The Lindelöf property and σ -fragmentability

B. Cascales and I. Namioka

Universidad de Murcia/University of Washington.

10th September 2004

(周) (ヨ) (ヨ)

Contenido

・ロト ・四ト ・ヨト ・ヨト

æ

1 The Proto-Idea

2 The results

- The basic result
- Applications to Corson compact spaces
- Applications to *K*-analytic spaces without perfect compact sets
- Applications to Banach spaces

・ 同 ト・ ・ ヨート・ ・ ヨート

1 The Proto-Idea

2 The results

- The basic result
- Applications to Corson compact spaces
- Applications to *K*-analytic spaces without perfect compact sets
- Applications to Banach spaces

3 Counterexamples

• The central results are sharp

→ Ξ →

1 The Proto-Idea

2 The results

- The basic result
- Applications to Corson compact spaces
- Applications to *K*-analytic spaces without perfect compact sets
- Applications to Banach spaces

3 Counterexamples

• The central results are sharp

4 References

The Proto-Idea

• Let (X,τ) be a Tychonoff (completely regular and T_1) space, and let C(X,I) be the space of all continuous functions $f: X \to I = [0,1]$. Then the map $\Phi: X \to I^{C(X,I)}$, given by $\Phi(x)(f) = f(x)$ for $x \in X, f \in C(X,I)$, embeds X topologically in $(I^{C(X,I)}, \tau_p)$ (see e.g. [Kel75]).

イロト イポト イヨト イヨト

3

The Proto-Idea

- Let (X,τ) be a Tychonoff (completely regular and T₁) space, and let C(X,I) be the space of all continuous functions f: X → I = [0,1]. Then the map Φ : X → I^{C(X,I)}, given by Φ(x)(f) = f(x) for x ∈ X, f ∈ C(X,I), embeds X topologically in (I^{C(X,I)},τ_p) (see e.g. [Kel75]).
- Let (M,ρ) be a metric space with the metric ρ bounded, and let D be an index set. We consider various topologies, pseudometrics, metrics, etc. on the product space M^D and study their relationship between them in subspaces $X \subset M^D$, namely,
 - the product (= pointwise) topology au_p
 - the topology γ(D) of uniforme convergence on the family of all countable subsets *C* of D.
 - the metric *d* of uniform convergence on *D*.

The Proto-Idea	The basic result
The results	Applications to Corson compact spaces
Counterexamples	Applications to K-analytic spaces without perfect compact sets
References	Applications to Banach spaces

Let X be a K-analytic subspace of M^D where (M,ρ) is a metric space with ρ bounded. Then the following statements are equivalent.

- (a) The space (X, τ_p) is σ -fragmented by d.
- (b) For each compact set $K \subset X$, (K, τ_p) is fragmented by d.
- (c) For each $A \in \mathscr{C}$, the pseudo-metric space (X,d_A) is separable.
- (d) $(X, \gamma(D))$ is Lindelöf.
- (e) $(X,\gamma(D))^{\mathbb{N}}$ is Lindelöf.

・ 同 ト・ ・ ヨート・ ・ ヨート

The Proto-Idea	The basic result
The results	Applications to Corson compact spaces
Counterexamples	Applications to <i>K</i> -analytic spaces without perfect compact sets
References	Applications to Banach spaces

Let X be a K-analytic subspace of M^D where (M,ρ) is a metric space with ρ bounded. Then the following statements are equivalent.

- (a) The space (X, τ_p) is σ -fragmented by d.
- (b) For each compact set $K \subset X$, (K, τ_p) is fragmented by d.
- (c) For each $A \in \mathscr{C}$, the pseudo-metric space (X, d_A) is separable.
- (d) $(X, \gamma(D))$ is Lindelöf.
- (e) $(X, \gamma(D))^{\mathbb{N}}$ is Lindelöf.

Known and easy parts: (a) \Leftrightarrow (b) \Leftarrow (c) \Leftarrow (d) \Leftarrow (e) [JNR93] (a simpler proof [NP96]) and [CNO03].

(a) \Rightarrow (c) needs the following simple lemma.

(D) (A) (A)

The Proto-Idea	The basic result
The results	Applications to Corson compact spaces
Counterexamples	Applications to <i>K</i> -analytic spaces without perfect compact sets
References	Applications to Banach spaces

Let X be a K-analytic subspace of M^D where (M,ρ) is a metric space with ρ bounded. Then the following statements are equivalent.

- (a) The space (X, τ_p) is σ -fragmented by d.
- (b) For each compact set $K \subset X$, (K, τ_p) is fragmented by d.
- (c) For each $A \in \mathscr{C}$, the pseudo-metric space (X, d_A) is separable.
- (d) $(X, \gamma(D))$ is Lindelöf.
- (e) $(X, \gamma(D))^{\mathbb{N}}$ is Lindelöf.

Known and easy parts: (a) \Leftrightarrow (b) \Leftarrow (c) \Leftarrow (d) \Leftarrow (e) [JNR93] (a simpler proof [NP96]) and [CNO03].

(a) \Rightarrow (c) needs the following simple lemma.

Lemma

Let (T,τ) be metrizable and separable and let δ be a metric on T. Then (T,τ) is σ -fragmented by δ if and only if (T,δ) is separable. B. Cascales and I. Namioka The Lindelöf property and σ -fragmentability

The basic result Applications to Corson compact spaces Applications to K-analytic spaces without perfect compact sets Applications to Banach spaces

イロト イヨト イヨト イヨト

æ

Difficult part: (c) \Rightarrow (d) (by contradiction)

The basic result Applications to Corson compact spaces Applications to K-analytic spaces without perfect compact sets Applications to Banach spaces

Difficult part: (c) \Rightarrow (d) (by contradiction)

Useful facts about Baire sets:

 A subset Z of T is called a zero-set (in T) if Z = f⁻¹(0) for some continuous function f : T → ℝ.

The basic result Applications to Corson compact spaces Applications to K-analytic spaces without perfect compact sets Applications to Banach spaces

イロト イポト イヨト イヨト

Difficult part: (c) \Rightarrow (d) (by contradiction)

- A subset Z of T is called a zero-set (in T) if Z = f⁻¹(0) for some continuous function f : T → ℝ.
- Let *L* (or *L*(*T*)) denote the family of all zero-sets in *T*. Then
 L is closed under finite unions and countable intersections.

The basic result Applications to Corson compact spaces Applications to K-analytic spaces without perfect compact sets Applications to Banach spaces

イロト イポト イヨト イヨト

Difficult part: (c) \Rightarrow (d) (by contradiction)

- A subset Z of T is called a zero-set (in T) if Z = f⁻¹(0) for some continuous function f : T → ℝ.
- Let *L* (or *L*(*T*)) denote the family of all zero-sets in *T*. Then
 L is closed under finite unions and countable intersections.
- The σ-algebra generated by *L* is denoted by Baire(T) (Baire sets in T).

The basic result Applications to Corson compact spaces Applications to K-analytic spaces without perfect compact sets Applications to Banach spaces

イロト イポト イヨト イヨト

Difficult part: (c) \Rightarrow (d) (by contradiction)

- A subset Z of T is called a zero-set (in T) if Z = f⁻¹(0) for some continuous function f : T → ℝ.
- Let *L* (or *L*(*T*)) denote the family of all zero-sets in *T*. Then
 L is closed under finite unions and countable intersections.
- The σ-algebra generated by *L* is denoted by Baire(T) (Baire sets in T).
- Baire(T) \subset Souslin(\mathscr{Z}).

The basic result Applications to Corson compact spaces Applications to K-analytic spaces without perfect compact sets Applications to Banach spaces

Difficult part: (c) \Rightarrow (d) (by contradiction)

- A subset Z of T is called a zero-set (in T) if Z = f⁻¹(0) for some continuous function f : T → ℝ.
- Let *Let Let Let (Cor Let (T))* denote the family of all zero-sets in *T*. Then *Let (Cor (C))* is closed under finite unions and countable intersections.
- The σ -algebra generated by \mathscr{Z} is denoted by $\mathsf{Baire}(T)$ (*Baire sets* in *T*).
- Baire(T) \subset Souslin(\mathscr{Z}).
- If X is K-analytic subset of M^D, then each zero-set in X, being closed, is K-analytic and therefore each member of Souslin(𝔅) is K-analytic. Since Baire(T) ⊂ Souslin(𝔅), each Baire set in X is K-analytic hence Lindelöf relative to τ_p.

Preparatory things

Notation: $x \in X$, $S \subset D$ and $\varepsilon > 0$.

•
$$U(x,S,\varepsilon) := \{y \in X : d_S(y,x) < \varepsilon\}.$$

イロト イヨト イヨト イヨト

æ

Preparatory things

Notation: $x \in X$, $S \subset D$ and $\varepsilon > 0$.

- $U(x,S,\varepsilon) := \{y \in X : d_S(y,x) < \varepsilon\}.$
- $\mathscr{U} = \{U_j : j \in J\}$ is a family of $\gamma(D)$ -open sets in X that covers X without a countable subcover. We may assume that each U_j is of the form

$$U_j = U(x_j, A_j, \varepsilon_j) = \{ y \in X : d_{A_j}(y, x_j) < \varepsilon_j \},$$

where $x_j \in X$, $A_j \in \mathscr{C}$, $\varepsilon_j > 0$ for each $j \in J$.

Preparatory things

Notation: $x \in X$, $S \subset D$ and $\varepsilon > 0$.

- $U(x,S,\varepsilon) := \{y \in X : d_S(y,x) < \varepsilon\}.$
- $\mathscr{U} = \{U_j : j \in J\}$ is a family of $\gamma(D)$ -open sets in X that covers X without a countable subcover. We may assume that each U_j is of the form

$$U_j = U(x_j, A_j, \varepsilon_j) = \{ y \in X : d_{A_j}(y, x_j) < \varepsilon_j \},$$

where $x_i \in X$, $A_i \in \mathcal{C}$, $\varepsilon_i > 0$ for each $j \in J$.

• For each $A \in \mathscr{C}$, let $U(A) = \bigcup \{ U_j : j \in J, A_j \subset A \}.$

Preparatory things

Notation: $x \in X$, $S \subset D$ and $\varepsilon > 0$.

- $U(x,S,\varepsilon) := \{y \in X : d_S(y,x) < \varepsilon\}.$
- $\mathscr{U} = \{U_j : j \in J\}$ is a family of $\gamma(D)$ -open sets in X that covers X without a countable subcover. We may assume that each U_j is of the form

$$U_j = U(x_j, A_j, \varepsilon_j) = \{ y \in X : d_{A_j}(y, x_j) < \varepsilon_j \},$$

where $x_j \in X$, $A_j \in \mathcal{C}$, $\varepsilon_j > 0$ for each $j \in J$.

• For each $A \in \mathscr{C}$, let $U(A) = \bigcup \{ U_j : j \in J, A_j \subset A \}.$

Remark If $A \subset A'$, then $U(A) \subset U(A')$ and $X = \bigcup \{ U(A) : A \in \mathscr{C} \}$. B. Cascales and J. Namioka The Lindelöf property and σ -fragmentability

The basic result Applications to Corson compact spaces Applications to *K*-analytic spaces without perfect compact sets Applications to Banach spaces

Assume (c) holds and (d) doesn't

Lemma (a tool!!!)

(i)
$$U(x,A,\varepsilon) \in \text{Baire}(X)$$
 whenever $x \in X, A \in \mathcal{C}, \varepsilon > 0$.

(ii) $U(A) \in \text{Baire}(X)$: U(A) is K-analytic and Lindelöf, $A \in \mathscr{C}$.

(iii) $S \subset X$ is covered by a count. subfamily of \mathscr{U} iff $S \subset U(A)$.

The basic result Applications to Corson compact spaces Applications to K-analytic spaces without perfect compact sets Applications to Banach spaces

< ロト (周) (日) (日)

Assume (c) holds and (d) doesn't

Lemma (a tool!!!)

(i)
$$U(x,A,\varepsilon) \in \text{Baire}(X)$$
 whenever $x \in X, A \in \mathcal{C}, \varepsilon > 0$.

(ii) $U(A) \in \text{Baire}(X)$: U(A) is K-analytic and Lindelöf, $A \in \mathscr{C}$.

(iii) $S \subset X$ is covered by a count. subfamily of \mathscr{U} iff $S \subset U(A)$.

Let \mathscr{Y} be the family of all *K*-analytic subsets *Y* of (X, τ_p) such that there is no countable subfamily of \mathscr{U} that covers *Y*.

The basic result Applications to Corson compact spaces Applications to *K*-analytic spaces without perfect compact sets Applications to Banach spaces

イロト イポト イヨト イヨト

Assume (c) holds and (d) doesn't

Lemma (a tool!!!)

(i)
$$U(x,A,\varepsilon) \in \text{Baire}(X)$$
 whenever $x \in X, A \in \mathcal{C}, \varepsilon > 0$.

(ii) $U(A) \in \text{Baire}(X)$: U(A) is K-analytic and Lindelöf, $A \in \mathscr{C}$.

(iii) $S \subset X$ is covered by a count. subfamily of \mathscr{U} iff $S \subset U(A)$.

Let \mathscr{Y} be the family of all *K*-analytic subsets *Y* of (X, τ_p) such that there is no countable subfamily of \mathscr{U} that covers *Y*. Two possibilities:

The basic result Applications to Corson compact spaces Applications to *K*-analytic spaces without perfect compact sets Applications to Banach spaces

Assume (c) holds and (d) doesn't

Lemma (a tool!!!)

(i)
$$U(x,A,\varepsilon) \in \text{Baire}(X)$$
 whenever $x \in X, A \in \mathcal{C}, \varepsilon > 0$.

(ii) $U(A) \in \text{Baire}(X)$: U(A) is K-analytic and Lindelöf, $A \in \mathscr{C}$.

(iii) $S \subset X$ is covered by a count. subfamily of \mathscr{U} iff $S \subset U(A)$.

Let \mathscr{Y} be the family of all *K*-analytic subsets *Y* of (X, τ_p) such that there is no countable subfamily of \mathscr{U} that covers *Y*. Two possibilities:

• For each $Y \in \mathscr{Y}$ and each $\varepsilon > 0$, there is a $Z \in \mathscr{Y}$ such that $Z \subset Y$ and d-diam $(Z) \le \varepsilon$.

The basic result Applications to Corson compact spaces Applications to *K*-analytic spaces without perfect compact sets Applications to Banach spaces

Assume (c) holds and (d) doesn't

Lemma (a tool!!!)

(i)
$$U(x,A,\varepsilon) \in \text{Baire}(X)$$
 whenever $x \in X, A \in \mathcal{C}, \varepsilon > 0$.

(ii) $U(A) \in \text{Baire}(X)$: U(A) is K-analytic and Lindelöf, $A \in \mathscr{C}$.

(iii) $S \subset X$ is covered by a count. subfamily of \mathscr{U} iff $S \subset U(A)$.

Let \mathscr{Y} be the family of all *K*-analytic subsets *Y* of (X, τ_p) such that there is no countable subfamily of \mathscr{U} that covers *Y*. Two possibilities:

- For each $Y \in \mathscr{Y}$ and each $\varepsilon > 0$, there is a $Z \in \mathscr{Y}$ such that $Z \subset Y$ and d-diam $(Z) \le \varepsilon$.
- The negation of the previous case.

The basic result Applications to Corson compact spaces Applications to K-analytic spaces without perfect compact sets Applications to Banach spaces

Assume (c) holds and (d) doesn't

Lemma (a tool!!!)

(i)
$$U(x,A,\varepsilon) \in \text{Baire}(X)$$
 whenever $x \in X, A \in \mathcal{C}, \varepsilon > 0$.

(ii) $U(A) \in \text{Baire}(X)$: U(A) is K-analytic and Lindelöf, $A \in \mathscr{C}$.

(iii) $S \subset X$ is covered by a count. subfamily of \mathscr{U} iff $S \subset U(A)$.

Let \mathscr{Y} be the family of all *K*-analytic subsets *Y* of (X, τ_p) such that there is no countable subfamily of \mathscr{U} that covers *Y*. Two possibilities:

- For each $Y \in \mathscr{Y}$ and each $\varepsilon > 0$, there is a $Z \in \mathscr{Y}$ such that $Z \subset Y$ and d-diam $(Z) \le \varepsilon$.
- The negation of the previous case.

The proof

We show that each case leads to a contradiction.

The Proto-Idea	The basic result
The results	Applications to Corson compact spaces
Counterexamples	Applications to K-analytic spaces without perfect compact sets
References	Applications to Banach spaces

Corollary

Let X be a K-analytic subspace of M^D where (M,ρ) is a metric space with ρ bounded. If $(X,\gamma(D))$ is Lindelöf, then $(X,\gamma(D))^{\mathbb{N}}$ is Lindelöf.

・ 同・ ・ ヨ・ ・ ヨ・

3

The Proto-Idea	The basic result
The results	Applications to Corson compact spaces
Counterexamples	Applications to <i>K</i> -analytic spaces without perfect compact sets
References	Applications to Banach spaces

Corollary

1

Let X be a K-analytic subspace of M^D where (M,ρ) is a metric space with ρ bounded. If $(X,\gamma(D))$ is Lindelöf, then $(X,\gamma(D))^{\mathbb{N}}$ is Lindelöf.

•
$$\varphi: (M^D)^{\mathbb{N}} \to (M^{\mathbb{N}})^D$$
 is τ_{ρ} and γ -homeomorphism.

$$arphi(\xi)(m{p})(j)=\xi(j)(m{p})$$
 for all $\xi\in (M^D)^{\mathbb{N}},m{p}\in D,j\in\mathbb{N}$

• $M^{\mathbb{N}}$ is metrizable $(
ho_{\infty}(m,m'))$. Consider

 $d_{\scriptscriptstyle \!\!\!\infty}(x,x') = \sup\{\rho_{\scriptscriptstyle \!\!\!\infty}(x(\rho),x'(\rho)): \rho\in D\} \ \, \text{for} \ \, x,x'\in (M^{\mathbb N})^D.$

・ 同 ト・ ・ ヨート・ ・ ヨート

The Proto-Idea	The basic result
The results	Applications to Corson compact spaces
Counterexamples	Applications to <i>K</i> -analytic spaces without perfect compact sets
References	Applications to Banach spaces

Corollary

Let X be a K-analytic subspace of M^D where (M,ρ) is a metric space with ρ bounded. If $(X,\gamma(D))$ is Lindelöf, then $(X,\gamma(D))^{\mathbb{N}}$ is Lindelöf.

•
$$\varphi: (M^D)^{\mathbb{N}} \to (M^{\mathbb{N}})^D$$
 is τ_{ρ} and γ -homeomorphism.

$$arphi(\xi)(m{p})(j)=\xi(j)(m{p})$$
 for all $\xi\in (M^D)^{\mathbb{N}},m{p}\in D,j\in\mathbb{N}$

•
$$M^{\mathbb{N}}$$
 is metrizable $(
ho_{\infty}(m,m'))$. Consider

 $d_{\infty}(x,x') = \sup\{\rho_{\infty}(x(p),x'(p)): p \in D\} \text{ for } x,x' \in (M^{\mathbb{N}})^{D}.$

 X^ℕ is K-analytic, hence so is φ(X^ℕ) and each compact subset of φ(X^ℕ) is fragmented by d_∞.

→ 同 → → 三 → → 三 →

The Proto-Idea	The basic result
The results	Applications to Corson compact spaces
Counterexamples	Applications to <i>K</i> -analytic spaces without perfect compact sets
References	Applications to Banach spaces

Corollary

Let X be a K-analytic subspace of M^D where (M,ρ) is a metric space with ρ bounded. If $(X,\gamma(D))$ is Lindelöf, then $(X,\gamma(D))^{\mathbb{N}}$ is Lindelöf.

•
$$\varphi: (M^D)^{\mathbb{N}} \to (M^{\mathbb{N}})^D$$
 is τ_{ρ} and γ -homeomorphism.

$$arphi(\xi)(m{p})(j)=\xi(j)(m{p})$$
 for all $\xi\in (M^D)^{\mathbb{N}},m{p}\in D,j\in\mathbb{N}$

•
$$M^{\mathbb{N}}$$
 is metrizable $(
ho_{\infty}(m,m'))$. Consider

$$d_{\scriptscriptstyle \!\! \infty}(x,x') = \sup\{\rho_{\scriptscriptstyle \!\! \infty}(x(\rho),x'(\rho)): \rho\in D\} \ \, \text{for} \ \, x,x'\in (M^{\mathbb N})^D.$$

- X^ℕ is K-analytic, hence so is φ(X^ℕ) and each compact subset of φ(X^ℕ) is fragmented by d_∞.
- Hence by (a) \Leftrightarrow (b), $(\varphi(X^{\mathbb{N}}), \gamma(D)) = (X, \gamma(D))^{\mathbb{N}}$ is Lindelöf.

Let I = [-1,1] and let Γ be an arbitrary index set. For $x \in I^{\Gamma}$ we write supp $(x) = \{\gamma \in \Gamma : x(\gamma) \neq 0\}$. Consider

$$\mathscr{F}(\Gamma) = \{x \in [-1,1]^{\Gamma} : \mathsf{supp}(x) \text{ is finite}\}$$

and

$$\Sigma(\Gamma) = \{x \in [-1,1]^{\Gamma} : \operatorname{supp}(x) \text{ is countable}\}.$$

з

Let I = [-1,1] and let Γ be an arbitrary index set. For $x \in I^{\Gamma}$ we write supp $(x) = \{\gamma \in \Gamma : x(\gamma) \neq 0\}$. Consider

$$\mathscr{F}(\Gamma) = \{x \in [-1,1]^{\Gamma} : \mathsf{supp}(x) \text{ is finite}\}$$

and

$$\Sigma(\Gamma) = \{x \in [-1,1]^{\Gamma} : \mathsf{supp}(x) \text{ is countable}\}.$$

Definition

A compact Hausdorff space K is said to be *Corson compact* if K is homeomorphic to a τ_p -compact subset of $\Sigma(\Gamma)$.

Let I = [-1,1] and let Γ be an arbitrary index set. For $x \in I^{\Gamma}$ we write supp $(x) = \{\gamma \in \Gamma : x(\gamma) \neq 0\}$. Consider

$$\mathscr{F}(\Gamma) = \{x \in [-1,1]^{\Gamma} : \mathsf{supp}(x) \text{ is finite}\}$$

and

$$\Sigma(\Gamma) = \{x \in [-1,1]^{\Gamma} : \mathsf{supp}(x) \text{ is countable}\}.$$

Definition

A compact Hausdorff space K is said to be *Corson compact* if K is homeomorphic to a τ_p -compact subset of $\Sigma(\Gamma)$.

Properties:

• if A is a countable subset of a Corson compact space K, then the closure of A is compact and metrizable.

・ロト ・ 同ト ・ ヨト ・ ヨト

Let I = [-1,1] and let Γ be an arbitrary index set. For $x \in I^{\Gamma}$ we write supp $(x) = \{\gamma \in \Gamma : x(\gamma) \neq 0\}$. Consider

$$\mathscr{F}(\Gamma) = \{x \in [-1,1]^{\Gamma} : \mathsf{supp}(x) \text{ is finite}\}$$

and

$$\Sigma(\Gamma) = \{x \in [-1,1]^{\Gamma} : \operatorname{supp}(x) \text{ is countable}\}.$$

Definition

A compact Hausdorff space K is said to be *Corson compact* if K is homeomorphic to a τ_p -compact subset of $\Sigma(\Gamma)$.

Properties:

- if A is a countable subset of a Corson compact space K, then the closure of A is compact and metrizable.
- (Σ(Γ),τ_p) is countably tight. Hence the Corson compact spaces are countable tight.

The Proto-Idea	The basic result
The results	Applications to Corson compact spaces
Counterexamples References	Applications to K -analytic spaces without perfect compact sets Applications to Banach spaces

Application 1

If K is Corson compact then $(C(K), \gamma(K))^{\mathbb{N}}$ is Lindelöf.

(日) (日) (日) (日) (日)

3

The Proto-Idea	The basic result
The results	Applications to Corson compact spaces
Counterexamples	Applications to K-analytic spaces without perfect compact sets
References	Applications to Banach spaces

Application 1

If *K* is Corson compact then $(C(K), \gamma(K))^{\mathbb{N}}$ is Lindelöf.

In general for K Corson the space $(C(K), \tau_p)$ IS NOT K-analytic.

・ 同 ト ・ ミ ト ・ ミ ト

The Proto-Idea	The basic result
The results	Applications to Corson compact spaces
Counterexamples	Applications to <i>K</i> -analytic spaces without perfect compact sets
References	Applications to Banach spaces

Application 1

If K is Corson compact then $(C(K), \gamma(K))^{\mathbb{N}}$ is Lindelöf.

In general for K Corson the space $(C(K), \tau_p)$ IS NOT K-analytic.

Lemma

Let Γ be an index set and let H be a norm bounded subset of $\ell^{\infty}(\Gamma) \subset \mathbb{R}^{\Gamma}$. If

$$\overline{\operatorname{aco}(H)}^{\tau_p} = \overline{\operatorname{aco}(H)}^{\parallel \parallel}, \qquad (1)$$

< 回 > () >

then $X := \overline{\operatorname{span} H}^{\parallel \parallel}$ is *K*-analytic with respect to the pointwise topology τ_p of \mathbb{R}^{Γ} . In particular, if *H* is a norm bounded τ_p -compact subset of $\ell^{\infty}(\Gamma)$ that is norm-fragmented, then $\overline{\operatorname{span} H}^{\parallel \parallel}$ is *K*-analytic relative to τ_p .

The basic result Applications to Corson compact spaces Applications to K-analytic spaces without perfect compact sets Applications to Banach spaces

Theorem

Let (X,τ) be a K-analytic Tychonoff space. TFAE:

(a) The space X is σ -scattered.

(b) The space X does not contain a compact perfect subset.

- (c) The space (X, τ_{δ}) is Lindelöf.
- (d) The space $(X, \tau_{\delta})^{\mathbb{N}}$ is Lindelöf.

The basic result Applications to Corson compact spaces Applications to K-analytic spaces without perfect compact sets Applications to Banach spaces

Theorem

Let (X,τ) be a K-analytic Tychonoff space. TFAE:

- (a) The space X is σ -scattered.
- (b) The space X does not contain a compact perfect subset.
- (c) The space (X, τ_{δ}) is Lindelöf.
- (d) The space $(X, \tau_{\delta})^{\mathbb{N}}$ is Lindelöf.

(i) For any countable set
$$A \subset C(X)$$
, $\overline{A}^{\mathbb{R}^X}$ is τ_p -metrizable

(ii)
$$(B_1(X), \tau_p)$$
 is Fréchet-Urysohn.

(iii)
$$(C(X), \tau_p)$$
 is Fréchet-Urysohn.

(iv)
$$(C(X), \tau_p)$$
 is sequential.

(v)
$$(C(X), \tau_p)$$
 is a k-space.

(vi)
$$(C(X), \tau_p)$$
 is a k_R -space.

The Proto-Idea	The basic result
The results	Applications to Corson compact spaces
Counterexamples	Applications to K-analytic spaces without perfect compact sets
References	Applications to Banach spaces

A dual Banach space X^* has the Radon-Nikodym property (RNP) iff X^* is Lindelöf with the topology $\gamma(X)$ of uniform convergence on bounded sequences of X, [Ori92]

- ・ 同 ト・ ・ ヨ ト

The Proto-Idea	The basic result
The results	Applications to Corson compact spaces
Counterexamples	Applications to K-analytic spaces without perfect compact sets
References	Applications to Banach spaces

A dual Banach space X^* has the Radon-Nikodym property (RNP) iff X^* is Lindelöf with the topology $\gamma(X)$ of uniform convergence on bounded sequences of X, [Ori92]

Theorem

If a dual Banach space X^* is weakly Lindelöf then, $(X^*,w)^{\mathbb{N}}$ is Lindelöf, [Ori92].

・ 同 ト・ ・ ヨート・ ・ ヨート

The Proto-Idea	The basic result
The results	Applications to Corson compact spaces
ounterexamples	Applications to K-analytic spaces without perfect compact sets
References	Applications to Banach spaces

A dual Banach space X^* has the Radon-Nikodym property (RNP) iff X^* is Lindelöf with the topology $\gamma(X)$ of uniform convergence on bounded sequences of X, [Ori92]

Theorem

If a dual Banach space X^* is weakly Lindelöf then, $(X^*,w)^{\mathbb{N}}$ is Lindelöf, [Ori92].

Theorem

If X is a Banach space and H is a weak*-compact subset of X* which is weak-Lindelöf, then $\overline{co(H)}^{w^*} = \overline{co(H)}^{\| \|}$ and this closed convex hull is weakly Lindelöf again; furthermore $Y = \overline{span(H)}^{\| \|}$ is weakly Lindelöf (in fact B_{Y^*} is Corson compact), [CN003].

・ロト ・ 一下・ ・ ヨト・ ・ ヨト

The Proto-Idea	The basic result
The results	Applications to Corson compact spaces
Counterexamples	Applications to K-analytic spaces without perfect compact sets
References	Applications to Banach spaces

- Let $(X, \| \|)$ be a Banach space such that, for some norming subset B of B_{X^*} , $(X, \sigma(X, B))$ is K-analytic. TFAE:
- (i) X has property (C) and $(X,\sigma(X,B))$ is σ -fragmented by $\| \|$.
- (ii) (X,w) is Lindelöf.
- (iii) (B_{X^*}, w^*) countably tight, w^* -separable subsets are metrizable.

イロト イポト イヨト イヨト 三日

The Proto-Idea	The basic result
The results	Applications to Corson compact spaces
Counterexamples	Applications to <i>K</i> -analytic spaces without perfect compact sets
References	Applications to Banach spaces

Let $(X, \| \|)$ be a Banach space such that, for some norming subset B of B_{X^*} , $(X, \sigma(X, B))$ is K-analytic. TFAE:

- (i) X has property (C) and $(X, \sigma(X, B))$ is σ -fragmented by $\| \|$.
- (ii) (X,w) is Lindelöf.

(iii) (B_{X^*}, w^*) countably tight, w^* -separable subsets are metrizable.

Lemma

Let X be a Banach space and $B \subset X^*$ a norming subset. If X has property (C), then $\gamma(B)$ is stronger than the weak topology of X.

How wide is he class of Banach spaces X for which there is $B \subset B_{X^*}$ norming and $(X, \sigma(X, B))$ is K-analytic?

How wide is he class of Banach spaces X for which there is $B \subset B_{X^*}$ norming and $(X, \sigma(X, B))$ is K-analytic?

Includes

• Weakly K-analytic Banach spaces.

How wide is he class of Banach spaces X for which there is $B \subset B_{X^*}$ norming and $(X, \sigma(X, B))$ is K-analytic?

Includes

- Weakly K-analytic Banach spaces.
- Dual Banach spaces.

How wide is he class of Banach spaces X for which there is $B \subset B_{X^*}$ norming and $(X, \sigma(X, B))$ is K-analytic?

Includes

- Weakly K-analytic Banach spaces.
- Dual Banach spaces.
- Representable Banach spaces, [GT82].

How wide is he class of Banach spaces X for which there is $B \subset B_{X^*}$ norming and $(X, \sigma(X, B))$ is K-analytic?

Includes

- Weakly K-analytic Banach spaces.
- Dual Banach spaces.
- Representable Banach spaces, [GT82].
- Banach spaces generated by a RN-compact, [CNO03].

イロト イポト イヨト イヨト

The central results are sharp

The central results are sharp

B. Cascales and I. Namioka The Lindelöf property and σ -fragmentability

イロト イヨト イヨト イヨト

3

The central results are sharp

The central results are sharp

• Under CH, there is a Čech-analytic Lindelöf Tychonoff space Y that is σ -scattered and such that (Y, τ_{δ}) is not Lindelöf.

・ 同 ト・ ・ ヨート・ ・ ヨート

The central results are sharp

The central results are sharp

- Under CH, there is a Čech-analytic Lindelöf Tychonoff space Y that is σ -scattered and such that (Y, τ_{δ}) is not Lindelöf.
- There is a countably K-determined uncountable subspace Y ⊂ ℝ such that the compact subsets of Y are countable. Y does not contain perfect compact subsets, Y isn't σ-scattered and (Y,τ_δ) is not Lindelöf.

The central results are sharp

The central results are sharp

- Under CH, there is a Čech-analytic Lindelöf Tychonoff space Y that is σ -scattered and such that (Y, τ_{δ}) is not Lindelöf.
- There is a countably K-determined uncountable subspace Y ⊂ ℝ such that the compact subsets of Y are countable. Y does not contain perfect compact subsets, Y isn't σ-scattered and (Y,τ_δ) is not Lindelöf.
- There is a compact space K such that (C(K),γ(K))^ℕ is Lindelöf and K is not Corson.

References

- B. Cascales, I. Namioka, and J. Orihuela, *The Lindelöf property in Banach spaces*, Studia Math. **154** (2003), no. 2, 165–192. MR 1 949 928
- G. Godefroy and M. Talagrand, *Espaces de Banach représentables*, Israel J. Math. **41** (1982), no. 4, 321–330. MR 84g:46019
- J.E. Jayne, I. Namioka, and C. A. Rogers, *Topological properties of Banach spaces*, Proc. London Math. Soc. (3) **66** (1993), no. 3, 651–672. MR 94c:46041
- J. L. Kelley, *General topology*, Springer-Verlag, New York, 1975, Reprint of the 1955 edition [Van Nostrand, Toronto, Ont.], Graduate Texts in Mathematics, No. 27. MR 51 #6681

I. Namioka and R. Pol, *σ-fragmentability and analyticity,* 🛛 📼