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Main result

Let X be a Banach space and let H ⊂ X be a bounded
subset of X . Then

d̂(conv(H), X ) ≤ 2d̂(H, X ),

closures are taken in the bidual X ∗∗;
d̂(A, X ) := sup{d(a, X ) : a ∈ A} for A ⊂ X ∗∗;

d̂(A, X ) = 0 iff A ⊂ X , hence the inequality implies
Krein’s theorem.

Main result

Let X be a Banach space and let H ⊂ X ∗∗ be a
bounded subset of X ∗∗. Then

d̂(conv(H), X ) ≤ 5d̂(H, X ),

Some of the constant involved are sharp.
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...goals

To take the results where (I think!) they
belongs i.e. to the context of C(K) and
RK spaces endowed with τp;

To quantify some other classical results
about compactness.
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Theorem

Let Y be a normal spacea. If
f ∈ RY is bounded, then

d(f ,C∗(Y )) =
1

2
osc(f ) .

a[osc(f ) = supx∈Y osc(f , x)]
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1 It is easy to check that
d(f , C∗(Y )) ≥ osc(f )/2.

2 For x ∈ Y , Ux family of neighb.

osc(f ) ≥ inf
U∈Ux

sup
y,z∈U

(
f (y)− f (z)

)
≥ inf

U∈Ux

sup
y∈U

f (y)− sup
U∈Ux

inf
z∈U

f (z)

3

f2(x) := sup
U∈Ux

inf
z∈U

f (z) +
osc(f )

2

≥ inf
U∈Ux

sup
y∈U

−osc(f )

2
=: f1(x)

4 Squeeze h between f2 and f1 and
d(f , C∗(Y )) = ‖f − h‖∞ = osc(f )/2.
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Oscillations vs. iterated limits.

Definition

H ⊂ ZX ε-interchanges limits with
X if

d(lim
n

lim
m

fm(xn), lim
m

lim
n

fm(xn)) ≤ ε

whenever (xn) in X and (fm) in H
and all limits involved do exist.

First properties. . .K compact

For the notion of H ε-interch. limits
with X sequences can be replaced by
nets.
H ⊂ C(K) unif. bdd. then H
ε-interchanges limits with K iff

osc∗(f , x) = inf
U∈Ux

sup
y∈U

d(f (y), f (x)) ≤ ε

for each x ∈ K and f ∈ H
τp

.
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Iterated limits vs. distances

Corollary

For H ⊂ C (K ) unif. bdd. the following properties hold:

1 If H ε-interchanges limits with K then osc(f ) ≤ 2ε for every
f ∈ H

τp
.

2 conversely, if osc(f ) ≤ ε for every f ∈ H
τp

, then H
ε-interchanges limits with K.

3 if H ε-interchanges limits with K, then d̂(H
τp

,C (K )) ≤ ε .

4 if d̂(H
τp

,C (K )) ≤ ε then H 2ε-interchanges limits with X .

To bear in mind

To study distances is equiv. to study iterated limits;

The above estimates are sharp.
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ε-interchanging limit property and convex hulls

Theorem

Let Z be a compact convex subset of a normed space E, let K be
a set, and let H ⊂ ZK . Then, for each ε ≥ 0, H ε-interchanges
limits with K if, and only if, conv(H) ε-interchanges limits with K.

Theorem

If H ⊂ C(K) is uniformly bounded then:

d̂(conv(H)
τp

, C(K)) ≤ 2d̂(H
τp

, C(K)) .

If H ⊂ RK is uniformly bounded then:

d̂(conv(H)
τp

, C(K)) ≤ 5d̂(H
τp

, C(K)) .

5 = 2× 2 + 1
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Quantitative version of Grothendieck’s Theorem
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Distances to spaces of affine continuous functions

Theorem

If K is compact convex
subset of a l.c.s. and
f ∈ A(K ) then

d(f ,C (K )) = d(f ,AC (K )) .
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Distances to spaces of affine continuous functions

Theorem

If K is compact convex
subset of a l.c.s. and
f ∈ A(K ) then

d(f ,C (K )) = d(f ,AC (K )) .

1 It is easy to check that
d(f ,AC (K)) ≥ osc(f )/2.

2 For x ∈ Y , Ux family of neighb.

δ > osc(f ) ≥ inf
U∈Ux

sup
y,z∈U

(
f (y)− f (z)

)
≥ inf

U∈Ux

sup
y∈U

f (y)− sup
U∈Ux

inf
z∈U

f (z)

3

f2(x) := sup
U∈Ux

inf
z∈U

f (z) +
δ

2

≥ inf
U∈Ux

sup
y∈U

− δ

2
=: f1(x)

4 Squeeze h between f2 and f1 and
‖f − h‖∞ ≤ δ/2.
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Corollary

Let X be a Banach space and let BX∗ be
the closed unit ball in the dual X ∗ endowed
with the w∗-topology. Let i : X → X ∗∗ and
j : X ∗∗ → `∞(BX∗) be the canonical
embedding. Then, for every x∗∗ ∈ X ∗∗ we
have:

d(x∗∗, i(X )) = d(j(x∗∗), C(BX∗)) .
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Quantitative Krein’s theorem

Corollary, [FHMZ05, Theorem 2]

Let X be a Banach space and let H ⊂ X be bdd. Then

d̂(conv(H)
w∗

,X ) ≤ 2d̂(H
w∗

,X ).

Corollary, [Gra05, Theorem 5]

Let X be a Banach space and let H ⊂ X ∗∗ be bdd. Then

d̂(conv(H)
w∗

,X ) ≤ 5d̂(H
w∗

,X ).
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Theorem (Quantitative version of Grothendieck’s theorem)

For a compact space K, BC(K)∗ endowed with the w∗ topology
and H ⊂ C (K ) uniformly bounded we have

1

2
d̂(H

RK

,C (K )) ≤ d̂(H
RBC(K)∗

,C (BC(K)∗)) ≤ 4d̂(H
RK

,C (K ))

d̂(H
RK

,C (K )) = 0⇔ H is τp-relatively compact in C (K ).

d̂(H
RBC(K)∗

,C (BC(K)∗)) = 0⇔ H is weakly relatively compact
in C (K ).
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Theorem (Quantitative version of Gantmacher’s theorem)

Let X and Y be Banach spaces, T : X → Y an operator and
T ∗ : Y ∗ → X ∗ its adjoint operator. Then

1

2
d̂(T (BX )

w∗
,Y ) ≤ d̂(T ∗(BY ∗)

w∗
,X ∗) ≤ 4d̂(T (BX )

w∗
,Y ).
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