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Notation

X , Y , E , B Banach spaces;

BX closed unit ball; SX unit sphere;

L(X ,Y ) bounded linear operators from X to Y ;

C0(L) space of continuous functions, vanishing at ∞.

‖f ‖= sup
s∈L
|f (s)|,

where L is a locally compact Hausdorff space.

(Ω,Σ,µ) complete probability space.
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Maŕıa D. Acosta, Richard M. Aron, Domingo Garćıa, and
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Bishop-Phelps theorem

Theorem (Bishop-Phelps, 1961)

If X is a Banach, then NAX ∗ = X ∗.

RESEARCH ANNOUNCEMENTS 
The purpose of this department is to provide early announcement of significant 

new results, with some indications of proof. Although ordinarily a research announce-
ment should be a brief summary of a paper to be published in full elsewhere, papers 
giving complete proofs of results of exceptional interest are also solicited. 

A PROOF THAT EVERY BANACH SPACE IS 
SUBREFLEXIVE 

BY ERRETT BISHOP AND R. R. PHELPS 

Communicated by Mahlon M. Day, August 19, 1960 

A real or complex normed space is subreflexive if those f unctionals 
which attain their supremum on the unit sphere S of E are norm-
dense in E*, i.e., if for each ƒ in £ * and each e > 0 there exist g in 
E* and x in S such that \g(x)\ =\\g\\ and ||/—g|| <!. There exist in-
complete normed spaces which are not subreflexive [ l ] 1 as well as 
incomplete spaces which are subreflexive (e.g., a dense subspace of a 
Hubert space). I t is evident that every reflexive Banach space is sub-
reflexive. The theorem mentioned in the title will be proved for real 
Banach spaces; the result for complex spaces follows from this by 
considering the spaces over the real field and using the known isome-
try between complex functionals and the real functionals defined by 
their real parts. 

We first cite a lemma which states, roughly, that if the hyperplanes 
determined by two functionals ƒ and g (of norm one) are nearly 
parallel, then one of ||/—g||, | | /+g | | must be small. 

LEMMA. Suppose E is a normed space and !>0. If ƒ, g£J3*, ||/|| = 1 
= ||g||, are such that \g(x)\ ^ e / 2 whenever fix) = 0 and | | # | | ^ 1 , then 
Wf-iHeor\\f+g\\£e. 

A proof of the lemma may be found in [2, Lemma 3.1]. To prove 
the theorem suppose ƒG-E* and !>0. We may assume that ||/|| = 1; 
by the lemma, we want to find gin E* such that | g{x) | g 1 for all x 
in T= {x:f(x)=0 and ||x|| ^2!~ 1 } , and for which there exists x in 
S such that g(x) = 1 = ||g|l. Let C be the convex hull of the union of 
the sets T and U= {x: \\x\\ ̂ l } , and suppose there exists XQ in U 
which is also in the boundary of C. Since C has nonempty interior, 
by the support theorem there exists g in £*, ||g|| = l, such that 

1 An easily described example has been suggested by Y. Katznelson: Let E be 
the space of all polynomials on [0, l ] , with the supremum norm. (The example in [l] 
shows clearly how the method of proof given below fails without the assumption of 
completeness.) 

97 
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A QUANTITATIVE VERSION OF JAMES’ COMPACTNESS

THEOREM

BERNARDO CASCALES, ONDŘEJ F.K. KALENDA AND JIŘÍ SPURNÝ

Abstract. We introduce two measures of weak non-compactness JaE and Ja
that quantify, via distances, the idea of boundary behind James’ compactness
theorem. These measures tell us, for a bounded subset C of a Banach space
E and for given x∗ ∈ E∗, how far from E or C one needs to go to find

x∗∗ ∈ C
w∗

⊂ E∗∗ with x∗∗(x∗) = sup x∗(C). A quantitative version of James’
compactness theorem is proved using JaE and Ja, and in particular it yields the
following result: Let C be a closed convex bounded subset of a Banach space E

and r > 0. If there is an element x∗∗
0 in C

w∗
whose distance to C is greater

than r, then there is x∗ ∈ E∗ such that each x∗∗ ∈ C
w∗

at which sup x∗(C)
is attained has distance to E greater than r/2. We indeed establish that JaE

and Ja are equivalent to other measures of weak non-compactness studied in
the literature. We also collect particular cases and examples showing when
the inequalities between the different measures of weak non-compactness can
be equalities and when the inequalities are sharp.

1. Introduction

The celebrated James’ compactness theorem says that a closed convex subset
C of a Banach space E is weakly compact whenever each x∗ ∈ E∗ attains its
supremum on C, see [11]. In particular, E is reflexive whenever each x∗ ∈ E∗

attains its norm at some point of the closed unit ball BE of E. In the present paper
we prove a quantitative version of this theorem. Such a result not only fits into the
recent research on quantitative versions of various famous theorems on compactness
presented amongst others in [2, 6, 7, 8, 9, 10], to which we relate our results here
too, but also yields a strengthening of James’ theorem itself. In particular we get
the following result:

Theorem 1.1. Let E be a Banach space, C ⊂ E a closed convex bounded set

which is not weakly compact. Let 0 ≤ c < 1
2
�d(C

w∗
, C) be arbitrary. Then there is

some x∗ ∈ E∗ such that for any x∗∗ ∈ C
w∗

satisfying x∗∗(x∗) = sup x∗(C) we have
dist(x∗∗, E) > c.

This is our notation: if A and B are nonempty subsets of a Banach space E,
then d(A, B) denotes the usual inf distance between A and B and the Hausdorff

2010 Mathematics Subject Classification. 46B50.
Key words and phrases. Banach space, measure of weak non-compactness, James’ compactness

theorem.
The research of B. Cascales was supported by FEDER and MEC Project MTM2008-05396 and

by Fundación Séneca (CARM), project 08848/PI/08. The research of O. Kalenda and J. Spurný
is supported by the project MSM 0021620839 financed by MSMT and partly supported by the
research grant GAAV IAA 100190901.
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Bishop-Phelps property

Question (Bishop-Phelps)

98 ERRETT BISHOP AND R. R. PHELPS 

sup{g(#): xÇzC} =g(xo). I t follows that g(xo) = l = ||ffo||» so that the 
lemma applies and the theorem is proved. Thus, it remains to show 
that Z7Hbdry C is nonempty. To this end, choose z in U such that 
f(z)>0 and let K=(f(z))-1(l+2e~1). Define a partial ordering on 
the set Z = { # £ U:f(x) è / ( s )} as follows: Say that x>y if 

(i) f(x)>f(y) and 

(ii) h - y\\ £ K[f(x) - f(y)l 
Suppose that W is a totally ordered subset of Z; by (i), the net of 
real numbers {f(x):xÇzW} is (bounded and) monotone, and hence 
converges to its supremum. From (ii) it follows that W is a Cauchy 
net; by the completeness of E, W converges to a point y in U. By 
the continuity of ƒ and the nprm it follows that y is an upper bound 
for W. Thus, by Zorn's lemma, there exists a maximal element XQ of 
Z; since xoG UC.C, we need only show that x0Gbdry C. If not, then 
x0 is in the interior of C, and there exists ce>0 such that Xo+azÇLC. 
From the definition of C we see that there exist y in [7, x in T and X 
in [0, l ] such that Xo+az=\y + (l—}i)x. Then/(s) ^/(#o) <f(x0+az) 
=Xf(y)^f(y), so that 3>£Z. Also y—x0 = (l— X)(y—#)+as. Thus, 
I|y—*o||^(l—X)||y—HI+«^C1—X)(Hy||+|WI)+«^Cl—X)Cl+2^-0 
+ a g ( l - X + a ) ( l + 2 6 - 1 ) . On the other hand, f(y-xQ) = ( l -X) / (y) 
+«ƒ(*) è ( l - X + a ) / ( * ) , so | | y -*o | | ^ [ ƒ ( ? ) - ƒ ( * < ) ) ] . This shows that 
;y>#o, a contradiction which completes the proof. 

A possible generalization of this theorem remains open : Suppose E 
and F are Banach spaces, and let £(E, F) be the Banach space of all 
continuous linear transformations from E into F, with the usual 
norm. For which E and F are those T such that |( r | | = || Tx\\ (for some 
x in Ey 11#|| = 1) dense in £(E, F)? This is true for arbitrary E if F 
is an ideal in m(A) (the space of bounded functions on the set A, 
with the supremum norm). 

Added in proof: If C is a bounded closed convex set, let 
C '= {ƒ££*:ƒ(*) =sup {f(y) : yGC} for some x in C i . A slight modi-
fication of the above argument shows that C is dense in £*. This 
solves a problem proposed by Klee in Math. Z. vol. 69 (1958) p. 98. 

BIBLIOGRAPHY 

1. R. R. Phelps, Subreflexive normed linear spaces, Arch. Math. vol. 8 (1957) 
pp. 444-450. 

2. , A representation theorem for bounded convex setst Proc. Amer. Math. 
Soc., to appear. 

UNIVERSITY OF CALIFORNIA, BERKELEY 

Theorem (Lindenstrauss, 1963)

Let Y be a strictly convex Banach space, isomorphic to c0, and let
X = Y

⊕
c0 where c0 has the usual norm and consider the

supremum norm on the direct sum. Then NAL (X ;X ) is NOT
dense in L (X ;X ).
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The Bishop-Phelps property for operators

Definition

An operator T : X → Y is
norm attaining if there
exists x0 ∈ X , ‖x0‖= 1,
such that ‖T (x0)‖= ‖T‖.

Definition (Lindenstrauss)

(X ,Y ) has the
Bishop-Phelps Property
(BPp) if every operator
T : X → Y can be
uniformly approximated by
norm attaining operators.

1 (X ,K) has BPp for every X
(Bishop-Phelps) (1961);

2 {T ∈ L(X ;Y ) : T ∗∗ ∈ NA(X ∗∗;Y ∗∗)}=
L(X ;Y ) for every pair of Banach spaces
X and Y , Lindenstrauss (1963);

3 X with RNP, then (X ,Y ) has BPp for
every Y , Bourgain (1977);

4 there are spaces X , Y and Z such that
(X ,C([0,1])), (Y , `p) (1 < p < ∞) and
(Z ,L1([0,1])) fail BPp, Schachermayer
(1983), Gowers (1990) and Acosta
(1999);

5 (C(K),C(S)) has BPp for all compact
spaces K ,S , Johnson and Wolfe, (1979).

6 (L1([0,1]),L∞([0,1])) has BPp,
Finet-Payá (1998),

B. Cascales Bishop-Phelps-Bollobás theorem and Asplund operators
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Bollobás observation

AN EXTENSION TO THE THEOREM OF BISHOP AND
PHELPS

BELA BOLLOBAS

Bishop and Phelps proved in [1] that every real or complex Banach space is
subreflexive, that is the functionals (real or complex) which attain their supremum
on the unit sphere of the space are dense in the dual space. We shall sharpen this
result and then apply it to a problem about the numerical range of an operator.

Denote by S and S' the unit spheres in a Banach space B and its dual space B',
respectively.

THEOREM 1. Suppose xeS,fe S' and \f(x)~ 1| < e2/2 (0 < e < £). Then there
exist yeS and geS' such that g(y) = 1, \\f— g\\ ^ e and \\x—y\\ < e+e2.

Proof. Our first proof was rather complicated but we discovered later that a
slight improvement of the proof in [1] gives this stronger result. This "proof" is
presented here.

Naturally it is sufficient to verify the theorem for real Banach spaces and real
functionals.

It is actually proved, only not explicitly stated, in [1] that ifz e S,/e S' and/(z) > 0
then there exists g e S' which attains its supremum on the unit sphere at some point
xoeS,

2 + e
\\f-g\\ ^e and \\xo-z\\ ^ ^y - r

Naturally here 0 ^/(x0—z) ^ 1—/(z). So putting x = z, y = x0 we know that
there are y e S, g e S' such that g(y) = 1,

2 + e e2

| | / -g | | <6 and | , - , | < £ ( 1 _ ( £ 2 / 2 ) ) - j - < . + «».

Remark. Theorem 1 is best possible in the following sense. For any 0 < e < 1
there exist a Banach space B, point xeS and functional feS' such that
f(x) = 1 - (e2/2) but if y e S, g e S' and g(y) = 1 then either | | / - g | | ^ e or \\x-y\\ ^ e.

Proof. Turn R2 into a real Banach space by taking the following unit ball:

{(a,b): - 1 ^a + (l-e)b^ 1, - l ^ b ^ l }

Let f{a,b) = (e/2)a+(l-(e2/2))b and take x = (0, 1). Then | | / | | = 1,
f(x) = 1 —(e2/2) and it is immediate that if geS', \\f— g\\ < e then g must attain its
supremum at the same point as/, at (e, 1), which is of distance £ from x.

Let T be a bounded linear operator in a complex Banach space B. The numerical
range of T is defined as V(T) = {f(Tx): xeS,feS',f(x) = 1} (see e.g. [2]).
Evidently V(T) £ V(T') where T is the adjoint of T, and it is known that this

Received 17 November, 1969.
[BULL. LONDON MATH. SOC, 2 (1970), 181-182]
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A different way of writing BPB

AN EXTENSION TO THE THEOREM OF BISHOP AND
PHELPS

BELA BOLLOBAS
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Proof. Turn R2 into a real Banach space by taking the following unit ball:
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Let f{a,b) = (e/2)a+(l-(e2/2))b and take x = (0, 1). Then | | / | | = 1,
f(x) = 1 —(e2/2) and it is immediate that if geS', \\f— g\\ < e then g must attain its
supremum at the same point as/, at (e, 1), which is of distance £ from x.

Let T be a bounded linear operator in a complex Banach space B. The numerical
range of T is defined as V(T) = {f(Tx): xeS,feS',f(x) = 1} (see e.g. [2]).
Evidently V(T) £ V(T') where T is the adjoint of T, and it is known that this

Received 17 November, 1969.
[BULL. LONDON MATH. SOC, 2 (1970), 181-182]

Corollary. . . the way is oftentimes presented

Given 1
2 > ε > 0, if x0 ∈ SX and x∗ ∈ SX ∗ are such that

|x∗(x0)|> 1− ε2

4
,

then there are u0 ∈ SX and y∗ ∈ SX ∗ such that

|y∗(u0)|= 1,‖x0−u0‖< ε and ‖x∗−y∗‖< ε.

B. Cascales Bishop-Phelps-Bollobás theorem and Asplund operators



Bishop-Phelps-Bollobás theorem and Asplund operators
Bollobás observation and BPBp for operators
Our main result: applications
Remarks and further development

A variational principle implying BPB

B. Cascales Bishop-Phelps-Bollobás theorem and Asplund operators



Bishop-Phelps-Bollobás theorem and Asplund operators
Bollobás observation and BPBp for operators
Our main result: applications
Remarks and further development

A variational principle implying BPB

1 Take f : E → [0,+∞] 0 at C and +∞ at E \C ;
2 ε2/2 instead of ε, λ = ε/2;
3 replace x∗ ∈ E ∗ in the corollary above by x∗/‖x∗‖

Corollary. . . the constants are better

Given 1 > ε > 0, if x0 ∈ SX and x∗ ∈ SX ∗ are such that

|x∗(x0)|> 1− ε2

2
,

then there are u0 ∈ SX and y∗ ∈ SX ∗ such that

|y∗(u0)|= 1,‖x0−u0‖< ε and ‖x∗−y∗‖< ε.
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Bishop-Phelps-Bollobás Property for operators

Definition: Acosta, Aron, Garćıa and Maestre, 2008

(X ,Y ) is said to have the
Bishop-Phelps-Bollobás property (BPBP)
if for any ε > 0 there are η(ε) > 0 such
that for all T ∈ SL(X ,Y ), if x0 ∈ SX is
such that

‖T (x0)‖> 1−η(ε),

then there are u0 ∈ SX , S ∈ SL(X ,Y ) with

‖S(u0)‖= 1

and

‖x0−u0‖< ε and ‖T −S‖< ε.

1 Y has certain almost-biorthogonal
system (X ,Y ) has BPBp any X ;

2 (`1,Y ) BPBp is characterized
through a condition called AHSP:
it holds for Y finite dimensional,
uniformly convex, Y = L1(µ) for a
σ -finite measure or Y = C(K);

3 thee is pair (`1,X ) failing BPBp,
but having BPp;

4 (`∞
n ,Y ) has BPBp Y uniformly

convex no hope for c0:
η(ε) = η(n,ε)→ 1 with n→ ∞.

PROBLEM?

No Y infinite dimensional is
known s.t. (c0,Y ) has BPBP.
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(X ,Y ) is said to have the
Bishop-Phelps-Bollobás property (BPBP)
if for any ε > 0 there are η(ε) > 0 such
that for all T ∈ SL(X ,Y ), if x0 ∈ SX is
such that

‖T (x0)‖> 1−η(ε),

then there are u0 ∈ SX , S ∈ SL(X ,Y ) with

‖S(u0)‖= 1

and

‖x0−u0‖< ε and ‖T −S‖< ε.

1 Y has certain almost-biorthogonal
system (X ,Y ) has BPBp any X ;

2 (`1,Y ) BPBp is characterized
through a condition called AHSP:
it holds for Y finite dimensional,
uniformly convex, Y = L1(µ) for a
σ -finite measure or Y = C(K);

3 thee is pair (`1,X ) failing BPBp,
but having BPp;

4 (`∞
n ,Y ) has BPBp Y uniformly

convex no hope for c0:
η(ε) = η(n,ε)→ 1 with n→ ∞.

PROBLEM?

No Y infinite dimensional is
known s.t. (c0,Y ) has BPBP.

B. Cascales Bishop-Phelps-Bollobás theorem and Asplund operators



Bishop-Phelps-Bollobás theorem and Asplund operators
Bollobás observation and BPBp for operators
Our main result: applications
Remarks and further development

Bishop-Phelps-Bollobás Property for operators

Definition: Acosta, Aron, Garćıa and Maestre, 2008
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Theorem (R. Aron, B. Cascales, O. Kozhushkina, 2011)

Let T : X → C0(L) be an Asplund operator with ‖T‖= 1.
Suppose that 1

2 > ε > 0 and x0 ∈ SX are such that

‖T (x0)‖> 1− ε2

4
.

Then there are u0 ∈ SX and an Asplund operator S ∈ SL(X ,C0(L))

satisfying

‖S(u0)‖= 1,‖x0−u0‖< ε and ‖T −S‖ ≤ 3ε.
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Stegall, 1975

An operator T ∈ L(X ,Y ) is Asplund, if it factors through an
Asplund space:

X
T //

T1 ��@
@@

@@
@@

@ Y

Z

T2

??~~~~~~~~

Z is Asplund; T1 ∈ L(X ,Z ) and T2 ∈ L(Z ,Y ).

T Asplund operator ⇔ T ∗(BY ∗) is fragmented by the norm of X ∗.
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Asplund spaces: Namioka, Phelps and Stegall

Let X be a Banach space. Then the following conditions are equivalent:

(i) X is an Asplund space, i.e., whenever f is a convex continuous function
defined on an open convex subset U of X , the set of all points of U
where f is Fréchet differentiable is a dense Gδ -subset of U.

(ii) every w∗-compact subset of (X ∗,w∗) is fragmented by the norm;

(iii) each separable subspace of X has separable dual;

(iv) X ∗ has the Radon-Nikodým property.

Definition

BX ∗ is fragmented if for
every ε > 0 and every
non empty subset
S ⊂ BX ∗ there exists a
w∗-open subset U ⊂ X
such that U ∩S 6= /0 and

‖·‖−diam(U ∩S)≤ ε.
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Theorem (R. Aron, B. Cascales,
O. Kozhushkina, P.A.M.S.
2011)

Let T : X → C0(L) be an
Asplund operator with
‖T‖= 1. Suppose that
1
2 > ε > 0 and x0 ∈ SX are such
that

‖T (x0)‖> 1− ε2

4
.

Then there are u0 ∈ SX and an
Asplund operator
S ∈ SL(X ,C0(L)) satisfying

‖S(u0)‖= 1

and

‖x0−u0‖< ε and ‖T −S‖ ≤ 3ε.

Corollary

Let T ∈ L(X ,C0(L)) weakly compact with ‖T‖= 1,
1
2 > ε > 0, and x0 ∈ SX be such that

‖T (x0)‖> 1− ε2

4
.

Then there are u0 ∈ SX and S ∈ L(X ,C0(L)) weakly compact
with ‖S‖= 1 satisfying

‖S(u0)‖= 1,‖x0−u0‖< ε and ‖T −S‖ ≤ 3ε.

Corollary

(X ,C0(L)) has the BPBP for any Asplund space X and any
locally compact Hausdorff topological space L (X = c0(Γ), for
instance).

Corollary

(X ,C0(L)) has the BPBP for any X and any scattered locally
compact Hausdorff topological space L.
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An idea of the proof

Theorem

Let T : X → C0(L) be an Asplund
operator with ‖T‖= 1. Suppose that
1
2 > ε > 0 and x0 ∈ SX are such that

‖T (x0)‖> 1− ε2

4
.

Then there are u0 ∈ SX and an
Asplund operator S ∈ SL(X ,C0(L))

satisfying

‖S(u0)‖= 1

and

‖x0−u0‖< ε and ‖T −S‖ ≤ 3ε.

1 let φ : L→ X ∗ given by φ(s) = δs ◦T ;

2 using BPBP for (X ,R) & Asplundness of T , ∃:
(a) a w∗-open set U ⊂ X ∗ with U ∩φ(L) 6= /0;
(b) y∗ ∈ SX ∗ and u0 ∈ SX with |y∗(u0)|= 1,

‖x0−u0‖< ε,‖z∗−y∗‖< 3ε

for every z∗ ∈ U ∩φ(L).

3 fix s1 ∈W = {s ∈ L : φ(s) ∈ U} is open.

4 take f : L→ [0,1] cont., compact support such that

f (s1) = 1 and supp(f )⊂W .

5 define S : X → C0(L) by

S(x)(s) = f (s) ·y∗(x) + (1− f (s)) ·T (x)(s).
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Lemma

Let T : X → C0(L) be an Asplund
operator with ‖T‖= 1. Suppose that
1
2 > ε > 0 and x0 ∈ SX are such that

‖T (x0)‖> 1− ε2

4
.

Then there exist:

(a) a w∗-open set U ⊂ X ∗ with
U ∩φ(L) 6= /0;

(b) y∗ ∈ SX∗ and u0 ∈ SX with
|y∗(u0)|= 1,

‖x0−u0‖< ε,‖z∗−y∗‖< 3ε

for every z∗ ∈ U ∩φ(L).

1 let φ : L→ X ∗ given by φ(s) = δs ◦T ;

2 take s0 ∈ L such that
|φ(s0)(x0)|= |T (x0)(s0)|> 1− ε2

4 ;

3 U1 = {x∗ ∈ X ∗ : |x∗(x0)|> 1− ε2

4 },
4 φ(s0) ∈ U1∩φ(L);

5 φ(L)⊂ BX ∗ is fragmented;

6 U2 ⊂ X ∗ such that (U1∩φ(L))∩U2 6= /0 and

‖·‖-diam
(
(U1∩φ(L))∩U2

)
≤ ε;

7 Let U := U1∩U2;

8 Pick a point, x∗0 ∈ U ∩φ(L) normalize it
x∗0
‖x∗0‖

and
use. . .

BPB in the scalar case

Given 1
2 > ε > 0, if x0 ∈ SX and x∗ ∈ SX∗ are such that |x∗(x0)|> 1− ε2

4 , then there are u0 ∈ SX and y∗ ∈ SX∗
such that

|y∗(u0)|= 1,‖x0−u0‖< ε and ‖x∗−y∗‖< ε.
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Operator Ideals

Approximating operator S : X → C0(L),:

S(x)(s) = f (s) ·y∗(x) + (1− f (s)) ·T (x)(s)

Observe:

S = RANK 1 OPERATOR + Tf ◦T ,

Consequence:
If I ⊂A = A (X ,C0(L)) is a sub-ideal of Asplund operators then

T ∈I ⇒ S ∈I .

The above applies to:

Finite rank operators F ;

Compact operators K ;

p-summing operators Πp ;

Weakly compact operators W .

B. Cascales Bishop-Phelps-Bollobás theorem and Asplund operators



Bishop-Phelps-Bollobás theorem and Asplund operators
Bollobás observation and BPBp for operators
Our main result: applications
Remarks and further development

Operator Ideals

Approximating operator S : X → C0(L),:

S(x)(s) = f (s) ·y∗(x) + (1− f (s)) ·T (x)(s)

Observe:

S = RANK 1 OPERATOR + Tf ◦T ,

Consequence:
If I ⊂A = A (X ,C0(L)) is a sub-ideal of Asplund operators then

T ∈I ⇒ S ∈I .

The above applies to:

Finite rank operators F ;

Compact operators K ;

p-summing operators Πp ;

Weakly compact operators W .

B. Cascales Bishop-Phelps-Bollobás theorem and Asplund operators



Bishop-Phelps-Bollobás theorem and Asplund operators
Bollobás observation and BPBp for operators
Our main result: applications
Remarks and further development
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Corollary

Let T ∈ L(X ,C0(L)) weakly compact with ‖T‖= 1,
1
2 > ε > 0, and x0 ∈ SX be such that

‖T (x0)‖> 1− ε2

4
.

Then there are u0 ∈ SX and S ∈ L(X ,C0(L)) weakly compact
with ‖S‖= 1 satisfying

‖S(u0)‖= 1,‖x0−u0‖< ε and ‖T −S‖ ≤ 3ε.

Corollary
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Corollary
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Remarks and further development

1 The results are true for the complex case and the constants ε2

4

can be improved to ε2

2 ;

2 The technicality that leads to our results is really better:

Lemma: Aron, Cascales and Kozhushkina, 2011

Let T : X → Y be an Asplund operator with ‖T‖= 1, let 1
2 > ε > 0 and

choose x0 ∈ SX such that

‖T (x0)‖> 1− ε2

4
.

For any given 1-norming set B ⊂ BY ∗ if we write M := T ∗(B) then there are:

(a) a w∗-open set U ⊂ X ∗ with U ∩M 6= /0 and

(b) points y∗ ∈ SX ∗ and u0 ∈ SX with |y∗(u0)|= 1 such that

‖x0−u0‖< ε and ‖z∗−y∗‖< 3ε for every z∗ ∈ U ∩M.
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Remarks and further development

3 The previous lemma has been used already as it is to establish
the BPBp for Asplund operators T : X → C (K ,Y ), for some
Y ’s (Acosta, Maestre and Garcia; to be published);

4 Our expectation is to use the lemma for the disk algebra A(T)
(or other uniform algebras), the reason being, the construction

S(x)(s) = f (s) ·y∗(x) + (1− f (s)) ·T (x)(s).

needs algebra struct. with a boundary with many peak points:

z →
∣∣∣
(
z+1

2

∣∣∣ z →
∣∣∣
(
z+1

2

)50∣∣∣ z →
∣∣∣
(
z+1

2

)1000∣∣∣
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Fragmentability ⇒ topology and boundaries
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Lindelöf Property

If (X ∗,w) is Lindelöf, then (X ∗,w)2, is
Lindel öf. (For (X ,w) the problem
remains open 40 years later, Corson).

Boundaries and selectors

Let J : X → 2BX∗ be the duality
mapping: defined at each x ∈ X by

J(x) := {x∗ ∈ BX ∗ : x∗(x) = ‖x‖}.

There is a reasonable selector
f : X → X ∗ for J iff X is Asplund (in

this case f (X )
‖·‖

= BX ∗).
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Fragmentability and measure theory

B. Cascales and J. Rodŕıguez, The Birkhoff integral and the property of
Bourgain, Math. Ann. 331 (2005), no. 2, 259–279.

B. Cascales, V. Kadets, and J. Rodŕıguez, Measurable selectors and
set-valued Pettis integral. . . , J. Funct. Anal. 256 (2009), no. 3, 673–699.
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F : Ω−→ cwk(X ) –convex w -compact

g

G

t0 1

?

6

1 (Debreu Nobel prize in 1983) to take a
reasonable embedding j from cwk(X ) into
the Banach space Y (= `∞(BX ∗)) and then
study the integrability of j ◦F ;

2 (Aumann Nobel prize in 2005) to take all
integrable selectors f of F and consider

∫
F dµ =

{∫
f dµ : f integra. sel.F

}
.
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Fragmentability and measure theory

f : Ω→ E

For every ε > 0 A ∈ Σ+ there is B ∈ Σ+
A such that

‖ · ‖−diam f (B) < ε.

Is there a reasonable extension of the above for multi-functions?

Definition

F : Ω→ 2E satisfies
property (P) if for each ε > 0
and each A ∈Σ+ there exist
B ∈Σ+

A and D ⊂ E with
diam(D) < ε such that

F (t)∩D 6= /0 for every t ∈ B.
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Property (P)

F : Ω→ 2E satisfies property (P) if for each ε > 0 and each A ∈Σ+ there exist B ∈Σ+
A and D ⊂ E with

diam(D) < ε such that F (t)∩D 6= /0 for every t ∈ B.

1 Fix n = 0;

2 take ε := (1/2)n ;

3 apply (P) for A = Ω, ε and F ;

4 a maximality argument produces a partition of B ′s;

5 enumerate B ′s as {Bn} and choose any xn ∈Dn ;

6 define fε := ∑n χBn xn ;

7 fε is µ-measurable and d(fε (t),F (t)) < ε µ-a.e.;

8 define Fε (t) := F (t)∩B(fε (t),ε);

9 IF Fε satisfies (P) GOTO 11;

10 STOP;

11 n := n+ 1;

12 GOTO 2.

Conclusion

We produce a sequence (fn) : Ω→ E of µ-measurable functions such that
(fn(t)) is Cauchy µ-a.e., hence it is convergent.
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Fragmentability and measure theory: measurable selections

Corollary (Kuratowski-Ryll Nardzewski, 1965)

Let F : Ω→ 2E be a multi-function with closed non empty values of E . If E is
separable and F satisfies that

{t ∈Ω : F (t)∩O 6= /0} ∈Σ for each open set O ⊂ E . (E)

Then F admits a µ-measurable selector f .

Very little is known in the non separable case

Theorem (Kadets, Rodŕıguez and B. C. -2009)

For a multi-function F : Ω→ wk(E) TFAE:

(i) F admits a strongly measurable selector.

(ii) There exist a set of measure zero Ω0 ∈Σ, a separable subspace Y ⊂ E
and a multi-function G : Ω\Ω0→ wk(Y ) that is Effros measurable and
such that G(t)⊂ F (t) for every t ∈Ω\Ω0;

(iii) F satisfies property (P).
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Consequences

NEW THINGS: the theory was stuck in the separable case

1 Characterization of multi-functions admitting strong selectors;

2 scalarly measurable selectors for scalarly measurable multi-functions;

3 Pettis integration; the theory was stuck in the separable case;

4 existence of w∗-scalarly measurable selectors;

5 Gelfand integration; relationship with the previous notions.

6 RNP for multi-functions;

7 set selectors.
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GRACIAS!
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