) for A = Ω, ε and F;
 a maximality argument produces a partition of B's;
 enumerate B's as {B_n} and choose any x_n ∈ D_n;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Measurable selectors	Scalarly measurable selectors	Proximinality, topology 00	Distances to spaces of functions
Multi-functic	ons		

 $F: \Omega \to 2^E$ satisfies property (P) if for each $\varepsilon > 0$ and each $A \in \Sigma^+$ there exist $B \in \Sigma_A^+$ and $D \subset E$ with diam $(D) < \varepsilon$ such that $F(t) \cap D \neq \emptyset$ for every $t \in B$.

Fix n = 0;
 take ε := (1/2)ⁿ;
 apply (P) for A = Ω, ε and F;
 a maximality argument produces a partition of B's;
 enumerate B's as {B_n} and choose any x_n ∈ D_n;
 define f_ε := Σ_n χ_{B_n}x_n;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Measurable selectors	Scalarly measurable selectors	Proximinality, topology 00	Distances to spaces of functions
Multi-functio	ons		

 $F: \Omega \to 2^E$ satisfies property (P) if for each $\varepsilon > 0$ and each $A \in \Sigma^+$ there exist $B \in \Sigma_A^+$ and $D \subset E$ with diam $(D) < \varepsilon$ such that $F(t) \cap D \neq \emptyset$ for every $t \in B$.

Fix n = 0;
 take ε := (1/2)ⁿ;
 apply (P) for A = Ω, ε and F;
 a maximality argument produces a partition of B's;
 enumerate B's as {B_n} and choose any x_n ∈ D_n;
 define f_ε := Σ_n χ_{B_n}x_n;
 f_ε is μ-measurable and d(f_ε(t), F(t)) < ε μ-a.e.;

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Measurable selectors	Sca
00000	

Scalarly measurable selectors

Proximinality, topology 00 Distances to spaces of functions

Multi-functions

Property (P)

 $F: \Omega \to 2^E$ satisfies property (P) if for each $\varepsilon > 0$ and each $A \in \Sigma^+$ there exist $B \in \Sigma_A^+$ and $D \subset E$ with diam $(D) < \varepsilon$ such that $F(t) \cap D \neq \emptyset$ for every $t \in B$.

Fix n = 0;
take ε := (1/2)ⁿ;
apply (P) for A = Ω, ε and F;
a maximality argument produces a partition of B's;
enumerate B's as {B_n} and choose any x_n ∈ D_n;
define f_ε := Σ_n χ_{B_n}x_n;
f_ε is μ-measurable and d(f_ε(t), F(t)) < ε μ-a.e.;
define F_ε(t) := F(t) ∩ B(f_ε(t), ε);

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Measurable	selectors
00000	

Scalarly measurable selectors

Proximinality, topology 00 Distances to spaces of functions

Multi-functions

Property (P)

 $F: \Omega \to 2^E$ satisfies property (P) if for each $\varepsilon > 0$ and each $A \in \Sigma^+$ there exist $B \in \Sigma^+_A$ and $D \subset E$ with $\operatorname{diam}(D) < \varepsilon$ such that $F(t) \cap D \neq \emptyset$ for every $t \in B$.

Fix n = 0;
 take ε := (1/2)ⁿ;
 apply (P) for A = Ω, ε and F;
 a maximality argument produces a partition of B's;
 enumerate B's as {B_n} and choose any x_n ∈ D_n;
 define f_ε := Σ_n χ_{B_n} x_n;
 f_ε is μ-measurable and d(f_ε(t), F(t)) < ε μ-a.e.;
 define F_ε(t) := F(t) ∩ B(f_ε(t), ε);
 IF F_ε satisfies (P) GOTO 11;
 STOP;
 n := n + 1;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Measurable	selectors
00000	

Scalarly measurable selectors

Proximinality, topology

Distances to spaces of functions

Multi-functions

Property (P)

 $F: \Omega \to 2^E$ satisfies property (P) if for each $\varepsilon > 0$ and each $A \in \Sigma^+$ there exist $B \in \Sigma^+_A$ and $D \subset E$ with $\operatorname{diam}(D) < \varepsilon$ such that $F(t) \cap D \neq \emptyset$ for every $t \in B$.

1 Fix n = 0; **2** take $\varepsilon := (1/2)^n$; **3** apply (P) for $A = \Omega$, ε and F; **4** a maximality argument produces a partition of B's; **5** enumerate B's as $\{B_n\}$ and choose any $x_n \in D_n$; **6** define $f_c := \sum_n \chi_{B_n} x_n$; **7** f_c is μ -measurable and $d(f_c(t), F(t)) < \varepsilon \mu$ -a.e.; **8** define $F_{\varepsilon}(t) := F(t) \cap B(f_{\varepsilon}(t), \varepsilon)$; **9** IF F_{ε} satisfies (P) GOTO 11; **10** STOP; **11** n := n+1; **2** GOTO 2.

Multi-fu	ctions	
Measurable selecto ○○●○○	Scalarly measurable selectors	Proxim 00

Distances to spaces of functions

Property (P)

 $F: \Omega \to 2^E$ satisfies property (P) if for each $\varepsilon > 0$ and each $A \in \Sigma^+$ there exist $B \in \Sigma^+_A$ and $D \subset E$ with $\operatorname{diam}(D) < \varepsilon$ such that $F(t) \cap D \neq \emptyset$ for every $t \in B$.

Conclusion

We produce a sequence $(f_n): \Omega \to E$ of μ -measurable functions such that $(f_n(t))$ is Cauchy μ -a.e., hence it is convergent.
Scalarly measurable selectors

Proximinality, topology

Distances to spaces of functions 0000000

(E)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Multi-functions: measurable selections

Corollary, Kuratowski-Ryll Nardzewski, 1965

Let $F: \Omega \to 2^E$ be a multi-function with closed non empty values of E. If E is separable and F satisfies that

 $\{t \in \Omega : F(t) \cap O \neq \emptyset\} \in \Sigma$ for each open set $O \subset X$.

Then F admits a μ -measurable selector f.

Scalarly measurable selectors

Proximinality, topology

Distances to spaces of functions

(E)

Multi-functions: measurable selections

Corollary, Kuratowski-Ryll Nardzewski, 1965

Let $F: \Omega \to 2^E$ be a multi-function with closed non empty values of E. If E is separable and F satisfies that

 $\{t \in \Omega : F(t) \cap O \neq \emptyset\} \in \Sigma$ for each open set $O \subset X$.

Then F admits a μ -measurable selector f.

Very little is known in the non separable case

Scalarly measurable selectors

Proximinality, topology

Distances to spaces of functions 0000000

(E)

Multi-functions: measurable selections

Corollary, Kuratowski-Ryll Nardzewski, 1965

Let $F: \Omega \to 2^E$ be a multi-function with closed non empty values of E. If E is separable and F satisfies that

 $\{t \in \Omega : F(t) \cap O \neq \emptyset\} \in \Sigma$ for each open set $O \subset X$.

Then F admits a μ -measurable selector f.

Very little is known in the non separable case

Theorem

For a multi-function $F : \Omega \rightarrow wk(E)$ TFAE:

(i) F admits a strongly measurable selector.

Scalarly measurable selectors

Proximinality, topology 00 Distances to spaces of functions

(E)

Multi-functions: measurable selections

Corollary, Kuratowski-Ryll Nardzewski, 1965

Let $F: \Omega \to 2^E$ be a multi-function with closed non empty values of E. If E is separable and F satisfies that

 $\{t \in \Omega : F(t) \cap O \neq \emptyset\} \in \Sigma$ for each open set $O \subset X$.

Then F admits a μ -measurable selector f.

Very little is known in the non separable case

Theorem

For a multi-function $F : \Omega \rightarrow wk(E)$ TFAE:

- (i) F admits a strongly measurable selector.
- (ii) There exist a set of measure zero Ω₀ ∈ Σ, a separable subspace Y ⊂ X and a multi-function G : Ω \ Ω₀ → wk(Y) that is Effros measurable and such that G(t) ⊂ F(t) for every t ∈ Ω \ Ω₀;

(iii) F satisfies property (P).

Scalarly measurable selectors

Proximinality, topology

Distances to spaces of functions

Our interest in selections: the integral of a multifunction

There are several possibilities to define the integral of *F*:

• to take a reasonable embedding j from cwk(E) into the Banach space $Y(=\ell_{\infty}(B_{E^*}))$ and then study the integrability of $j \circ F$;

・ロト ・ 雪 ト ・ ヨ ト

э

Scalarly measurable selectors

Proximinality, topology

Distances to spaces of functions

Our interest in selections: the integral of a multifunction

There are several possibilities to define the integral of *F*:

- to take a reasonable embedding *j* from *cwk*(*E*) into the Banach space *Y*(= ℓ_∞(*B_{E^{*}*)) and then study the integrability of *j* ◦ *F*;}
- to take all integrable selectors f of F and consider

$$\int F \, d\mu = \left\{ \int f \, d\mu : f \text{ integra. sel}.F \right\}.$$

(日)、

э

Scalarly measurable selectors 00000

Proximinality, topology

Distances to spaces of functions

Our interest in selections: the integral of a multifunction

There are several possibilities to define the integral of F:

- to take a reasonable embedding j from cwk(E) into the Banach space Y(= ℓ_∞(B_{E*})) and then study the integrability of j ∘ F;
- to take all integrable selectors f of F and consider

$$\int F \, d\mu = \left\{ \int f \, d\mu : f \text{ integra. sel}. F \right\}.$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Debreu, [Deb67], used the embedding technique together with Bochner integration for multi-function with values in ck(E) – convex compact subsets of E;

Scalarly measurable selectors 00000

Proximinality, topology

Distances to spaces of functions

Our interest in selections: the integral of a multifunction

There are several possibilities to define the integral of F:

- to take a reasonable embedding j from cwk(E) into the Banach space Y(= ℓ_∞(B_{E*})) and then study the integrability of j ∘ F;
- to take all integrable selectors f of F and consider

$$\int F \, d\mu = \left\{ \int f \, d\mu : f \text{ integra. sel}.F \right\}.$$

Debreu, [Deb67], used the embedding technique together with Bochner integration for multi-function with values in ck(E) – convex compact subsets of E;

2 Aumann, [Aum65], used the selectors technique;

Scalarly measurable selectors

Proximinality, topology

Distances to spaces of functions

Our interest in selections: the integral of a multifunction

There are several possibilities to define the integral of F:

- to take a reasonable embedding j from cwk(E) into the Banach space Y(= ℓ_∞(B_{E*})) and then study the integrability of j ∘ F;
- to take all integrable selectors f of F and consider

$$\int F d\mu = \left\{ \int f d\mu : f \text{ integra. sel}.F \right\}.$$

- Debreu, [Deb67], used the embedding technique together with Bochner integration for multi-function with values in ck(E) – convex compact subsets of E;
- 2 Aumann, [Aum65], used the selectors technique;
- They used the above definitions in some models in economy: Debreu Nobel prize in 1983; Aumann Nobel prize in 2005

Scalarly measurable selectors

Proximinality, topology

Distances to spaces of functions

Our interest in selections: the integral of a multifunction

There are several possibilities to define the integral of F:

- to take a reasonable embedding j from cwk(E) into the Banach space Y(= ℓ_∞(B_{E*})) and then study the integrability of j ∘ F;
- to take all integrable selectors f of F and consider

$$\int F \, d\mu = \left\{ \int f \, d\mu : f \text{ integra. sel}.F \right\}.$$

- Debreu, [Deb67], used the embedding technique together with Bochner integration for multi-function with values in ck(E) – convex compact subsets of E;
- Q Aumann, [Aum65], used the selectors technique;
- They used the above definitions in some models in economy: Debreu Nobel prize in 1983; Aumann Nobel prize in 2005
- Pettis integration for multi-functions was developed in the separable case.

Scalarly measurable selectors

Proximinality, topology

Distances to spaces of functions

Our interest in selections: the integral of a multifunction

There are several possibilities to define the integral of F:

- Solution to take a reasonable embedding *j* from *cwk*(*E*) into the Banach space *Y*(=ℓ_∞(*B_{E^{*}*)) and then study the integrability of *j* ◦ *F*;}
- to take all integrable selectors f of F and consider

$$\int F \, d\mu = \left\{ \int f \, d\mu : f \text{ integra. sel}.F \right\}.$$

Debreu, [Deb67], used the embedding technique together with Bochner integration for multi-function with values in ck(E) – convex compact subsets of E;

The non-separable case

Pettis integration theory was stuck in the separable case for the lack of a selection result in the general case.

Pettis integration for multi-functions was developed in the separable case.

Scalarly measurable selectors

Proximinality, topology 00 Distances to spaces of functions

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

SCALARLY MEASURABLE SELECTORS

Scalarly measurable selectors $\circ\circ\circ\circ\circ$

Proximinality, topology 00 Distances to spaces of functions ${\scriptstyle 0000000}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

cwk(E) embeds into $Y(=\ell_{\infty}(B_{E^*}))$

Definition

For $C \subset E$ bounded and $x^* \in E^*$, we write

$$\delta^*(x^*,C) := \sup\{x^*(x): x \in C\}.$$

Scalarly measurable selectors

Proximinality, topology 00

Distances to spaces of functions 0000000

cwk(E) embeds into $Y(=\ell_{\infty}(B_{E^*}))$

Definition

For $C \subset E$ bounded and $x^* \in E^*$, we write

$$\delta^*(x^*,C) := \sup\{x^*(x): x \in C\}.$$

Theorem, Rådström embedding [Råd52]

The map $j: cwk(E) \longrightarrow \ell_{\infty}(B_{E^*})$ given by por $j(C)(x^*) = \delta^*(x^*, C)$ satisfies the following properties:

- (i) j(C+D) = j(C) + j(D) for each $C, D \in cwk(E)$;
- (ii) $j(\lambda C) = \lambda j(C)$ for each $\lambda \ge 0$ and $C \in cwk(E)$;
- (iii) $h(C,D) = ||j(C) j(D)||_{\infty}$ for each $C, D \in cwk(E)$;
- (iv) j(cwk(E)) is closed in $\ell_{\infty}(B_{E^*})$.

Scalarly measurable selectors

Proximinality, topology

Distances to spaces of functions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Scalar measurability and Pettis integrability

Definition

 $F: \Omega \longrightarrow cwk(E)$ is said to be scalarly measurable if

$$\delta^*(x^*,F):t\mapsto \delta^*(x^*,F(t)).$$

is measurable for each $x^* \in E^*$.

Scalarly measurable selectors

Proximinality, topology

Distances to spaces of functions 0000000

Scalar measurability and Pettis integrability

Definition

 $F: \Omega \longrightarrow cwk(E)$ is said to be scalarly measurable if

$$\delta^*(x^*,F):t\mapsto \delta^*(x^*,F(t)).$$

is measurable for each $x^* \in E^*$.

Definition (Amri, Hess, Ziat)

Let *E* be a separable Banach space. A multi-function $F: \Omega \rightarrow cwk(E)$ is said to be *Pettis integrable* if

- $\delta^*(x^*,F)$ is integrable for each $x^*\in E^*$;
- for each $A \in \Sigma$, there is $\int_A F \ d\mu \in cwk(E)$ such that

$$\delta^*ig(x^*,\int_A \mathsf{F}\,\,d\muig)=\int_A \delta^*(x^*,\mathsf{F})\,\,d\mu$$
 for every $x^*\in \mathsf{E}^*$

Scalarly measurable selectors

Proximinality, topology

Distances to spaces of functions 0000000

Scalar measurability and Pettis integrability

Definition

 $F: \Omega \longrightarrow cwk(E)$ is said to be scalarly measurable if

$$\delta^*(x^*,F):t\mapsto \delta^*(x^*,F(t)).$$

is measurable for each $x^* \in E^*$.

Definition (Amri, Hess, Ziat)

Let *E* be an arbitrary Banach space. A multi-function $F: \Omega \rightarrow cwk(E)$ is said to be *Pettis integrable* if

- $\delta^*(x^*,F)$ is integrable for each $x^* \in E^*$;
- for each $A \in \Sigma$, there is $\int_A F \ d\mu \in cwk(E)$ such that

$$\delta^*ig(x^*,\int_A \mathsf{F}\,\,d\muig)=\int_A \delta^*(x^*,\mathsf{F})\,\,d\mu$$
 for every $x^*\in \mathsf{E}^*$

Scalarly measurable selectors

Proximinality, topology 00 Distances to spaces of functions 0000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Multi-functions: scalarly measurable selections

Theorem

Let $F : \Omega \to wk(E)$ be a scalarly measurable multi-function. Then *F* admits a scalarly measurable selector.

Measurable selectors	Scalarly measurable selectors	Proximinality, topology 00	Distances to spaces of functions
Theorem			

Let $F: \Omega \to wk(E)$ be a scalarly measurable multi-function. Then F admits a scalarly measurable selector.

Idea of the proof: if F_0 is any scalarly measurable multi-function define by $t \mapsto \delta_*(x^*, F_0)(t) := \inf x^*(F_0(t)).$

Scalarly measurable selectors

Proximinality, topology 00 Distances to spaces of functions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem

Let $F: \Omega \rightarrow wk(E)$ be a scalarly measurable multi-function. Then F admits a scalarly measurable selector.

Idea of the proof: if F_0 is any scalarly measurable multi-function define by $t \mapsto \delta_*(x^*, F_0)(t) := \inf x^*(F_0(t)).$

• Note that if $\Delta F_0 := \sup_{x^* \in S_{E^*}} \int_{\Omega} (\delta^*(x^*, F_0) - \delta_*(x^*, F_0)) d\mu = 0$ implies any selector f of F_0 is scalarly measurable because for every $x^* \in E^*$

$$\delta^*(x^*,F_0) = x^* \circ f = \delta_*(x^*,F_0) \ \mu - a.e.$$

Measurable	selectors

Proximinality, topology

Distances to spaces of functions 0000000

Theorem

 $\label{eq:Let F} \text{Let } F:\Omega \to \text{wk}(E) \text{ be a scalarly measurable multi-function. Then } F \text{ admits a scalarly measurable selector.}$

Idea of the proof: if F_0 is any scalarly measurable multi-function define by $t \mapsto \delta_*(x^*, F_0)(t) := \inf x^*(F_0(t)).$

• Note that if $\Delta F_0 := \sup_{x^* \in S_{E^*}} \int_{\Omega} (\delta^*(x^*, F_0) - \delta_*(x^*, F_0)) d\mu = 0$ implies any selector f of F_0 is scalarly measurable because for every $x^* \in E^*$

$$\delta^*(x^*, F_0) = x^* \circ f = \delta_*(x^*, F_0) \ \mu - a.e.$$

PROVE THAT: For every $\varepsilon > 0$ there exists a scalarly measurable multi-function $G : \Omega \to wk(E)$ such that

 $G(t) \subset F(t)$ for all $t \in \Omega$ and $\Delta G \leq \varepsilon$

(Uses: existence of $w - \lim_{n \in \mathscr{U}} x_n$ in weakly compact sets; MARTINGALES; RNP of cwk(E)).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Measurable	selectors

Proximinality, topology 00 Distances to spaces of functions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem

 $\label{eq:Let F} \text{Let } F:\Omega \to \text{wk}(E) \text{ be a scalarly measurable multi-function. Then } F \text{ admits a scalarly measurable selector.}$

Idea of the proof: if F_0 is any scalarly measurable multi-function define by $t \mapsto \delta_*(x^*, F_0)(t) := \inf x^*(F_0(t)).$

• Note that if $\Delta F_0 := \sup_{x^* \in S_{E^*}} \int_{\Omega} (\delta^*(x^*, F_0) - \delta_*(x^*, F_0)) d\mu = 0$ implies any selector f of F_0 is scalarly measurable because for every $x^* \in E^*$

$$\delta^*(x^*, F_0) = x^* \circ f = \delta_*(x^*, F_0) \ \mu - a.e.$$

PROVE THAT: For every ε > 0 there exists a scalarly measurable multi-function G : Ω → wk(E) such that

 $G(t) \subset F(t)$ for all $t \in \Omega$ and $\Delta G \leq \varepsilon$

(Uses: existence of $w - \lim_{n \in \mathcal{U}} x_n$ in weakly compact sets; MARTINGALES; RNP of cwk(E)).

(3) Use (2) repeatedly $\varepsilon = 1/n$ and produce a sequence

 $\cdots \subset F_{n+1}(t) \subset F_n(t) \subset \ldots F_1(t) \subset F(t)$

of scalarly measurable multifunctions with $\Delta F_n \leq 1/n$.

Measurable	selectors

Proximinality, topology

Distances to spaces of functions

Theorem

 $\label{eq:Let F} \text{Let } F:\Omega \to \text{wk}(E) \text{ be a scalarly measurable multi-function. Then } F \text{ admits a scalarly measurable selector.}$

Idea of the proof: if F_0 is any scalarly measurable multi-function define by $t \mapsto \delta_*(x^*, F_0)(t) := \inf x^*(F_0(t)).$

• Note that if $\Delta F_0 := \sup_{x^* \in S_{E^*}} \int_{\Omega} (\delta^*(x^*, F_0) - \delta_*(x^*, F_0)) d\mu = 0$ implies any selector f of F_0 is scalarly measurable because for every $x^* \in E^*$

$$\delta^*(x^*, F_0) = x^* \circ f = \delta_*(x^*, F_0) \ \mu - a.e.$$

PROVE THAT: For every ε > 0 there exists a scalarly measurable multi-function G : Ω → wk(E) such that

 $G(t) \subset F(t)$ for all $t \in \Omega$ and $\Delta G \leq \varepsilon$

(Uses: existence of $w - \lim_{n \in \mathcal{U}} x_n$ in weakly compact sets; MARTINGALES; RNP of cwk(E)).

3 Use (2) repeatedly $\varepsilon = 1/n$ and produce a sequence

 $\cdots \subset F_{n+1}(t) \subset F_n(t) \subset \ldots F_1(t) \subset F(t)$

of scalarly measurable multifunctions with $\Delta F_n \leq 1/n$.

• $F_0: \Omega \to wk(E)$ given by $F_0(t) := \bigcap_{n \in \mathbb{N}} F_n(t)$ is scalarly measurable and $\Delta F_0 = 0$. Then (1) applies.

Measurable selectors	Scalarly measurable selectors ○○○○●	Proximinality, topology 00	Distances to spaces of functions
Two conseq	uences		

Theorem

 $F: \Omega \to cwk(E)$ scalarly measurable. Then there is a collection $\{f_{\alpha}\}_{\alpha < dens(E^*,w^*)}$ of scalarly meas. selectors of F such that

 $F(t) = \overline{\{f_{\alpha}(t): \ \alpha < \operatorname{dens}(E^*, w^*)\}}$ for every $t \in \Omega$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Measurable selectors	Scalarly measurable selectors	Proximinality, topology	Distances to spaces of functions
00000	○000●	00	
Two consec	nuences		

Theorem

 $F: \Omega \to cwk(E)$ scalarly measurable. Then there is a collection $\{f_{\alpha}\}_{\alpha < dens(E^*,w^*)}$ of scalarly meas. selectors of F such that

$$F(t) = \overline{\{f_{\alpha}(t): \ \alpha < \operatorname{dens}(E^*, w^*)\}}$$
 for every $t \in \Omega$.

Theorem

If $F : \Omega \to cwk(E)$ a Pettis integrable multi-function, then:

- every scalarly measurable selector is Pettis integrable;
- F admits a scalarly measurable selector.

Furthermore, F admits a collection $\{f_{\alpha}\}_{\alpha < \text{dens}(E^*, w^*)}$ of Pettis integrable selectors such that

 $F(t) = \overline{\{f_{\alpha}(t): \ \alpha < \operatorname{dens}(E^*, w^*)\}}$ for every $t \in \Omega$.

Moreover, $\int_A F d\mu = \overline{IS_F(A)}$ for every $A \in \Sigma$.

Scalarly measurable selectors

Proximinality, topology

Distances to spaces of functions

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

PROXIMINALITY, TOPOLOGY

Scalarly measurable selectors

Proximinality, topology •0 Distances to spaces of functions 0000000

The problem

If $Y \subset E$ is proximinal, is $L^1(\mu, Y)$ proximinal in $L^1(\mu, E)$?

Maly 1983, YES, Y reflexive;

Scalarly measurable selectors

Proximinality, topology •0 Distances to spaces of functions

The problem

- If $Y \subset E$ is proximinal, is $L^1(\mu, Y)$ proximinal in $L^1(\mu, E)$?
 - Khaly 1983, YES, Y reflexive;
 - Zha-Yong 1994, YES, Y general;

Scalarly measurable selectors

Proximinality, topology •0 Distances to spaces of functions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The problem

If $Y \subset E$ is proximinal, is $L^1(\mu, Y)$ proximinal in $L^1(\mu, E)$?

- Khaly 1983, YES, Y reflexive;
- Zha-Yong 1994, YES, Y general;
- Mendoza 1998, NO in general but YES when Y is separable;

Scalarly measurable selectors

Proximinality, topology •0 Distances to spaces of functions

The problem

If $Y \subset E$ is proximinal, is $L^1(\mu, Y)$ proximinal in $L^1(\mu, E)$?

- Khaly 1983, YES, Y reflexive;
- Zha-Yong 1994, YES, Y general;
- Mendoza 1998, NO in general but YES when Y is separable;
- Question: What happen when Y is WCG?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Scalarly measurable selectors

Proximinality, topology •0 Distances to spaces of functions

The problem

If $Y \subset E$ is proximinal, is $L^1(\mu, Y)$ proximinal in $L^1(\mu, E)$?

$$\begin{array}{cccc} f:\Omega & \longrightarrow & E \\ \uparrow & & \uparrow \\ \Omega \setminus \Omega_0 & \stackrel{f}{\longrightarrow} & Z \\ & & \downarrow P_Y \\ & & 2^Y \end{array}$$

Answer:

• Z is separable; $\mu(\Omega_0) = 0$;

- Khaly 1983, YES, Y reflexive;
- Zha-Yong 1994, YES, Y general;
- Mendoza 1998, NO in general but YES when Y is separable;
- Question: What happen when Y is WCG?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Scalarly measurable selectors

Proximinality, topology •0 Distances to spaces of functions

The problem

If $Y \subset E$ is proximinal, is $L^1(\mu, Y)$ proximinal in $L^1(\mu, E)$?

$$\begin{array}{cccc} f:\Omega & \longrightarrow & E \\ \uparrow & & \uparrow \\ \Omega \setminus \Omega_0 & \stackrel{f}{\longrightarrow} & Z \\ & & \downarrow P_Y \\ & & 2^Y \end{array}$$

Khaly 1983, YES, Y reflexive;

- Zha-Yong 1994, YES, Y general;
- Mendoza 1998, NO in general but YES when Y is separable;
- Question: What happen when Y is WCG?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Answer:

- Z is separable; $\mu(\Omega_0) = 0$;
- if Y is WCD (Lindelöf Σ) we can change Y by Y₀ ⊂ Y separable descriptive set-theory;

Scalarly measurable selectors

Proximinality, topology •0 Distances to spaces of functions

The problem

If $Y \subset E$ is proximinal, is $L^1(\mu, Y)$ proximinal in $L^1(\mu, E)$?

$$\begin{array}{cccc} f:\Omega & \longrightarrow & E \\ \uparrow & & \uparrow \\ \Omega \setminus \Omega_0 & \stackrel{f}{\longrightarrow} & Z \\ & & \downarrow P_Y \\ & & 2^Y \end{array}$$

Khaly 1983, YES, Y reflexive;

- Zha-Yong 1994, YES, Y general;
- Mendoza 1998, NO in general but YES when Y is separable;
- Question: What happen when Y is WCG?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Answer:

- Z is separable; $\mu(\Omega_0) = 0$;
- if Y is WCD (Lindelöf Σ) we can change Y by Y₀ ⊂ Y separable descriptive set-theory;
- **3** $P_Y: Z \to 2^{Y_0}$ is Effros measurable;

Scalarly measurable selectors

Proximinality, topology •0 Distances to spaces of functions

The problem

If $Y \subset E$ is proximinal, is $L^1(\mu, Y)$ proximinal in $L^1(\mu, E)$?

$$\begin{array}{cccc} f:\Omega & \longrightarrow & E \\ \uparrow & & \uparrow \\ \Omega \setminus \Omega_0 & \stackrel{f}{\longrightarrow} & Z \\ & & \downarrow P_Y \\ & & 2^Y \end{array}$$

Khaly 1983, YES, Y reflexive;

- Zha-Yong 1994, YES, Y general;
- Mendoza 1998, NO in general but YES when Y is separable;
- Question: What happen when Y is WCG?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Answer:

- Z is separable; $\mu(\Omega_0) = 0$;
- if Y is WCD (Lindelöf Σ) we can change Y by Y₀ ⊂ Y separable descriptive set-theory;
- **3** $P_Y: Z \to 2^{Y_0}$ is Effros measurable;
- take $g: Z \to Y_0$ measurable selector for P_Y ;

Scalarly measurable selectors

Proximinality, topology • 0 Distances to spaces of functions

► 4 Ξ ► 5 9 9 0

The problem

If $Y \subset E$ is proximinal, is $L^1(\mu, Y)$ proximinal in $L^1(\mu, E)$?

$$\begin{array}{cccc} f:\Omega & \longrightarrow & E \\ \uparrow & & \uparrow \\ \Omega \setminus \Omega_0 & \stackrel{f}{\longrightarrow} & Z \\ & & \downarrow P_Y \\ & & 2^Y \end{array}$$

Khaly 1983, YES, Y reflexive;

- Zha-Yong 1994, YES, Y general;
- Mendoza 1998, NO in general but YES when Y is separable;
- Question: What happen when Y is WCG?

Answer: YES

- Z is separable; $\mu(\Omega_0) = 0$;
- if Y is WCD (Lindelöf Σ) we can change Y by Y₀ ⊂ Y separable descriptive set-theory;
- $P_Y: Z \to 2^{Y_0} \text{ is Effros measurable;}$
- take $g: Z \to Y_0$ measurable selector for P_Y ;
- then $g \circ f \in L^1(\mu, Y)$ is best approximation of f.

Proximinality, topology

Distances to spaces of functions 0000000

A topological version of the proximinal result

Theorem

Let Y be a topological space, Z Polish and $F: Y \times Z \to \mathbb{R}$ a map satisfying:

- **H1.** F^z is upper semi-continuous for every $z \in Z$;
- **H2.** F_y is lower semi-continuous for every $y \in Y$;
- **H3.** For every $y \in Y$ there is $z \in Z$ such that $F(y,z) = \inf_{w \in Z} F(y,w)$.

Then there is a Čech-analytic measurable map $h: Y \rightarrow Z$ such that

$$F(y,h(y)) = \inf_{z \in Z} F(y,z)$$

for every $y \in Y$.
Measurable selectors	Scalarly measurable selectors	Proximinality, topology 00	Distances to spaces of functions
Baire one f	unctions		

$f:\Omega\to E$

For every ${\mathcal E} > 0$ $A \in \Sigma^+$ there is $B \in \Sigma^+_A$ such that

 $\| \| - \operatorname{diam} f(B) < \varepsilon.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Measurable selectors	Scalarly measurable selectors	Proximinality, topology 00	Distances to spaces of functions ●○○○○○○
Baire one fu	nctions		

$f:\Omega \to E$

For every $\varepsilon > 0$ $A \in \Sigma^+$ there is $B \in \Sigma^+_A$ such that

 $\| \| - \operatorname{diam} f(B) < \varepsilon.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What is the topological counterpart of the above?

Measurable selectors	Scalarly measurable selectors	Proximinality, topology 00	Distances to spaces of functions
Baire one fu	nctions		

$f:\Omega \to E$

For every $\varepsilon > 0$ $A \in \Sigma^+$ there is $B \in \Sigma^+_A$ such that

 $\| \| - \operatorname{diam} f(B) < \varepsilon.$

What is the topological counterpart of the above?

Definition

 $f: X \to E$ is ε -fragmented if for every non empty subset $S \subset X$ there exist an open subset $U \subset X$ such that $U \cap S \neq \emptyset$ and

$$\| \| - \operatorname{diam}(f(U \cap S)) \leq \varepsilon.$$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

 Measurable selectors
 Scalarly measurable selectors
 Proximinality, topology
 Distances to spaces of functions

 Distances to Baire one functions
 Operations
 Operations

Definition

For $f \in E^X$ we define:

 $frag(f) := inf\{\varepsilon > 0 : f \text{ is } \varepsilon \text{-fragmented}\}\$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

00000	00000	00	00000
Distances to	o Baire one funct	ions	

Definition

For $f \in E^X$ we define:

 $frag(f) := inf\{\varepsilon > 0 : f \text{ is } \varepsilon\text{-fragmented}\}\$

Theorem

If X is a complete metric space, E a Banach space and $f \in E^X$ then

$$\frac{1}{2}\operatorname{frag}(f) \leq d(f, B_1(X, E)) \leq \operatorname{frag}(f).$$

In the particular case $E = \mathbb{R}$ we precisely have

$$d(f,B_1(X)) = \frac{1}{2}\operatorname{frag}(f).$$

Measurable selectors

Scalarly measurable selectors

Proximinality, topology

Distances to spaces of functions $\circ \circ \circ \circ \circ \circ \circ$

Distances to Baire one functions

Theorem

For complete metric space X is much more involved: there is no countability helping; in fact our results are far more general.

・ロット・モン・モン・モージッ()

Scalarly measurable selectors

Proximinality, topology

Distances to spaces of functions $\circ \circ \circ \circ \circ \circ \circ \circ$

Application: Quantitative Rosenthal's result

Let X be a Polish space, $H \subset \mathbb{R}^X$ pointwise bounded and

$$\hat{\mathsf{d}} := \sup_{(h_n)_n \subset H} d(\bigcap_{m \in \mathbb{N}} \overline{\{h_n : n > m\}}^{\mathbb{R}^X}, B_1(X)).$$
$$\hat{\mathsf{d}} := \hat{d}(\overline{H}^{\mathbb{R}^X}, B_1(X))$$

Let X be a Lindelöf Σ -space, $H \subset \mathbb{R}^X$ pointwise bounded and

$$\hat{\mathsf{d}} := \sup_{(h_n)_n \subset H} d(\bigcap_{m \in \mathbb{N}} \overline{\{h_n : n > m\}}^{\mathbb{R}^X}, C(X)).$$
$$\hat{\mathsf{d}} := \hat{d}(\overline{H}^{\mathbb{R}^X}, C(X))$$

Quantitative angelicity

$$\hat{\mathbf{d}} \leq \hat{\mathbf{d}} \leq 5\hat{\mathbf{d}}$$

Measurable selectors	Scalarly measurable selectors	Proximinality, topology 00	Distances to spaces of functions
And?			

・ロト (個) (目) (目) (日) (の)

Measurable selectors	Scalarly measurable selectors	Proximinality, topology 00	Distances to spaces of functions
And?			

- everything that I know about compactness in function spaces;
- everything that I know about weak compactness in (B) spaces;
- everything that I know about separately continuous functions

• etc.

Measurable selectors	Scalarly measurable selectors	Proximinality, topology 00	Distances to spaces of functions
And?			

- everything that I know about compactness in function spaces;
- everything that I know about weak compactness in (B) spaces;
- everything that I know about separately continuous functions
- etc.

can be expressed as an inequality

Measurable selectors	Scalarly measurable selectors	Proximinality, topology 00	Distances to spaces of functions ○○○○○●○
And?			

- everything that I know about compactness in function spaces;
- everything that I know about weak compactness in (B) spaces;
- everything that I know about separately continuous functions
- etc.

can be expressed as an inequality

WELL... a.e.

Measurable selectors	Scalarly measurable selectors	Proximinality, topology 00	Distances to spaces of functions ○○○○○●○
And?			

- everything that I know about compactness in function spaces;
- everything that I know about weak compactness in (B) spaces;
- everything that I know about separately continuous functions
- etc.

can be expressed as an inequality

WELL... a.e.

THANK YOU!

Selected class	sical references		
Measurable selectors	Scalarly measurable selectors	Proximinality, topology 00	Distances to spaces of functions ○○○○○○●

- R. J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965), 1–12. MR 0185073 (32 #2543)
- J. Bourgain, D. H. Fremlin, and M. Talagrand, *Pointwise compact sets of Baire-measurable functions*, Amer. J. Math. **100** (1978), no. 4, 845–886. MR 80b:54017
- G. Debreu, *Integration of correspondences*, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol. II: Contributions to Probability Theory, Part 1, Univ. California Press, Berkeley, Calif., 1967, pp. 351–372. MR 0228252 (37 #3835)
- H. Rådström, An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc. **3** (1952), 165–169. MR 0045938 (13,659c)
- H. P. Rosenthal, A characterization of Banach spaces containing l¹, Proc. Nat. Acad. Sci. U.S.A. **71** (1974), 2411–2413. MR 50 #10773