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COMPACTNESS, OPTIMALITY AND RISK

B. Cascales, J. Orihuela and M. Ruiz Galán

Summary: This is a survey about one of the most important achievements in op-
timization in Banach space theory, namely, James’ weak compactness theorem, its
relatives and its applications. We present here a good number of topics related to
James’ weak compactness theorem and try to keep the technicalities needed as sim-
ple as possible: Simons’ inequality is our preferred tool. Besides the expected ap-
plications to measures of weak noncompactess, compactness with respect to bound-
aries, size of sets of norm-attaining functionals, etc., we also exhibit other very
recent developments in the area. In particular we deal with functions and their level
sets to study a new Simons’ inequality on unbounded sets that appear as the epi-
graph of some fixed function f . Applications to variational problems for f and to
risk measures associated with its Fenchel conjugate f ∗ are studied.
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1.1 Introduction

In 1957 James proved that a separable Banach space is reflexive whenever each
continuous and linear functional on it attains its supremum on the unit ball, see [82,
Theorem 3]. This result was generalized in 1964 to the non separable case in [83,
Theorem 5]: in what follows we will refer to it as James’ reflexivity theorem. More
generally (and we shall refer to it as to James’ weak compactness theorem), the
following characterization of weak compactness was obtained in [84, Theorem 5]:

Theorem 1.1 (James). A weakly closed and bounded subset A of a real Banach
space is weakly compact if, and only if, every continuous and linear functional at-
tains its supremum on A.

This central result in Functional Analysis can be extended to complete locally
convex spaces, as shown in [84, Theorem 6]. Note that it is not valid in the absence
of completeness, as seen in [86]. Since a complex Banach space can be considered
naturally as a real Banach space with the same weak topology, James’ weak com-
pactness theorem is easily transferred to the complex case. Nonetheless, and because
of the strongly real nature of the optimization assumption, the setting for this survey
will be that of real Banach spaces.

We refer to [85], [53] and [81] for different characterizations of weak compact-
ness.

James’ weak compactness theorem has two important peculiarities. The first one
is that it has plenty of direct applications as well as it implies a number of important
theorems in the setting of Banach spaces. Regarding the latter, we can say that this
result is a sort of metatheorem within Functional Analysis. Thus, for instance, the
Krein–Šmulian theorem (i.e., the closed convex hull of a weakly compact subset of
a Banach space is weakly compact) or the Milman–Pettis theorem (i.e., every uni-
formly convex Banach space is reflexive) straightforwardly follow from it. Also, the
Eberlein–Šmulian theorem, that states that a nonempty subset A of a Banach space
E is relatively weakly compact in E if, and only if, it is relatively weakly count-
ably compact in E, can be easily derived from James’ weak compactness theorem.
Indeed, assume that A is relatively weakly countably compact in E and for a given
continuous and linear functional x∗ on E, let {xn}n≥1 be a sequence in A satisfying

lim
n

x∗(xn) = sup
A

x∗ ∈ (−∞,∞].

If a x0 ∈ E is a w-cluster point of the sequence {xn}n≥1, then

sup
A

x∗ = x∗(x0)< ∞.

The boundedness of A follows from the Banach–Steinhaus theorem, and that A is
relatively weakly compact is then a consequence of James’ weak compactness the-
orem.

The second singularity regarding James’ weak compactness theorem is that this
result not only has attracted the attention of many researchers due to the huge num-
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ber of its different applications, but also that several authors in the last decades tried
to find a reasonable simple proof for it. This search has produced plenty of new
important techniques in the area.

Pryce, in [125], simplified the proof of James’ weak compactness theorem by
using two basic ideas. The first one was to use the Eberlein–Grothendieck double-
limit condition, see for instance [53, pp. 11-18] or [135, Theorem 28.36], that states
that a bounded subset A of a Banach space E is relatively weakly compact if, and
only if,

lim
m

lim
n

x∗m(xn) = lim
n

lim
m

x∗m(xn) (1.1)

for all sequences {xn}n≥1 in A and all bounded sequences {x∗m}m≥1 in E∗ for which
the above iterated limits do exist. Pryce’s second idea was to use the following
diagonal argument.

Lemma 1.2 (Pryce). Let X be a nonempty set, { fn}n≥1 a uniformly bounded se-
quence in �∞(X), and D a separable subset of �∞(X). Then there exists a subsequence
{ fnk}k≥1 of { fn}n≥1 such that

sup
X

�
f − limsup

k
fnk

�
= sup

X

�
f − liminf

k
fnk

�
,

for every f ∈ D.

We should stress here that from the lemma above it follows that for any further
subsequence { fnk j

} j≥1 of { fnk}k≥1 we also have

sup
X

�
f − limsup

j
fnk j

�
= sup

X

�
f − liminf

j
fnk j

�
,

for every f ∈ D. With the above tools, Pryce’s proof of James’ weak compact-
ness theorem is done by contradiction: if a weakly closed and bounded subset A
of a Banach space E is not weakly compact, then there exist sequences {xn}n≥1
and {x∗m}m≥1 for which (1.1) does not hold. Lemma 1.2 applied to {x∗m}m≥1 helped
Pryce to derive the existence of a continuous linear functional that does not attain
its supremum on A. In the text by Holmes [81, Theorem 19.A], one can find Pryce’s
proof for Banach spaces whose dual unit ball is w∗-sequentially compact: Pryce’s
original arguments are simplified in this case.

In 1972 Simons gave another simpler proof of James’ weak compactness theo-
rem in [137]. The proof by Simons uses an “ad hoc” minimax theorem (with opti-
mization and convexity hypotheses) that follows from a diagonal argument different
from that of Pryce above, together with a deep result known henceforth as Simons’
inequality, see [136, Lemma 2], that we recall immediately below.

Lemma 1.3 (Simons). Let { fn}n≥1 be a uniformly bounded sequence in �∞(X) and
let W be its convex hull. If Y is a subset of X with the property that for every
sequence of non-negative numbers {λn}n≥1 with ∑∞

n=1 λn = 1 there exists y ∈ Y
such that
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∞

∑
n=1

λn fn(y) = sup

�
∞

∑
n=1

λn fn(x) : x ∈ X

�
,

then
inf

�
sup

X
g : g ∈W

�
≤ sup

y∈Y

�
limsup

n
fn(y)

�
.

A converse minimax theorem, see [137, Theorem 15] (see also [139, Theorem
5.6] and [133, Lemma 18]) provides an easier proof of James’ weak compactness
theorem and a minimax characterization of weak compactness.

A different proof of James’ weak compactness theorem, and even simpler than
that in [84], was stated by James himself in [87]. He took into account ideas coming
from Simons’ inequality in his new proof. The result proved is: A separable Banach
space E is reflexive if, and only if, there exists θ ∈ (0,1) such that for every sequence
{x∗n}n≥1 in the unit ball of its dual space, either {x∗n}n≥1 is not weak∗-null or

inf
x∗∈C

�x∗�< θ ,

where C is the convex hull of {x∗n : n ≥ 1} –the characterization of weak compact
subsets of a separable Banach spaces is easily guessed by analogy. If the assumption
of separability on E is dropped, a similar characterization is obtained, but perturbing
the functionals in the convex hull of {x∗n : n ≥ 1} by functionals in the annihilator of
a nonreflexive separable subspace X of E: E is reflexive if, and only if, there exists
θ ∈ (0,1) such that for each subspace X of E and for every sequence {x∗n}n≥1 in the
unit ball of the dual space of E, either {x∗n}n≥1 is not null for the topology in E∗ of
pointwise convergence on X or

inf
x∗∈C, w∈X⊥

�x∗ −w�< θ ,

whit C being the convex hull of {x∗n : n ≥ 1}.
It should be noted that the new conditions that characterize reflexivity above

imply in fact that every continuous and linear functional attains the norm.
In 1974 De Wilde [152] stated yet another proof of James’ weak compactness

theorem, that basically uses as main tools the diagonal argument of Pryce and the
ideas of Simons in [136] together with the Eberlein–Grothendieck double-limit con-
dition.

More recently, Morillon [111] has given a different proof of James’ reflexivity
theorem, based on a previous result by her [112, Theorem 3.9] establishing, one the
one hand, James’ reflexivity theorem for spaces with a w∗-block compact dual unit
ball by means of Simons’ inequality and Rosenthal’s �1-theorem, and extending,
on the other hand, the proof to the general case with an adaptation of a result of
Hagler and Jonhson [72]. Along with these ideas another proof of James’ reflexiv-
ity theorem has been given by Kalenda in [92]. Very recently, Pfitzner has gone a
step further using the ideas above to solve the so-called boundary problem of Gode-
froy, [59, Question 2] –see Section 1.4, giving yet another approach to James’ weak
compactness theorem, [122].
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Another approach to James’ reflexivity theorem in the separable case is due to
Rodé [129], by using his form of the minimax theorem in the setting of the so-called
“superconvex analysis”. Let us also point out that for separable Banach spaces, the
proof in [45, Theorem I.3.2], directly deduced from the Simons inequality, can be
considered an easy one. A completely different proof using Bishop–Phelps and
Krein–Milman theorems is due to Fonf, Lindenstrauss and Phelps [56, Theorem
5.9], and an alternative approach is due to Moors [108, Theorem 4]. Nevertheless,
the combinatorial principles involved (known in the literature as the (I)-formula) are
equivalent to Simons’ inequality, see [93, Lemma 2.1 and Remark 2.2] and [29, The-
orem 2.2]. We refer the interested reader to the papers by Kalenda [93, 92], where
other proofs for James’ reflexivity theorem using (I)-envelopes in some special cases
can be found.

The leitmotif in this survey is Simons’ inequality, which is used, to a large extent,
as the main tool for proving the results, most of them self-contained and different
from the original ones. Section 1.2 is devoted to the discussion of a generalization of
the Simons inequality, where the uniform boundedness condition is relaxed, together
with its natural consequences as unbounded sup-limsup’s and Rainwater–Simons’
theorems. The first part of Section 1.3 is devoted to providing a proof of James’ weak
compactness theorem that, going back to the work of James, explicitly supplies
nonattaining functionals in the absence of weak compactness; in the second part of
Section 1.3 we study several measures of weak noncompactness and we introduce
a new one that is very close to Simons’ inequality. Section 1.4 deals with the study
of boundaries in Banach spaces and some deep related results, that can be viewed
as extensions of James’ weak compactness theorem. Other extensions of James’
weak compactness theorem are presented in Section 1.5, where we mainly focus
our attention on those of perturbed nature, which have found some applications in
mathematical finance and variational analysis, as seen in Section 1.6.

Let us note that each section of this paper concludes with a selected open prob-
lem.

1.1.1 Notation and terminology

Most of our notation and terminology are standard, otherwise it is either explained
here or when needed: unexplained concepts and terminology can be found in our
standard references for Banach spaces [45, 49, 90] and topology [48, 95]. By letters
E,K,T,X , etc. we denote sets and sometimes topological spaces. Our topological
spaces are assumed to be completely regular.

All vector spaces E that we consider in this paper are assumed to be real. Fre-
quently, E denotes a normed space endowed with a norm �·�, and E∗ stands for its
dual space. Given a subset S of a vector space, we write conv(S) and span(S) to
denote, respectively, the convex and the linear hull of S. If S is a subset of E∗, then
σ(E,S) denotes the weakest topology for E that makes each member of S contin-
uous, or equivalently, the topology of pointwise convergence on S. Dually, if S is a
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subset of E, then σ(E∗,S) is the topology for E∗ of pointwise convergence on S. In
particular, σ(E,E∗) and σ(E∗,E) are the weak (denoted by w) and weak∗ (denoted
by w∗) topologies, respectively. Of course, σ(E,S) is always a locally convex topol-
ogy, that is Hausdorff if, and only if, E∗ = spanSw∗

(and similarly for σ(E∗,S)).
Given x∗ ∈ E∗ and x ∈ E, we write �x∗,x� and x∗(x) for the evaluation of x∗ at x. If
x ∈ E and δ > 0, we denote by B(x,δ ) (resp. B[x,δ ]) the open (resp. closed) ball
centered at x of radius δ : we will simplify our notation and just write BE := B[0,1];
the unit sphere {x ∈ E : �x� = 1} will be denoted by SE . Given a nonempty set X ,
and f ∈ RX we write

SX ( f ) := sup
x∈X

f (x) ∈ (−∞,∞].

�∞(X) stands for the Banach space of real valued bounded functions defined on X ,
endowed with the supremum norm SX (| · |).

1.2 Simons’ inequality for pointwise bounded subsets of RX

The main goal of this section is to derive a generalized version of Simons’ inequal-
ity, Theorem 1.5, in a pointwise bounded setting, as opposed to the usual uniform
bounded context. As a consequence, we derive an unbounded version of the so-
called Rainwater–Simons theorem, Corollary 1.7, that will provide us with some
generalizations of James’ weak compactness theorem, as well as new developments
and applications in Sections 1.5 and 1.6. In addition, the aforementioned result will
allow us to present the state of the art of a number of issues related to boundaries in
Banach spaces in Section 1.4.

The inequality presented in Lemma 1.3, as Simons himself says in [136], is in-
spired by some of James’ and Pryce’s arguments in [84, 125], and contains the
essence of the proof of James’ weak compactness theorem in the separable case.
As mentioned in the Introduction, James included later the novel contribution of
Simons in his proof in [87]. We refer to [45, 61] for some applications of Simons’
inequality, to [114, 43, 99, 29] for proper extensions, and to [115] for a slightly
different proof.

Given a pointwise bounded sequence { fn}n≥1 in RX , we define

coσp{ fn : n ≥ 1} :=

�
∞

∑
n=1

λn fn : λn ≥ 0 for every n ≥ 1 and
∞

∑
n=1

λn = 1

�
,

where a function of the form ∑∞
n=1 λn fn ∈ RX is obviously defined by

� ∞

∑
n=1

λn fn

�
(x) :=

∞

∑
n=1

λn fn(x)

for every x ∈ X .
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Instead of presenting the results of Simons in [136] and [138], we adapt them
to a pointwise but not necessarily uniformly bounded framework. This adaptation
allows us to extend the original results of Simons and provides new applications, as
we show below.

The next result follows by arguing as in the “Additive Diagonal Lemma” in [138].
Hereafter, any sum ∑0

n=1 . . . is understood to be 0.

Lemma 1.4. If { fn}n≥1 is a pointwise bounded sequence in RX and ε > 0, then for
every m ≥ 1 there exists gm ∈ coσp{ fn : n ≥ m} such that

SX

�
m−1

∑
n=1

gn

2n

�
≤
�

1− 1
2m−1

�
SX

�
∞

∑
n=1

gn

2n

�
+

ε
2m−1 .

Proof. It suffices to choose inductively, for each m ≥ 1, gm ∈ coσp{ fn : n ≥ m}
satisfying

SX

�
m−1

∑
n=1

gn

2n +
gm

2m−1

�
≤ inf

g∈coσp{ fn : n≥m}
SX

�
m−1

∑
n=1

gn

2n +
g

2m−1

�
+

2ε
4m . (1.2)

The existence of such gm follows from the easy fact that

inf
g∈coσp{ fn : n≥m}

SX (g)>−∞,

according with the pointwise boundeness of our sequence { fn}n≥1. Since

2m−1
∞

∑
n=m

gn

2n ∈ coσp{ fn : n ≥ m},

then inequality (1.2) implies

SX

��
m−1

∑
n=1

gn

2n

�
+

gm

2m−1

�
≤ SX

�
∞

∑
n=1

gn

2n

�
+

2ε
4m . (1.3)

From the equality

m−1

∑
n=1

gn

2n =
m−1

∑
k=1

1
2m−k

��
k−1

∑
n=1

gn

2n

�
+

gk

2k−1

�
,

and the help of (1.3) we finally derive that
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SX

�
m−1

∑
n=1

gn

2n

�
≤

m−1

∑
k=1

1
2m−k SX

��
k−1

∑
n=1

gn

2n

�
+

gk

2k−1

�

≤
m−1

∑
k=1

1
2m−k

�
SX

�
∞

∑
n=1

gn

2n

�
+

2ε
4k

�

=

�
1− 1

2m−1

�
SX

�
∞

∑
n=1

gn

2n

�
+

�
1− 1

2m−1

�
2ε
2m

≤
�

1− 1
2m−1

�
SX

�
∞

∑
n=1

gn

2n

�
+

ε
2m−1 ,

and the proof is over.

�
We now arrive at the announced extension of Simons’ inequality. Unlike the orig-

inal work [136], we only assume pointwise boundedness of the sequence { fn}n≥1.
Let us also emphasize that the extension of Simons’ inequality stated in [114] is a
particular case of the following non uniform version:

Theorem 1.5 (Simons’ inequality in RX
). Let X be a nonempty set, let { fn}n≥1 be

a pointwise bounded sequence in RX and let Y be a subset of X such that

for every g ∈ coσp{ fn : n ≥ 1} there exists y ∈ Y with g(y) = SX (g).

Then
inf

g∈coσp{ fn : n≥1}
SX (g)≤ SY

�
limsup

n
fn

�
.

Proof. It suffices to prove that for every ε > 0 there exists y∈Y and g∈ coσp{ fn : n≥
1} such that

SX (g)− ε ≤ limsup
n

fn(y).

Fix ε > 0. Then Lemma 1.4 provides us with a sequence {gm}m≥1 in RX such that
for every m ≥ 1, gm ∈ coσp{ fn : n ≥ m} and

SX

�
m−1

∑
n=1

gn

2n

�
≤
�

1− 1
2m−1

�
SX

�
∞

∑
n=1

gn

2n

�
+

ε
2m−1 . (1.4)

Let us write g := ∑∞
n=1

gn
2n ∈ coσp{ fn : n ≥ 1}. Then by hypothesis there exists y ∈Y

with
g(y) = SX (g), (1.5)

and so it follows from (1.4) and (1.5) that given m ≥ 1,



1 COMPACTNESS, OPTIMALITY AND RISK 9

�
1− 1

2m−1

�
g(y)+

ε
2m−1 ≥ SX

�
m−1

∑
n=1

gn

2n

�

≥
m−1

∑
n=1

gn(y)
2n

= g(y)−
∞

∑
n=m

gn(y)
2n .

Therefore,

inf
m≥1

2m−1
∞

∑
n=m

gn(y)
2n ≥ g(y)− ε. (1.6)

Since for every m ≥ 1 we have 2m−1 ∑∞
n=m 2n = 1, we conclude that

sup
n≥m

fn(y)≥ 2m−1
∞

∑
n=m

gn(y)
2n .

Now, with this last inequality in mind together with (1.5) and (1.6) we arrive at

limsup
n

fn(y) = inf
m≥1

sup
n≥m

fn(y)

≥ inf
m≥1

2m−1
∞

∑
n=m

gn(y)
2n

≥ g(y)− ε
= SX (g)− ε,

as was to be shown.

�
Both in the original version of Simons’ inequality and in the previous one, a

uniform behavior follows from a pointwise one, resembling Mazur’s theorem for
continuous functions when X is a compact topological space, see [146, Section 3,
p.14]. Indeed, it turns out that Simons’ inequality tell us that

inf{�g�∞ : g ∈ co{ fn : n ≥ 1}}= 0,

whenever a uniformly bounded sequence of continuous functions { fn}n≥1 pointwise
converges to zero on a compact space X.

As a consequence of the above version of Simons’ inequality we deduce the
following generalization of the sup-limsup theorem of Simons [136, Theorem 3]
(see also [133, Theorem 7]). This result has recently been stated in [119, Corollary
1], but using the tools in [133].

Corollary 1.6 (Simons’ sup-limsup theorem in RX
). Let X be a nonempty set, let

{ fn}n≥1 be a pointwise bounded sequence in RX and let Y be a subset of X such that

for every g ∈ coσp{ fn : n ≥ 1} there exists y ∈ Y with g(y) = SX (g).

Then
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SX

�
limsup

n
fn

�
= SY

�
limsup

n
fn

�
.

Proof. Let us assume, arguing by reductio ad absurdum, that there exists x0 ∈ X
such that

limsup
n

fn(x0)> SY

�
limsup

n
fn

�
.

We assume then, passing to a subsequence if necessary, that

inf
n≥1

fn(x0)> SY

�
limsup

n
fn

�
.

In particular,

inf
g∈coσp{ fn : n≥1}

g(x0)> SY

�
limsup

n
fn

�
,

and then, by applying Theorem 1.5, we arrive at

SY

�
limsup

n
fn

�
≥ inf

g∈coσp{ fn : n≥1}
SX (g)

≥ inf
g∈coσp{ fn : n≥1}

g(x0)

> SY

�
limsup

n
fn

�
,

a contradiction.

�
In the Banach space framework we obtain the sup-limsup’s type result below,

that also generalizes the so-called Rainwater–Simons theorem, see [136, Corollary
11] (see also [138, Sup-limsup Theorem], [101, Theorem 5.1] and [116, Theorem
2.2], the recent extension [108, Corollary 3] and for some related results [75]). It
is a direct consequence of the Simons sup-limsup theorem in RX , Corollary 1.6,
as in the uniform setting, see [50, Theorem 3.134]. In particular it generalizes the
Rainwater theorem [127], which asserts that a sequence {xn}n≥1 in a Banach space
E is weakly null if it is bounded and for each extreme point e∗ of BE∗ ,

lim
n

e∗(xn) = 0.

Given a bounded sequence {xn}n≥1 in a Banach space E, we define

coσ{xn : n ≥ 1} :=

�
∞

∑
n=1

λnxn : for all n ≥ 1, λn ≥ 0 and
∞

∑
n=1

λn = 1

�

Note that series are clearly norm-convergent and that

coσ{xn : n ≥ 1}= coσp{xn : n ≥ 1}
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when for the second set we look at the xn’s as functions defined on BE∗ .

Corollary 1.7 (Unbounded Rainwater–Simons’ theorem). If E is a Banach space,
C is a subset of E∗, B is a nonempty subset of C and {xn}n≥1 is a bounded sequence
in E such that

for every x ∈ coσ{xn : n ≥ 1} there exists b∗ ∈ B with b∗(x) = SC(x),

then
SB

�
limsup

n
xn

�
= SC

�
limsup

n
xn

�
.

As a consequence

σ(E,B)- lim
n

xn = 0 ⇒ σ(E,C)- lim
n

xn = 0.

The unbounded Rainwater–Simons theorem (or the Simons inequality in RX )
not only gives as special cases those classical results that follow from Simons’s
inequality (some of them are discussed here, besides the already mentioned [45,
61]), but it also provides new applications whose discussion we delay until the next
sections. We only remark here that Moors has recently obtained a particular case of
the unbounded Rainwater–Simons theorem, see [108, Corollary 1], which leads him
to a proof of James’ weak compactness theorem for Banach spaces whose dual unit
ball are w∗-sequentially compact.

A very interesting consequence of Simons’ inequality in the bounded case is the
(I)-formula (1.7) of Fonf and Lindenstrauss, see [55] and [29]:

Corollary 1.8 (Fonf–Lindenstrauss’ theorem). Let E be a Banach space, B a
bounded subset of E∗ such that for every x ∈ E there exists some b∗0 ∈ B satisfy-
ing b∗0(x) = supb∗∈B b∗(x). Then we have that, for every covering B ⊂

�∞
n=1 Dn by

an increasing sequence of w∗-closed convex subsets Dn ⊂ co(B)
w∗

, the following
equality holds true

∪∞
n=1Dn

�·�
= co(B)

w∗
. (1.7)

Proof. Here is the proof given in [29, Theorem 2.2]. We proceed by contradiction
assuming that there exists z∗0 ∈ co(B)

w∗
such that z∗0 �∈ ∪∞

n=1Dn
�·�. Fix δ > 0 such

that
B[z∗0,δ ]∩Dn = /0, for every n ≥ 1.

The separation theorem in (E∗,w∗), when applied to the w∗-compact set B[0,δ ] and
the w∗-closed set Dn − z∗0, provides us with a norm-one xn ∈ E and αn ∈R such that

inf
v∗∈B[0,δ ]

xn(v∗)> αn > sup
y∗∈Dn

xn(y∗)− xn(z∗0).

But
−δ = inf

v∗∈B[0,δ ]
xn(v∗),
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and consequently the sequence {xn}n≥1 in BE satisfies

xn(z∗0)−δ > xn(y∗) (1.8)

for each n≥ 1 and y∗ ∈Dn. Fix a w∗-cluster point x∗∗ ∈BE∗∗ of the sequence {xn}n≥1
and let {xnk}k≥1 be a subsequence of {xn}n≥1 such that x∗∗(z∗0) = limk xnk(z

∗
0). We

can and do assume that for every k ≥ 1,

xnk(z
∗
0)> x∗∗(z∗0)−

δ
2
. (1.9)

Since B⊂∪∞
n=1Dn and {Dn}n≥1 is an increasing sequence of sets, given b∗ ∈B there

exists k0 ≥ 1 such that b∗ ∈ Dnk for each k ≥ k0. Now inequality (1.8) yields

x∗∗(z∗0)−δ ≥ limsup
k

xnk(b
∗), for every b∗ ∈ B, (1.10)

and, on the other hand, inequality (1.9) implies that

w(z∗0)≥ x∗∗(z∗0)−
δ
2
, for every w ∈ coσ{xnk : k ≥ 1}. (1.11)

Now Theorem 1.5 can be applied to the sequence {xnk}k≥1, to deduce

x∗∗(z∗0)−δ
(1.10)
≥ sup

b∗∈B
limsup

k
xnk(b

∗)≥

≥ inf
�

sup{w(z∗) : z∗ ∈ co(B)
w∗
,w ∈ coσ{xnk : k ∈ N}}

�

≥ inf
�

w(z∗0) : w ∈ coσ{xnk : k ∈ N}
� (1.11)

≥ x∗∗(z∗0)−
δ
2
.

From the inequalities above we obtain 0≥ δ , which is a contradiction that completes
the proof.

�
To conclude this section, let us emphasize that in [29, Theorem 2.2] the equiv-

alence between Simons’ inequality, the sup-limsup theorem of Simons and the (I)-
formula of Fonf and Lindenstrauss was established in the bounded case. However,
in the unbounded case we propose the following question:

Question 1. Are the unbounded versions of Simons’ inequality and sup-limsup the-
orem of Simons equivalent to some kind of I-formula for the unbounded case?

1.3 Nonattaining functionals

This section is devoted to describe how to obtain nonattaining functionals in the
absence of weak compactness. Simons’ inequality provides us a first way of doing
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it in a wide class of Banach spaces, which includes those whose dual unit balls are
w∗-sequentially compact. We introduce a new measure of weak noncompactness,
tihgtly connected with Simons’ inequality, and we relate it with recent quantification
results of classical theorems about weakly compact sets.

When Simons’ inequality in l∞(N) holds for a w∗-null sequence {x∗n}n≥1 in a dual
Banach space E∗, it follows that the origin belongs to the norm-closed convex hull
of the sequence, co{x∗n : n ≥ 1}�·�. Therefore every time we have a w∗-null sequence
{x∗n}n≥1 with 0 /∈ co{x∗n : n ≥ 1}�·� we will have some x∗0 ∈ coσ{x∗n : n≥ 1} such that
x∗0 doest not attain its supremum on BE .

We note that just Simons’ inequality, or its equivalent sup-limsup theorem, pro-
vides us with the tools to give a simple proof of James’ weak compactness theorem
for a wide class of Banach spaces. We first recall the following concept:

Definition 1.9. Let E be a vector space, and let {xn}n≥1 and {yn}n≥1 be sequences
in E. We say that {yn}n≥1 is a convex block sequence of {xn}n≥1 if for a certain
sequence of nonempty finite subsets of integers {Fn}n≥1 with

maxF1 < minF2 ≤ maxF2 < minF3 ≤ · · ·≤ maxFn < minFn+1 ≤ · · ·

and adequate sets of positive numbers {λ n
i : i ∈ Fn}⊂ (0,1] we have that

∑
i∈Fn

λ n
i = 1 and yn = ∑

i∈Fn

λ n
i xi.

For a Banach space E, its dual unit ball BE∗ is said to be w∗-convex block com-
pact provided that each sequence {x∗n}n≥1 in BE∗ has a convex block w∗-convergent
sequence.

It is clear that if the dual unit ball BE∗ of a Banach space E is w∗-sequentially
compact, then it is w∗-convex block compact. This happens, for example, when E
is a weakly Lindelöf determined (in short, WLD) Banach space, see [74]. Let us
emphasize that both kinds of compactness do not coincide. Indeed, on the one hand,
an example of a Banach space with a non w∗-sequentially compact dual unit ball
and not containing �1(N) is presented in [73]. On the other hand, it is proved in [23]
that if a Banach space E does not contain an isomorphic copy of �1(N), then BE∗ is
w∗-convex block compact. This last result was extended for spaces not containing an
isomorphic copy of �1(R) under Martin Axiom and the negation of the Continuum
Hypothesis hypothesis in [80].

For a bounded sequence {x∗n}n≥1 in a dual Banach space E∗, we denote by
LE∗{x∗n} the set of all cluster points of the given sequence in the w∗-topology, and
when no confusion arises, we just write L{x∗n}.

Lemma 1.10. Suppose that E is a Banach space, {xn}n≥1 is a bounded sequence in
E and x∗∗0 in E∗∗ is a w∗-cluster point of {xn}n≥1 with d(x∗∗0 ,E)> 0. Then for every
α with d(x∗∗0 ,E)> α > 0 there exists a sequence {x∗n}n≥1 in BE∗ such that

�x∗n,x∗∗0 �> α (1.12)
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whenever n ≥ 1, and
�x∗0,x∗∗0 �= 0 (1.13)

for any x∗0 ∈ L{x∗n}.

Proof. The Hahn–Banach theorem applies to provide us with x∗∗∗ ∈BE∗∗∗ satisfying
x∗∗∗|E = 0 and x∗∗∗(x∗∗0 ) = d(x∗∗0 ,E). For every n ≥ 1 the set

Vn :=
�

y∗∗∗ ∈ E∗∗∗ : y∗∗∗(x∗∗0 )> α, |y∗∗∗(xi)|≤
1
n
, i = 1,2, . . . ,n

�

is a w∗-open neighborhood of x∗∗∗, and therefore, by Goldstein’s theorem, we can
pick up x∗n ∈ BE∗ ∩Vn. The sequence {x∗n}n≥1 clearly satisfies

lim
n
�x∗n,xp�= 0, for all p ∈ N,

and for each n ≥ 1,
�x∗n,x∗∗0 �> α.

Fix an arbitrary x∗0 ∈ L{x∗n}. For every p ≥ 1 we have that

�x∗0,xp�= 0,

and thus
�x∗0,x∗∗0 �= 0,

because x∗∗0 ∈ {xp : p = 1,2, · · ·}w∗
.

�

Theorem 1.11. Let E be a Banach space with a w∗-convex block compact dual unit
ball. If a bounded subset A of E is not weakly relatively compact, then there exists
a sequence of linear functionals {y∗n}n≥1 ⊂ BE∗ with a w∗-limit point y∗0, and some
g∗ ∈ coσ{y∗n : n ≥ 1}, such that g∗ − y∗0 doest not attain its supremum on A.

Proof. Assume that A is not weakly relatively compact, which in view of the
Eberlein–Šmulian theorem is equivalent to the existence of a sequence {xn}n≥1 in
A and a w∗-cluster point x∗∗0 ∈ E∗∗ \E of it. Then Lemma 1.10 applies to provide us
with a sequence {x∗n}n≥1 in BE∗ and α > 0 satisfying (1.12) and (1.13).

Let {y∗n}n≥1 be a convex-block sequence of {x∗n}n≥1 and let y∗0 ∈ BE∗ such that
w∗- limn y∗n = y∗0. It is clear that (1.12) and (1.13) are valid when replacing {x∗n}n≥1
and x∗0 with {y∗n}n≥1 and y∗0, respectively. Then

S
Aw∗

�
limsup

n
(y∗n − y∗0)

�
≥ limsup

n
(y∗n − y∗0)(x

∗∗
0 )

≥ α
> 0

= SA

�
limsup

n
(y∗n − y∗0)

�
,
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so in view of the Rainwater–Simons theorem, Corollary 1.7, there exists g∗ ∈
coσ{y∗n : n ≥ 1} such that g∗ − y∗0 does not attain its supremum on A, as announced.

�
In Section 1.5.2 we shall show a nonlinear extension of this result, with the use

of the (necessarily unbounded) Rainwater–Simons theorem, Corollary 1.7. For the
space �1(N), James constructed in [82] a continuous linear functional g : �1(N)→R
such that g can be extended to ĝ∈E∗ on any Banach space E containing �1(N), but ĝ
doest not attain its supremum on BE . Rosenthal’s �1(N)-theorem, together with The-
orem 1.11, provides another approach for James’ reflexivity theorem. These ideas,
developed by Morillon in [111], are the basis for new approaches to the weak com-
pactness theorem of James, as the very successful one due to Pfitzner in [122].

We now deal with the general version of Theorem 1.11, that is, James’ weak com-
pactness theorem with no additional assumptions on the Banach space. If E is a Ba-
nach space and A is a bounded subset of E, we denote by � ·�A the seminorm on the
dual space E∗ given by the Minkowski functional of its polar set, i.e., the seminorm
of uniform convergence on the set A. If A =−A, given a bounded sequence {x∗n}n≥1
in E∗ and h∗ ∈ L{x∗n}, Simons’ inequality for the sequence {x∗n − h∗}n≥1 in �∞(A)
reads as follows: Under the assumption that every element in coσp{x∗n −h∗ : n ≥ 1}
attains its supremum on A,

dist�·�A(h
∗,co{x∗n : n ≥ 1})≤ SA

�
limsup

n
x∗n −h∗

�
.

Therefore,

dist�·�A(L{x∗n},co{x∗n : n ≥ 1})≤ inf
h∗∈L{x∗n}

SA

�
limsup

n
x∗n −h∗

�
.

We state the following characterization:

Proposition 1.12. Let A be a bounded subset of a Banach space E. Then A is weakly
relatively compact if, and only if, for every bounded sequence {x∗n}n≥1 in E∗ we
have

dist�·�A(L{x∗n},co{x∗n : n ≥ 1}) = 0. (1.14)

Proof. We first prove that if A is weakly relatively compact then equality (1.14)
holds for any bounded sequence {x∗n}n≥1 in E∗. To this end, we note that, since
co(A)

�·�
is weakly compact by the Krein–Šmulian theorem, the seminorm � · �A =

� · �
co(A)

�·� is continuous for the Mackey topology µ(E∗,E). Hence we have the
inclussions

L{x∗n}⊂ co{x∗n : n ≥ 1}w∗
= co{x∗n : n ≥ 1}µ(E∗,E) ⊂ co{x∗n : n ≥ 1}�·�A ,

that clearly explain the validity of (1.14).
To prove the converse we will show that if A is not weakly relatively compact in

E, then there exists a sequence {x∗n}n≥1 ⊂ BE∗ such that
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dist�·�A(L{x∗n},co{x∗n : n ≥ 1})> 0.

Let us assume that A is not relatively weakly compact in E. Then the Eberlein–
Šmulian theorem guarantees the existence of a sequence {xn}n≥1 in A with a w∗-
cluster point x∗∗0 ∈ E∗∗ \E. If d(x∗∗0 ,E)> α > 0, an appeal to Lemma 1.10 provides
us with a sequence {x∗n}n≥1 in BE∗ satisfying

�x∗n,x∗∗0 �> α

whenever n ≥ 1 and
�x∗0,x∗∗0 �= 0

for any x∗0 ∈ L{x∗n}. Therefore we have that

�
n

∑
i=1

λix∗ni
− x∗0�A ≥

�
n

∑
i=1

λix∗ni
− x∗0,x

∗∗
0

�
> α

for any convex combination ∑n
i=1 λix∗ni

, and consequently

dist�·�A(L{x∗n},co{x∗n : n ≥ 1})≥ α > 0, (1.15)

and the proof is over.

�
Pryce’s diagonal procedure is used in the proof of the following result:

Proposition 1.13. Let E be a Banach space, A a bounded subset of E with A =−A,
{x∗n}n≥1 a bounded sequence in the dual space E∗ and D its norm-closed linear span
in E∗. Then there exists a subsequence {x∗nk

}k≥1 of {x∗n}n≥1 such that

SA

�
x∗ − liminf

k
x∗nk

�
= SA

�
x∗ − limsup

k
x∗nk

�
= dist�·�A(x

∗,L{x∗nk
}) (1.16)

for all x∗ ∈ D.

Proof. Lemma 1.2 implies the existence of a subsequence {x∗nk
}k≥1 of {x∗n}n≥1 such

that
SA

�
x∗ − liminf

k
x∗nk

�
= SA

�
x∗ − limsup

k
x∗nk

�

for all x∗ ∈ D. Since for any h∗ ∈ L{x∗nk
} we have

liminf
k

x∗nk
(a)≤ h∗(a)≤ limsup

k
x∗nk

(a)

for all a ∈ A, it follows that

SA

�
x∗ − liminf

k
x∗nk

�
= �x∗ −h∗�A = SA

�
x∗ − limsup

k
x∗nk

�
.
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Therefore

SA

�
x∗ − liminf

k
x∗nk

�
= SA

�
x∗ − limsup

k
x∗nk

�
= dist�·�A(x

∗,L{x∗nk
})

for all x∗ ∈ D, and the proof is finished.

�
Equality (1.16) will be in general the source to look for nonattaining linear func-

tionals whenever we have

dist�·�A(L{x∗nk
},co{x∗nk

: k ≥ 1})> 0,

which means, in view of Proposition 1.12, whenever A is a non relatively weakly
compact subset of E. Until now all such constructions depend on this fact, which is
called the technique of the undetermined function. The next result is so far the most
general perturbed version for the existence of nonattaining functionals, see [133,
Corollary 8]:

Theorem 1.14. Let X be a nonempty set, {h j} j≥1 a bounded sequence in �∞(X),
ϕ ∈ �∞(X) with ϕ ≥ 0 and δ > 0 such that

SX

�
h− limsup

j
h j −ϕ

�
= SX

�
h− liminf

j
h j −ϕ

�
≥ δ ,

whenever h ∈ coσ{h j : j ≥ 1}. Then there exists a sequence {gi}i≥1 in �∞(X) with

gi ∈ coσ{h j : j ≥ i}, for all i ≥ 1,

and there exists g0 ∈ coσ{gi : i ≥ 1} such that for all g ∈ �∞(X) with

liminf
i

gi ≤ g ≤ limsup
i

gi on X ,

the function g0 −g−ϕ doest not attain its supremum on X .

The proof given in [133] for the above result involves an adaptation of the addi-
tive diagonal lemma we have used for Simons’ inequality in RX , Theorem 1.5. Let
us include here a proof for the following consequence, that was stated first in this
way by James in [87, Theorems 2 and 4].

Theorem 1.15 (James). Let A be a nonempty bounded subset of a Banach space
E which is not weakly relatively compact. Then there exists a sequence {g∗n}n≥1 in
BE∗ and some g0 ∈ coσ{g∗n : n ≥ 1} such that, for every h ∈ �∞(A) with

liminf
n

g∗n ≤ h ≤ limsup
n

g∗n on A,

we have that g0 −h does not attain its supremum on A.
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Proof. Without loss of generality we can assume that A is convex and that A =−A.
Proposition 1.12 gives us a sequence {x∗n}n≥1 in BE∗ such that dist�·�A(L{x∗n},co{x∗n :
n ≥ 1}) > 0. By Proposition 1.13 there exists a subsequence {x∗nk

}k≥1 of {x∗n}n≥1
that verifies the hypothesis of Theorem 1.14 with ϕ = 0. So we find a sequence
{g∗n}n≥1 with g∗n ∈ coσ{x∗nk

: k ≥ n}, for every n ∈ N, and g0 ∈ coσ{g∗n : n ≥ 1}
such that g0 − h doest not attain its supremum on A, where h is any function in
�∞(A) with liminfn g∗n ≤ h ≤ limsupn g∗n on A.

�
In particular we have seen how to construct linear functionals g0 − g that do

not attain their supremum on A, whenever g is a w∗-cluster point of the sequence
{g∗n}n≥1 in BE∗ .

We finish this section with a short visit to the so-called measures of weak non-
compactness in Banach spaces: the relationship of these measures with the tech-
niques already presented in this survey will be plain clear when progressing in our
discussion below.

We refer the interested reader to [14, 105], where measures of weak noncom-
pactness are axiomatically defined. A measure of weak noncompactness is a non-
negative function µ defined on the family ME of bounded subsets of a Banach space
E, with the following properties:

(i) µ(A) = 0 if, and only if, A is weakly relatively compact in E,
(ii) if A ⊂ B then µ(A)≤ µ(B),

(iii) µ(conv(A)) = µ(A),
(iv) µ(A∪B) = max{µ(A),µ(B)},
(v) µ(A+B)≤ µ(A)+µ(B),

(vi) µ(λA) = |λ |µ(A).

Inspired by Proposition 1.12, we introduce the following:

Definition 1.16. For a bounded subset A of a Banach space E, σ(A) stands for the
quantity

sup
{x∗n}n≥1⊂BE∗

dist�·�A(L{x∗n},co{x∗n : n ≥ 1}).

Observe that σ satisfies properties (i), (ii), (iii), (iv) and (vi), and therefore σ can
be considered as a measure of weak noncompactness. Beyond the formalities we
will refer in general to measures of weak noncompactness to quantities as above
fulfilling property (i), and sometimes a few of the others. These measures of non-
compactness or weak noncompactness have been successfully applied to the study
of compactness, operator theory, differential equations and integral equations, see
for instance [10, 11, 12, 20, 31, 33, 51, 65, 64, 69, 103, 105, 104].

The next definition collects several measures of weak noncompactness that ap-
peared in the aforementioned literature. If A and B are nonempty subsets of E∗∗,
then d(A,B) denotes the usual inf distance (associated to the bidual norm) between
A and B, and the Hausdorff non-symmetrized distance from A to B is defined by

�d(A,B) = sup{d(a,B) : a ∈ A}.
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Notice that �d(A,B) can be different from �d(B,A), and that max{�d(A,B), �d(B,A)}
is the Hausdorff distance between A and B. Notice further that �d(A,B) = 0 if, and
only if, A ⊂ B (norm-closure) and that

�d(A,B) = inf{ε > 0 : A ⊂ B+ εBE∗∗}.

Definition 1.17. Given a bounded subset A of a Banach space E we define:

ω(A) := inf{ε > 0 : A ⊂ Kε + εBE and Kε ⊂ E is w-compact},

γ(A) := sup{| lim
n

lim
m

x∗m(xn)− lim
m

lim
n

x∗m(xn)| : {x∗m}m≥1 ⊂ BE∗ ,{xn}n≥1 ⊂ A},

assuming the involved limits exist,

ckE(A) := sup
{xn}n≥1⊂A

d(LE∗∗{xn},E),

k(A) := �d(Aw∗
,E) = sup

x∗∗∈Aw∗
d(x∗∗,E),

and

JaE(A) := inf{ε > 0 : for every x∗ ∈ E∗, there exists x∗∗ ∈ Aw∗

such that x∗∗(x∗) = SA(x∗) and d(x∗∗,E)≤ ε}.

The function ω was introduced by de Blasi [20] as a measure of weak non-
compactness that is somehow the counterpart for the weak topology of the classi-
cal Kuratowski measure of norm noncompactness. Properties for γ can be found
in [11, 12, 33, 51, 105] and for ckE in [11] –note that ckE is denoted as ck in
that paper. The quantity k has been used in [11, 33, 51, 64]. A thorough study for
JaE has been done in [31] to prove, amongst other things, a quantitative version of
James’ weak compactness theorem, whose statement is presented as part of Theo-
rem 1.18 bellow. This theorem tells us that all classical approaches used to study
weak compactness in Banach spaces (Tychonoff’s theorem, Eberlein–Šmulian’s the-
orem, Eberlein–Grothendieck double-limit criterion and James’ weak compactness
theorem) are qualitatively and quantitatively equivalent.

Theorem 1.18. For any bounded subset A of a Banach space E the following in-
equalities hold true:

σ(A) ≤ 2ω(A)
r ≤

1
2 γ(A) ≤ JaE(A) ≤ ckE(A) ≤ k(A) ≤ γ(A).

(1.17)

Moreover, for any x∗∗ ∈ Aw∗
there exists a sequence {xn}n≥1 in A such that

�x∗∗ − y∗∗� ≤ γ(A) (1.18)
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for any w∗-cluster point y∗∗ of {xn}n≥1 in E∗∗.
Furthermore, A is weakly relatively compact in E if, and only if, one (equiva-

lently, all) of the numbers γ(A),JaE(A),ckE(A),k(A),σ(A) and ω(A) is zero.

Proof. A full proof with references to prior work for the inequalities

1
2

γ(A)≤ ckE(A)≤ k(A)≤ γ(A)≤ 2ω(A)

and (1.18) is provided in [11, Theorem 2.3]. The inequalities

1
2

γ(A)≤ JaE(A)≤ ckE(A)

are established in Theorem 3.1 and Proposition 2.2 of [31].
To prove ckE(A) ≤ σ(A) we proceed as follows. If 0 = ckE(A), the inequality

is clear. Assume that 0 < ckE(A) and take an arbitrary 0 < α < ckE(A). By the
very definition of ckE(A) there exist a sequence {xn}n≥1 in A and a w∗-cluster point
x∗∗0 ∈ E∗∗ with d(x∗∗0 ,E) > α > 0. If we read now the second part of the proof of
Proposition 1.12, we end up producing a sequence {x∗n}n≥1 in BE∗ that according to
inequality (1.15) satisfies

dist�·�A(L{x∗n},co{x∗n : n ≥ 1})≥ α.

Since α with 0 < α < ckE(A) is arbitrary, the above inequality yields ckE(A) ≤
σ(A).

To complete the chain of inequalities we establish σ(A)≤ 2ω(A). Let ω(A)< ε
and take a weakly compact subset Kε of E such that A ⊂ Kε + εBE . This inclusion
leads to the inequality

�·�A ≤ �·�Kε + ε�·�. (1.19)

Fix an arbitrary sequence {x∗n}n≥1 in BE∗ and now take a w∗-cluster point x∗0 ∈
L{x∗n}. Since Kε is weakly compact we know that x∗0 ∈ co{x∗n : n ≥ 1}�·�Kε . Hence,
for an arbitrary η > 0 we can find a convex combination ∑n

i=1 λix∗ni
with �x∗0 −

∑n
i=1 λix∗ni

�Kε < η . Thus, inequality (1.19) allows us to conclude that

dist�·�A(L{x∗n},co{x∗n : n ≥ 1})≤
���x∗0 −

n

∑
i=1

λix∗ni

���
A
≤

≤
���x∗0 −

n

∑
i=1

λix∗ni

���
Kε

+ ε
���x∗0 −

n

∑
i=1

λix∗ni

���≤ η +2ε.

Since ε,η and {x∗n}n≥1 are arbitrary, we conclude σ(A)≤ 2ω(A).
Finally, recall a well-known result of Grothendieck [46, Lemma 2, p. 227] stating

that ω(A) = 0 if, and only if, A is weakly relatively compact in E. Observe that, as a
consequence of (1.17), one of the numbers γ(A),JaE(A),ckE(A),k(A) is zero if, and
only if, all of them are zero. Clearly, k(A) = 0 if, and only if, Aw∗

⊂ E, that is equiv-
alent to the fact that A is weakly relatively compact by Tychonoff’s theorem. To
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establish σ(A) = 0 if, and only if, A is weakly relatively compact either use Propo-
sition 1.12 or the comments above for ω and ckE , together with the inequalities
ckE(A)≤ σ(A)≤ ω(A). The proof is over.

�
It is worth noticing that the inequalities

ckE(A)≤ k(A)≤ 2ckE(A),

that follow from (1.17), offer a quantitative version (and imply) of the Eberlein–
Šmulian theorem saying that weakly relatively countably compact sets in Banach
spaces are weakly relatively compact. Note also that (1.18) implies that points in
the weak closure of a weakly relatively compact set of a Banach space are reachable
by weakly convergent sequences from within the set (summing up, the inequalities
are a quantitative version of the angelicity of weakly compact sets in Banach spaces,
see Definition 1.19). In a different order of ideas the inequality

1
2

γ(A)≤ JaE(A) (1.20)

implies James’ weak compactness theorem, Theorem 1.1, and since JaE(A) ≤
ckE(A) as well, we therefore know that James’ weak compactness theorem can
be derived and implies the other classical results about weak compactness in Ba-
nach spaces. We should mention that the proof of inequality (1.20) in [31, Theo-
rem 3.1] follows the arguments by Pryce in [125] suitably adapted and strength-
ened for the occasion: assuming that 0 < r < γ(A), two sequences {xn}n≥1 ⊂ A and
{x∗m}m≥1 ⊂ BE∗ are produced satisfying

lim
m

lim
n

x∗m(xn)− lim
n

lim
m

x∗m(xn)> r.

Then Lemma 1.2 is applied to the sequence {x∗m}m≥1, and after some twisting and
fine adjustments in Pryce’s original arguments, for arbitrary 0 < r� < r a sequence
{g∗n}n≥1 in BE∗ and g0 ∈ coσ{g∗n : n ≥ 1} are produced with the property that for
any w∗-cluster point h ∈ BE∗ of {g∗n}n≥1, if x∗∗ ∈ Aw∗

is such that

x∗∗(g0 −h) = SA(g0 −h)

then d(x∗∗,E) ≥ 1
2 r�. Since 0 < r < γ(A) and r� ∈ (0,r) are arbitrary the inequal-

ity (1.20) follows. Of course, g0 − h ∈ E∗ does not attain its supremum on A but
we moreover know how far from E in Aw∗

we need to go in order that g0 −h might
attain it: compare with Theorem 1.15.

The aforementioned references contain examples showing when the inequalities
in (1.17) are sharp, as well as sufficient conditions of when the inequalities become
equalities. An example of the latter is given in the theorem below, where we use the
notion of angelic space that follows.



22 B. Cascales, J. Orihuela and M. Ruiz Galán

Definition 1.19 (Fremlin). A regular topological space T is angelic if every rela-
tively countably compact subset A of T is relatively compact and its closure A is
made up of the limits of sequences from A.

In angelic spaces the different concepts of compactness and relative compactness
coincide: the (relatively) countably compact, (relatively) compact and (relatively)
sequentially compact subsets are the same, as seen in [53]. Examples of angelic
spaces include C(K) endowed with the topology tp(K) of pointwise convergence
on a countably compact space K ([71, 96]) and all Banach spaces in their weak
topologies. Another class of angelic spaces are dual spaces of weakly countably
K-determined Banach spaces, endowed with their w∗-topology, [117].

Theorem 1.20 ([31, Theorem 6.1]). Let E be a Banach space such that (BE∗ ,w∗) is
angelic. Then for any bounded subset A of E we have

1
2

γ(A)≤ γ0(A) = JaE(A) = ckE(A) = k(A)≤ γ(A),

where

γ0(A) := sup{| lim
i

lim
j

x∗i (x j)| : {x j} j≥1 ⊂ A,{x∗i }i≥1 ⊂ BE∗ ,x∗i
w∗
→ 0}.

A moment of thought and the help of Riesz’s lemma suffice to conclude that for the
unit ball BE we have that

k(BE) = sup
x∗∗∈BE∗∗

d(x∗∗,E) ∈ {0,1}.

Reflexivity of E is equivalent to k(BE) = 0 and non reflexivity to k(BE) = 1. Note
then that, when (BE∗ ,w∗) is angelic, reflexivity of E is equivalent to JaE(BE) = 0,
and non reflexivity to JaE(BE) = 1. In other words, James’ reflexivity theorem can
be strengthened to: If there exists 0 < ε < 1 such that for every x∗ ∈ E∗ there exists
x∗∗ ∈ BE∗∗ with d(x∗∗,E) ≤ ε and SBE (x

∗) = x∗∗(x∗), then E is reflexive. Indeed,
the above comments provide a proof of this result when (BE∗ ,w∗) is angelic; for the
general case we refer to [67].

With regard to convex hulls, the quantities in Theorem 1.18 behave quite dif-
ferently. Indeed, if A is a bounded set of a Banach space E, then the followings
statements hold:

γ(co(A)) = γ(A), JaE(co(A))≤ JaE(A);
ckE(co(A))≤ 2ckE(A), k(co(A))≤ 2k(A);
σ(co(A)) = σ(A), ω(co(A)) = ω(A).

Constant 2 for ckE and r is sharp, [31, 64, 65], and it is unknown if JaE might
really decrease when passing to convex hulls. The equality γ(A) = γ(co(A)) is a bit
delicate and has been established in [33, 51].

Last, but not least, we present yet another measure of weak noncompactness
inspired by James’ ideas in [85]. Following [105], for a given bounded sequence
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{xn}n≥1 in a Banach space we define

csep({xn}n≥1) := inf{�u1 −u2� : (u1,u2) ∈ scc({xn}n≥1)},

where

scc({xn}n≥1) := {(u1,u2) : u1 ∈ conv{xi}1≤i≤m,u2 ∈ conv{xi}i≥m+1,m ∈ N}.

Definition 1.21 ([105, Definition 2.2]). If A is a bounded subset of a Banach space,
we define

α(A) := sup{csep({xn}n≥1) : {xn}n≥1 ⊂ A}.

It is proved in [105] that the relationship of α with the measures of weak noncom-
pactness already presented are given by the formulas:

α(A) = sup
�

d(x∗∗,conv{xn : n ≥ 1} : {xn}n≥1 ⊂ A, x∗∗ ∈ LE∗∗{xn}
�

and
γ(A) = α(conv(A)).

For the measure of weak noncompactness σ introduced in Definition 1.16, and
in view of Theorem 1.18, the following question naturally arises:

Question 2. With regard to the measure of weak noncompactness σ , are the derived
estimates sharp? Is it equivalent to the others (except ω)?

1.4 Boundaries

Given a w∗-compact subset C of E∗, a boundary for C is a subset B of C with the
property that

for every x ∈ E there exists some b∗ ∈ B such that b∗(x) = sup{c∗(x) : c∗ ∈C} .

Note that if C is moreover convex, then the Hahn-Banach theorem shows that
co(B)

w∗
= C. In addition, the set ext(C) of the extreme points of C is a bound-

ary for C, thanks to Bauer’s maximum principle, see [53, p. 6], and therefore also
satisfies C = co(ext(C))

w∗
. Note that Milman’s theorem [46, Corollary IX.4] tells

us that ext(C) ⊂ Bw∗
. Nonetheless, in general, boundaries can be disjoint of the set

of extreme points as the following example shows: let Γ be a non countable set and
consider

�
�1(Γ ),�·�1

�
and

B :=
�
(xγ)γ∈Γ : xγ ∈ {−1,0,1} and {γ ∈ Γ : xγ �= 0} is countable

�
.

A moment of thought suffices to conclude that B is a boundary for the dual unit ball
B�∞(Γ ) that is clearly disjoint from ext

�
B�∞(Γ )

�
, see [136, Example 7].

If B is a boundary for BE∗ we will say that B is a boundary for E.
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Two problems regarding boundaries in Banach spaces have attracted the attention
of a good number of authors during the years, namely:

The study of strong boundaries. The goal here is to find conditions under which a
boundary B for the w∗-compact convex C is strong, i.e., co(B)

�·�
=C.

The boundary problem. Let E be a Banach space, let B be a boundary for E and
let A be a bounded and σ(E,B)-compact subset of E. Is A weakly compact?
(Godefroy, [59, Question V.2]).

At first glance, the two questions above may look unrelated. They are not. In-
deed, on the one hand, the boundary problem has an easy and positive answer for all
strong boundaries B in BE∗ . On the other hand, many studies about strong bound-
aries and several partial answers to the boundary problem use Simons’ inequality as
a tool. Regarding strong boundaries, the following references are a good source for
information [34, 29, 39, 45, 50, 56, 55, 59, 61, 77, 78, 88, 123, 130, 149]. At the
end of this section we will provide some recent results on strong boundaries.

Let us start by considering the boundary problem. It has been recently solved in
full generality in the paper [122]. It is interesting to recall the old roots and the long
history of the problem.

The first result that provided a partial positive result to the boundary problem
(before its formulation as such a question) was the following characterization of
weak compactness in continuous function spaces, due to Grothendieck, see [71,
Théorème 5]:

Theorem 1.22. If K is a Hausdorff and compact topological space and A is a subset
of C(K), then A is weakly compact if, and only if, it is bounded and compact for the
topology of the pointwise convergence on K.

More generally, Theorem 1.22 was generalized by Bourgain and Talagrand [24,
Théorème 1] in the following terms:

Theorem 1.23. Let E be a Banach space, B = ext(BE∗) and let A be a bounded and
σ(E,B)-compact subset of E. Then A is weakly compact.

Note that the result of Bourgain and Talagrand is far from being a full solution to
the boundary problem, because as presented above there are examples of boundaries
of Banach spaces that do not contain any extreme point.

Bearing in mind the Rainwater–Simons theorem, Corollary 1.7, it is easy to give
another partial solution to the boundary problem.

Corollary 1.24. For any separable Banach space E and any boundary for E, the
boundary problem has positive answer.

Proof. Let B be a boundary for E and let A be a bounded and σ(E,B)-compact sub-
set of E. Since E is separable, the unit ball (BE∗ ,w∗) is metrizable and separable. It
follows that B is w∗-separable. Take D a countable and w∗-dense subset of B. The
topology σ(E,D) is then Hausdorff, metrizable and coarser than σ(E,B). Conse-
quently we obtain that σ(E,D) and σ(E,B) coincide when restricted to A and we



1 COMPACTNESS, OPTIMALITY AND RISK 25

conclude that (A,σ(E,B)) is sequentially compact. An application of Corollary 1.7
taking into account the Eberlein-Šmulian theorem gives us that A is weakly com-
pact, which concludes the proof.

�
A first approach to the next result appears implicitly in [136, Theorem 5]. Using

the ideas of Pryce in [125] and those of Rodé on the so-called “superconvex analy-
sis” in [129], H. Konig formulated it in [101, Theorem 5.2, p. 104]. We present here
our approach based on the criteria given by Theorem 1.14.

Theorem 1.25. Let E be a Banach space and B( ⊂ BE∗ ) a boundary for E. If A is a
bounded convex subset of E such that for every sequence {an}n≥1 in A there exists
z ∈ E such that

liminf
n

�an,b∗� ≤ �z,b∗� ≤ limsup
n

�an,b∗� (1.21)

for every b∗ ∈ B, then A is weakly relatively compact.

Proof. Let us proceed by contradiction and assume that A is not weakly relatively
compact in E. Then the Eberlein-Šmulian theorem says that there exists a sequence
{an}n≥1 ⊂ A without weak cluster points in E. According to Pryce’s diagonal argu-
ment, Lemma 1.2, we can and do assume that

SB

�
a− liminf

n
an

�
= SB

�
a− liminf

k
ank

�
= SB

�
a− limsup

k
ank

�
= SB

�
a− limsup

n
an

�

for every a ∈ coσ{an : n ≥ 1} and every subsequence of integers n1 < n2 < · · · .
Let us fix x0 ∈ E such that for every b∗ ∈ B

liminf�an,b∗� ≤ �x0,b∗� ≤ limsup�an,b∗�.

Keeping in mind that A is w∗-relatively compact in E∗∗, we know that {an}n≥1 has
a w∗-cluster point x∗∗0 ∈ E∗∗ \E. Let us fix h∗ ∈ BE∗ and ξ ∈ R such that

h∗(x0)< ξ < h∗(x∗∗0 ).

Since h∗(x∗∗0 ) is a cluster point of the sequence {h∗(an)}n≥1, then there exists a
subsequence {ank}k≥1 of {an}n≥1 such that h∗(ank) > ξ for every k ≥ 1. Thus we
also have h∗(a)≥ ξ for every a ∈ coσ{ank : k ≥ 1}. Consequently we have that

SB

�
a− liminf

n
an

�
= SB

�
a− liminf

k
ank

�
= SB

�
a− limsup

k
ank

�
=

= SB

�
a− limsup

n
an

�
= SB (a− x0) = SBE∗ (a− x0)≥

≥ h∗(a)−h∗(x0)≥ ξ −h∗(x0)> 0

for every a ∈ coσ{ank : k ≥ 1}. We can apply now Theorem 1.14 with X := B,
ϕ = 0 and {h j} j≥1 being {ank}k≥1 to get a sequence {yi}i≥1 such that for all i ≥ 1,
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yi ∈ coσ{an j : j ≥ i}, together with some y0 ∈ coσ{yi : i ≥ 1}, in such a way that
y0 − y doest not attain its supremum on B for any y with

liminf
i

yi(b∗)≤ y(b∗)≤ limsup
i

yi(b∗), for all b∗ ∈ B.

Given i ≥ 1, since yi ∈ co�·�{an j : j ≥ i} we can pick up zi ∈ co{an j : j ≥ i} with
�yi− zi�∞ < 2−i. Note that the convexity of A implies zi ∈ A for every i ≥ 1. But our
hypothesis provide us with some z ∈ E such that

liminf
i

yi(b∗) = liminf
i

zi(b∗)≤ z(b∗)≤ limsup
i

zi(b∗) = limsup
i

yi(b∗)

for every b∗ ∈ B. Thus we have that y0 − z ∈ E doest not attain its norm on B, which
contradicts that B is a boundary for E and the proof is over.

�
The following result straightforwardly follows from Theorem 1.25.

Theorem 1.26. Let E be a Banach space and B( ⊂ BE∗ ) a boundary for E. If A is
a convex bounded and σ(E,B)-relatively countably compact subset of E, then it is
weakly relatively compact.

Proof. It suffices to note that if A is σ(E,B)-relatively countably compact in E, then
for any given sequence {an}n≥1 in A and each σ(E,B)-cluster point z ∈ E of it, z
satisfies the inequalities in (1.21). Then Theorem 1.25 applies and the proof is over.

�
A different proof for Theorem 1.26, even in a more general setting, can be found

in [53, Corollary 3, p. 78]: the arguments for this proof go back to the construction
of norm-nonattaining functionals in Pryce’s proof of James’ weak compactness the-
orem. A different proof by Godefroy appeared in [60, Proposition II.21] (this proof
has been rewritten in [50, Theorem 3.140]).

Theorem 1.26 opens another door for positive answers to the boundary problem
as long as for the given boundary B( ⊂ BE∗ ) for E and the norm-bounded σ(E,B)-
compact set A( ⊂ E) we have that co(A)

σ(E,B) ⊂ E is σ(E,B)-compact. In other
words, the boundary problem would have a positive answer subject to the locally
convex space (E,σ(E,B)) satisfies Krein-Šmulian’s property just mentioned. Note
though, that the classical Krein-Šmulian theorem only works for locally convex
topologies in between the weak and the norm-topology of E and that σ(E,B) can
be strictly coarser than the weak topology, [102, §24]. Positive results along this
direction were established in [36, 32] and [35].

Recall that a subset B of BE∗ is said to be norming (resp. 1-norming) if

|�x|�= sup{|b∗(x)| : b∗ ∈ B}

is a norm in E equivalent (resp. equal) to the original norm of E. Particularly, if
B( ⊂ BE∗ ) is a boundary for E then B is 1-norming.
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The three results that follow are the set up to address the boundary problem from
the point of view of the existence of isomorphic copies of the basis of �1(R). A
proof for these results can be found in [32] (see also [35]).

Theorem 1.27 (Krein-Šmulian type result). Let E be a Banach space and let B be
a norming subset of BE∗ . If E does not contain an isomorphic copy of �1(R), then
the σ(E,B)-closed convex hull of every bounded σ(E,B)-relatively compact subset
of X is σ(E,B)-compact.

Corollary 1.28. Let E be a Banach space which does not contain an isomorphic
copy of �1(R) and let B( ⊂ BE∗ ) be a boundary for E. Then, every bounded σ(E,B)-
compact subset of E is weakly compact.

Theorem 1.29. Let E be a Banach, B( ⊂ BE∗ ) a boundary for E and let A be a
bounded subset of E. Then, the following statements are equivalent:

(i) A is weakly compact,
(ii)A is σ(E,B)-compact and does not contain a family (xα)α∈R equivalent to the

usual basis of �1(R).

Note that Theorems 1.27 and 1.26 straightforwardly imply Corollary 1.28. The-
orem 1.27 is of interest by itself. The original proof for this result in [32] uses
techniques of Pettis integration together with fine subtleties about independent fam-
ilies of sets in the sense of Rosenthal. Other proofs are available as for instance
in [35, 68], where it is established that if for the Banach space E the Krein-Šmulian
property in Theorem 1.27 holds true for any norming set B( ⊂ BE∗ ) then E cannot
contain isomorphically �1(R) (see also [21] for related results).

It is worth mentioning a few things about the class of Banach spaces not contain-
ing isomorphic copies of �1(R). Good references for this class of Banach spaces are
[106], [79] and [145]. On the one hand, a Banach space E does not contain isomor-
phically �1(R) if, and only if, �∞(N) is not a quotient of E, [120, Lemma 4.2]. On
the other hand, E does not admit �∞(N) as a quotient if, and only if, the dual unit
ball (BX∗ ,w∗) does not contain a homeomorphic copy of the Stone-Čech compact-
ification of the natural numbers, βN, [145]. In particular each one of the following
classes of Banach spaces are made up of spaces which do not contain isomorphically
�1(R):

a) Banach spaces with a weak∗-sequentially compact dual unit ball,
b) Banach spaces which are Lindelöf for their weak topologies, or more in general,

Banach spaces with the property (C ) of Corson.

Recall that E has property (C ), see [124], if every family of convex closed subsets
of it with empty intersection has a countable subfamily with empty intersection.

Finally, the positive answer to the boundary problem due to Pfitzner, see [122,
Theorem 9], is formulated as follows:

Theorem 1.30 (Pfitzner). Let A be a bounded set in a Banach space E and let
B( ⊂ E∗) be a boundary of a w∗-compact subset C of E∗. If A is σ(E,B)-countably
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compact then A is σ(E,C)-sequentially compact. In particular, if B is a boundary
for E, then a bounded subset of E is weakly compact if, and only if, it is σ(E,B)-
compact.

In the proof of this fine result, Pfitzner does a localized analysis on A that goes be-
yond Theorem 1.29 and involves the quantitative version of Rosenthal’s �1-theorem
in [17], Simons’ inequality, and a modification of a result of Hagler and Johnson in
[72].

Although Theorem 1.30 answers in full generality the boundary problem a few
open problems still remain. For instance, it is unknown if given a boundary B
(⊂ BE∗ ) for E, the topology σ(E,B) is angelic on bounded subsets of E. A few
comments are needed here. We first note that since in angelic spaces compact sub-
sets are sequentially compact, [53], when σ(E,B) is angelic on bounded subsets of
E, a positive answer to the boundary problem is easily given as a consequence of
Rainwater–Simons’ theorem, Corollary 1.7 –see Corollary 1.24 as illustration. In
general it is not true that (E,σ(E,B)) is angelic, see [141, Theorem 1.1 (b)]: an L1-
predual E is constructed together with a σ(E,ext(BE∗)-countably compact set A⊂E
for which not every point x ∈ Aσ(E,ext(BE∗ ) is the σ(E,ext(BE∗)-limit of a sequence
in A (see also [110]). Nonetheless there are cases where angelicity of σ(E,B) (or
σ(E,B) on bounded sets) is known, and therefore for these cases a stronger positive
answer to the boundary problem is provided. One of this cases is presented in [24]
where it is proved that for any Banach space E the topology σ(E,ext(BE∗)) is an-
gelic on bounded sets –compared with [141, Theorem 1.1 (b)]. Two more of these
positive cases are presented below in Theorem 1.33 and Theorem 1.34.

The proof of Theorem 1.33 needs the two lemmas that follow. The first one, see
[35, Lemma 4.5], that implicitly appears in a particular case in [30], can be consider
as a kind of strong version of an “Angelic Lemma” in the spirit of [53, Lemma in p.
28].

Lemma 1.31. Let X be a nonempty set and τ , T two Hausdorff topologies on X such
that (X ,τ) is regular and (X ,T) is angelic. Assume that for every sequence {xn}n≥1
in X with a τ-cluster point x ∈ X , x is T-cluster point of {xn}n≥1. The following
assertions hold true:

(i) If L is a τ-relatively countably compact subset of X , then L is T-relatively com-
pact.

(ii)If L is a τ-compact subset of X , then L is T- compact.
(iii)(X ,τ) is an angelic space.

The lemma below, see [30, Lemma 1] and [35, Lemma 4.7], evokes properties of
the real-compactification (also called the repletion) of a topological space, cf. [53,
§4.6].

Lemma 1.32. Let K be a compact space and B(⊂BC(K)∗ ) a boundary for the Banach
space (C(K),� · �∞). If { fn}n≥1 is an arbitrary sequence in C(K) and x ∈ K, then
there exists µ ∈ B such that
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fn(x) =
�

K
fndµ

for every n ≥ 1.

Proof. If we define the continuous function g : K → [0,1] by the expression

g(t) := 1−
∞

∑
n=1

1
2n

| fn(t)− fn(x)|
1+ | fn(t)− fn(x)|

, (t ∈ K),

then

F :=
∞�

n=1
{y ∈ K : fn(y) = fn(x)}= {y ∈ K : g(y) = 1 = �g�∞}. (1.22)

Since B is a boundary, there exists µ ∈ B such that
�

K gdµ = 1. So we arrive at

1 = �µ�= |µ|(K)≥
�

K
gd|µ|≥

�

K
gdµ = 1, (1.23)

in other words,
0 = |µ|(K)−

�

K
gd|µ|=

�

K
(1−g)d|µ|.

Since 1− g ≥ 0 we obtain |µ|({y ∈ K : 1− g(y) > 0}) = 0, that is |µ|(K \F) = 0.
Therefore, for every n ∈ N we have

�

K
fndµ =

�

F
fndµ =

�

F
fn(x)dµ = fn(x)

because µ(F) =
�

F gdµ =
�

K gdµ = 1 by the equalities (1.22) and (1.23) (note that
µ is actually a probability!).

�
We are ready to proof the next result that appeared in [30, 35]:

Theorem 1.33. Let K be a compact space and B( ⊂ BC(K)∗ ) a boundary for the Ba-
nach space (C(K),� ·�∞). Then the following statements hold true:

(i) (C(K),σ(C(K),B)) is angelic;
(ii)If a subset A of C(K) is σ(C(K),B)-relatively countably compact in C(K), then

A is σ(C(K),B)-relatively sequentially compact.
(iii)If A is a norm-bounded and σ(C(K),B)-compact subset of C(K), then A is

weakly compact.

Proof. Let us fix the notation X :=C(K), τ := σ(C(K),B) and T := tp(K) the topol-
ogy of pointwise convergence on C(K). Then Lemma 1.32 implies that the hypothe-
ses in Lemma 1.31 are fulfilled. On the one hand, let { fn}n≥1 be a sequence in C(K)
that has τ-cluster point f0 ∈C(K) and take an arbitrary T-open neighborhood of f0

V ( f0,x1,x2, . . . ,xm,ε) := {g ∈C(K) : sup
1≤i≤m

|g(xi)− f0(xi)|< ε},
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with ε > 0, x1,x2, . . . ,xm ∈ K. Use Lemma 1.32 to pick µi ∈ B associated to each
xi and the sequence { fn}n≥1 ∪ { f0}, 1 ≤ · · · ≤ i ≤ · · · ≤ m. Since { fn}n≥1 visits
frequently the τ-open neighborhood of f0

V ( f0,µ1,µ2, . . . ,µm,ε) :=
�

g ∈C(K) : sup
1≤i≤m

���
�

K
gdµi −

�

K
f0dµi

���< ε
�
,

we conclude that { fn}n≥1 visits frequently V ( f0,x1,x2, . . . ,xm,ε), hence f0 is also
a T-cluster point of { fn}n≥1. On the other hand, the space (C(K), tp(K)) is angelic,
[71, 96] (see also [53]). Therefore (C(K),σ(C(K),B)) is angelic by Lemma 1.31
that explains (i). Since in angelic spaces relatively countably compactness implies
relatively sequentially compactness, statement (ii) follows from (i). Finally (iii) fol-
lows from (ii) and the Rainwater–Simons theorem, Corollary 1.7 –we have no need
here for the general solution given in Theorem 1.30 for the boundary problem.

�
Given a topological space X we denote by Cb(X) the Banach space of bounded

continuous real valued functions on X endowed with the supremum norm �·�∞.
M (X) stands for the dual space (Cb(X),�·�∞)∗, for which we adopt the Alexandroff
representation as the space of finite, finitely-additive zero-set regular Baire measures
on X , [150, Theorem 6].

The following result was published in [36]:

Theorem 1.34. Let E be a Banach space whose dual unit ball BE∗ is w∗-angelic and
let B be a subset of BE∗ .

(i) If B is norming and A is a bounded and σ(E,B)-relatively countably compact
subset of E, then co(A)

σ(E,B)
is σ(E,B)-compact.

(ii)If B if a boundary for E, then every bounded σ(E,B)-relatively countably com-
pact subset of E is weakly relatively compact. Therefore the topology σ(E,B) is
angelic on bounded sets of E.

Proof. It is clear that (ii) follows from (i) when taking into account Theorem 1.26.
Here is a proof for (i). We note first that is not restrictive to assume that B is

1-norming and in this case co(B)
w∗

= BE∗ . Consider X := Aσ(E,B) endowed with
the topology induced by σ(E,B). Now we will state that every Baire probability µ
on X has a barycentre xµ in X . Since A is σ(E,B)-relatively countably compact,
every σ(E,B)-continuous real function on X is bounded, which means that X is a
pseudocompact space. For pseudocompact spaces X , the space M (X) is made up of
countably additive measures defined on the Baire σ -field Ba of X , [58] and [150,
Theorem 21]. Take a Baire probability µ on X and x∗ ∈ BE∗ . On the one hand,
since (BE∗ ,w∗) is angelic, for every x∗ ∈ BE∗ there exists a sequence in co(B) that
w∗-converges to x∗, and therefore x∗|X is Ba-measurable. On the other hand, X is
norm-bounded and thus x∗|X is also bounded, hence µ-integrable. Since x∗ ∈ E∗ is
arbitrary, for the given µ we can consider the linear functional Tµ : E∗ → R given
for each x∗ ∈ E∗ by the formula
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Tµ(x∗) :=
�

X
x∗|X dµ.

We claim that Tµ |BE∗ is w∗-continuous. To this end it is enough to prove that for any
subset C of BE∗ we have that

Tµ(C
w∗
)⊂ Tµ(C). (1.24)

Take y∗ ∈ Cw∗
and use the angelicity of (BE∗ ,w∗) to pick up a sequence {y∗n}n≥1

in C with y∗ = w∗- limn y∗n; in particular we have that considered as functions, the
sequence {y∗n|X}n≥1 converges pointwise to y∗|X and it is uniformly bounded on
X . The Lebesgue convergence theorem gives us that Tµ(y∗) = limn Tµ(y∗n) and this
proves (1.24). Now Grothendieck’s completeness theorem, [102, §21.9.4], applies
to conclude the existence of an element xµ in E such that Tµ(x∗) = x∗(xµ) for ev-
ery x∗ ∈ E∗. xµ is the barycentre of µ that we are looking for. Now we define the
map φ : µ → xµ from the σ(M (X),Cb(X))-compact convex set P(X) of all Baire
probabilities on X into E. It is easy to prove that φ is σ(M (X),Cb(X))-to-σ(E,B)
continuous and its range φ(P(X)) is a σ(E,B)-compact convex set that contains
X . The proof is concluded.

�
A particular class of angelic compact spaces is that of the Corson compact spaces:

a compact space K is said to be Corson compact if for some set Γ it is (homeomor-
phic to) a compact subset of [0,1]Γ such that for every x = (x(γ)) in K the set
{γ : x(γ) �= 0} is countable, see [40]. If we assume that (BE∗ ,w∗) is Corson com-
pact, techniques of Radon–Nikodým compact spaces introduced in [113] can be
used to prove that (i) in Theorem 1.34 can be completed by proving that A is also
σ(E,B)-relatively sequentially compact. Let us remark that many Banach spaces
have w∗-angelic dual unit ball as for instance the weakly compactly generated or
more general the weakly countably K-determined Banach spaces, see [117, 144].

We finish this section with a few brief comments regarding strong boundaries.
If B is a norm-separable boundary for a w∗-compact subset C in E∗, then B is a
strong boundary of C, in the sense that C is the norm-closed convex hull of B. This
result was first stated in [130], and later, with techniques based on (I)-generation in
[56, 55] –note that it straightforwardly follows from Corollary 1.8. If the boundary
B is weakly Lindelöf it is an open problem to know if it is strong. When B is weakly
Lindelöf determined, the angelic character of Cp((B,w)), see [117], tell us that every
x∗∗ ∈ BE∗∗ is the pointwise limit of a sequence of elements in BE and Simons’
inequality implies that B is a strong boundary, see [59, Theorem I.2]. If C is a w∗-
compact and weakly Lindelöf subset of E∗ we also have that every boundary of C is
strong, see [34, Theorem 5.7]. For separable Banach spaces E without isomorphic
copies of �1(N) we also have that every boundary of any w∗-compact set is a strong
boundary, [59]. In the non separable case the same is true if the boundary is assumed
to be w∗-K-analytic as established in the result below that can be found in [29,
Theorem 5.6]:
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Theorem 1.35. A Banach space E doest not contain isomorphic copies of �1(N)
if, and only if, each w∗-K-analytic boundary of any w∗-compact subset C of E∗ is
strong.

In particular, w∗-analytic boundaries are always strong boundaries in the former
situation. We note that recently Theorem 1.35 has been extended to w∗-K-countably
determined boundaries in [66]. In a different order of ideas, let us remark here that
the sup-limsup theorem can be extended to more general functions in this situation,
see [29, Theorem 5.9]:

Theorem 1.36. Let E be a Banach space without isomorphic copies of �1(N), C a
w∗-compact subset in E∗ and B a boundary of C. Let {z∗∗n }n≥1 be a sequence in E∗∗

such that for all n ≥ 1, z∗∗n = w∗- limm zn
m, for some {zn

m}m≥1 ⊂ E. Then we have:

sup
b∗∈B

{limsup
n

z∗∗n (b∗)}= sup
x∗∈C

{limsup
n

z∗∗n (x∗)}.

When the boundary is built up by using a measurable map, it is always strong:

Theorem 1.37. Let E be a Banach space, and let C be a w∗-compact subset of E∗.
Assume that f : E →C is a norm-to-norm Borel map such that �x, f (x)�= SC(x) for
every x ∈ E. Then

co( f (X))
�·�

=C.

Proof. [34, Corollary 2.7] says that we are in conditions to apply [29, Theorem 4.3]
to get the conclusion.

�
Borel maps between complete metric spaces send separable sets to separable

ones, see [142, Theorem 4.3.8]. This fact implies that a w∗-compact set C as in The-
orem 1.37 is going to be fragmented by the norm of E∗. Indeed, for every separable
subspace S of E we have that f (S) is a separable boundary of the w∗-compact set
C|S(⊂ S∗), thus C|S = co f (S)|S

�·�S∗ is a separable subset of S∗, and therefore C is
fragmented by the norm of E∗, see [113]. If C = BE∗ the space E must be an As-
plund space. With these results in mind, strong boundaries of an Asplund space are
characterized in terms of the following concept, introduced in [29], A subset C of
the dual of a Banach space E is said to be finitely self-predictable if there is a map
ξ : FE −→ Fco(C) from the family of all finite subsets of E into the family of all
finite subsets of co(C) such that for each increasing sequence {σn}n≥1 in FE with

Σ =
∞�

n=1
σn, D =

∞�

n=1
ξ (σn),

we have that
C|Σ ⊂ co�·�(D|Σ ).

The characterization of strong boundaries in Asplund spaces is stated in the follow-
ing terms, see [29, Theorem 3.9]:
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Theorem 1.38. For a boundary B of an Asplund space, B is a strong boundary if,
and only if, it is finitely self-predictable.

In particular, Asplund spaces are those Banach spaces for which the above
equivalence holds, see [29, Theorem 3.10]. A procedure for generating finitely
self-predictable subsets is also provided in [29, Corollary 4.4], as the range of σ -
fragmented selectors, (see [88] for the definition) of the duality mapping, which
leads to another characterization of Asplund spaces, see [29, Corollary 4.5].

In a different order of ideas, the paper [94] contains a good number of interesting
results of how to transfer topological properties from a boundary B of C to the
whole set C (in particular fragmentability) as well as how to embed a Haar system
in an analytic boundary of a separable non-Asplund space. Other results about w∗-
K-analytic boundaries non containing isomorphic copies of the basis of �1(R) can
be found in [66] –see also Theorem 1.29.

We finish this section with the following open question:

Question 3. Let E be a Banach space and B a boundary of it. Is σ(E,B) an angelic
topology on bounded sets of E?

1.5 Extensions of James’ weak compactness theorem

Since its appearance, James’ weak compactness theorem has become the subject
of much interest for many researchers. As discussed in the Introduction, one of the
concerns about it has been to obtain proofs which are simpler than the original one.
Another, and we deal with it in this section, is to generalize it, which in particular
has led to new applications that we will show in Section 1.6. Clearly the commented
developments on boundaries represent a first group of results along these lines. The
other extensions that we present fall into two kind of results. On the one hand, we
can have those that for a Banach space E guarantee reflexivity, whenever the set
NA(E) of the continuous and linear functionals that attain their norms,

NA(E) := {x∗ ∈ E∗ : there exists x0 ∈ BE such that x∗(x0) = �x∗�},

is large enough. On the other hand, we have James’ type results but considering
more general optimization problems.

1.5.1 Size of the set of norm attaining functionals

Roughly speaking, the basic question we are concerned with here is whether the
reflexivity of a Banach space E follows from the fact that the set of norm attaining
functionals NA(E) is not small in some sense. Most of these results are based on a
suitable meaning for being topologicaly big.
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With regard to the norm-topology, the concrete question is to know whether a Ba-
nach space E is reflexive provided that the set NA(E) has nonempty norm-interior.
The space �1(N) shows that the answer is negative, and in addition it is easily proven
in [7, Corollary 2] that every Banach space admits an equivalent norm for which the
set of norm attaining functionals has nonempty norm-interior. For this very rea-
son we cannot assume an isomorphic hypothesis on the space when studying the
question above. Some geometric properties have been considered. Before collecting
some results in this direction, let us say something more from the isomorphic point
of view. In 1950 Klee proved that a Banach space E is reflexive provided that for
every space isomorphic to E, each functional attains its norm [100]. Latter, in 1999
Namioka asked whether a Banach space E is reflexive whenever the set NA(X) has
nonempty norm-interior for each Banach space X isomorphic with E. In [5, Theo-
rem 1.3], Acosta and Kadets provided a positive answer (see also [6]).

In order to state the known results for the norm-topology, let us recall that a
Banach space E has the Mazur intersection property when each bounded, closed
and convex subset of E is an intersection of closed balls ([107]). This is the case of a
space with a Fréchet differentiable norm ([45, Proposition II.4.5]). Another different
geometric condition is this one: a Banach space E is weakly Hahn–Banach smooth
if each x∗ ∈ NA(E) has a unique Hahn–Banach extension to E∗∗. It is clear that if E
is very smooth (its duality mapping is single valued and norm-to-weak continuous
[140]), then it is weakly Hahn–Banach smooth. Examples of very smooth spaces
are those with a Fréchet differentiable norm and those which are an M-ideal in
its bidual [76, 151] –for instance c0 or the space of compact operators on �2. The
following statement, shown in [89, Proposition 3.3] and [8, Theorem 1], provides
a first generalization of James’ reflexivity theorem for the above classes of Banach
spaces:

Theorem 1.39. Suppose that E is a Banach space that has the Mazur intersection
property or is weakly Hahn–Banach smooth. Then E is reflexive if, and only if,
NA(E) has nonempty norm-interior.

The above result is a consequence of James’ reflexivity theorem applied to an
adequate renorming, in the Mazur intersection property case, and of the Simons
inequality after a sequential reduction, for weakly Hahn–Banach smooth spaces.

Note that Theorem 1.39 fails when the space is smooth (norm Gâteaux differen-
tiable). Indeed, any separable Banach space is isomorphic to another smooth Banach
space whose set of norm attaining functional has nonempty norm-interior, see [7,
Proposition 9].

For some concrete Banach spaces we can say something better. For instance, the
sequence space c0 satisfies that the set NA(c0) is of the first Baire category, since it
is nothing more than the subset of sequences in �1(N) with finite support. Bourgain
and Stegall generalized it for any separable Banach space whose unit ball is not
dentable. As a matter of fact, they established the following result in [25, Theorem
3.5.5]:
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Theorem 1.40. If E is a Banach space and C is a closed, bounded and convex subset
of E that is separable and nondentable, then the set of functionals in E∗ that attain
their supremum on C is of the first Baire category in E∗.

When C is the unit ball of the continuous functions space on a infinite Hausdorff
and compact topological space K, Kenderov, Moors and Sciffer proved in [97] that
NA(C(K)) is also of the first Baire category. However we do not know whether or
not Theorem 1.40 is valid if C is nonseparable. However, Moors has provided us
(private communication) with the proof of the following unpublished result wich
follows from Lemma 4.3 in [109]: Suppose that a Banach space E admits an equiv-
alent weakly midpoint LUR norm and that E has the Namioka property, i.e., every
weakly continuous mapping acting from a Baire space into E is densely norm con-
tinuous. Then every closed, bounded and convex subset C of E for which the set of
functionals in E∗ attaining their supremum on C is of the second Baire category in
E∗ has at least one strongly exposed point. In particular, C is dentable.

Now we present a group of results whose hypotheses involve the weak topol-
ogy of the dual space. Jiménez-Sevilla and Moreno showed a series of results, from
which we emphasize the following consequence of Simons’ inequality [89, Propo-
sition 3.10]:

Theorem 1.41. Let E be a separable Banach space such that the set NA(E)∩ SE∗

has nonempty relative weak-interior in SE∗ . Then E is reflexive.

Regarding the w∗-topology in the dual space, the first result was obtained, also
applying Simons’ inequality, by Deville, Godefroy and Saint Raymond [44, Lemma
11] and is the version for the w∗-topology of the preceding theorem. Later, an ade-
quate use of James’ reflexivity theorem for a renorming of the original space implies
the same assertion, but removing the separability assumption [89, Proposition 3.2]:

Theorem 1.42. A Banach space is reflexive if, and only if, the set of norm-one norm
attaining functionals contains a nonempty relative w∗-open subset of its unit sphere.

This result has been improved for a certain class of Banach spaces, for instance
for Grothendieck spaces, i.e., those Banach spaces for which the sequential conver-
gence in its dual space for the w-topology is equal to that of the w∗-topology. It is
clear that any reflexive space is a Grothendieck space and the converse is true when
the space does not contain �1(N), see [148, 63]. Moreover, the Eberlein–Šmulian
theorem guarantees that a Banach space with a w∗-sequentially compact dual unit
ball is reflexive whenever is a Grothendieck space.

Theorem 1.43. If E is a Banach space E that is not Grothendieck, then NA(E) is
not a w∗-Gδ subset of E∗.

This result has been stated in [5, Theorem 2.5], although it previously appeared
in [44, Theorem 3] for separable spaces. Finally, a characterization of the reflexivity
in terms of the w∗-topology, and once again by means of the Simons inequality but
with other kind of assumptions, was obtained in [2, Theorem 1]:
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Theorem 1.44. Assume that E is a Banach space that does not contain �1(N) and
that for some r > 0

BE∗ = cow∗{x∗ ∈ SE∗ : x∗+ rBE∗ ⊂ NA(E)}.

Then E is reflexive.

A similar result is stated in [2, Proposition 4], but replacing the assumption of
non containing �1(N) with that of the norm of the space is not rough, i.e., there exists
ε > 0 such that for all x ∈ E

limsup
h→0

�x+h�+�x−h�−2�x�
�h� ≥ ε.

Here we have emphasized some extensions of James’ reflexivity theorem in con-
nection to the size of the set of norm attaining functionals, but there are other ways
of measuring such size. For example, one can look for linear subspaces into NA(E).

The first of these results was obtained by Petunin and Plichko in [121]. To mo-
tivate it, let us observe that for a dual space E = F∗ we have that F is a closed and
w∗-dense subspace of E∗ with F ⊂ NA(E). Their result deals with the converse:

Theorem 1.45. A separable Banach space E is isometric to a dual space provided
that there exists a Banach space F which is w∗-dense in E∗ and satisfies F ⊂NA(E).

There are some recent results that provide conditions implying that the set of
norm attaining functionals contains an infinite dimensional linear subspace. See [15,
1, 57] and the references therein. For instance, in [57] the following renorming result
is stated:

Theorem 1.46. Every Banach space that admits an infinite dimensional separable
quotient is isomorphic to another Banach space whose set of norm attaining func-
tionals contains an infinite dimensional linear subspace.

However, some questions still remain to be studied. For instance, whether for
every infinite dimensional Banach space E, the set NA(E) contains a linear subspace
of dimension 2 is an irritating open problem, posed in [15, Question 2.24].

1.5.2 Optimizing other kind of functions

In the past several years, some extensions of James’ weak compactness theorem
appeared. A common thing for these results is that the optimization condition –
each continuous and linear functional attains its supremum on a weakly closed and
bounded subset of the space– is replaced by another one: the objective function is
more general. We present some of them here, when considering either polynomials
or perturbed functionals.
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For a Banach space E and n ≥ 1, let us consider the space P(nE) of all contin-
uous n-homogeneous polynomials on E, endowed with its usual sup norm. Recall
that a polynomial in P(nE) attains the norm when the supremum defining its norm
is a maximum. It is clear that if for some n each polynomial in P(nE) attains its
norm, then every functional attains the norm and thus James’ reflexivity theorem
implies the reflexivity of E. So the polynomial version of James’ reflexivity theo-
rem should be stated in terms of a subset of P(nE). This is done in the following
characterization, see [131, Theorem 2], when dealing with weak compactness of a
bounded, closed and convex subset of E:

Theorem 1.47. A bounded, closed and convex subset A of a Banach space E is
weakly compact if, and only if, there exist n ≥ 1 and x∗1, . . . ,x

∗
n ∈ E∗ such that for all

x∗ ∈ E∗, the absolute value of the continuous (n+1)-homogeneous polynomial

x �→ x∗1(x) · · ·x∗n(x)x∗(x), (x ∈ E),

when restricted to A, attains its supremum and

A �⊂ ∪n
j=1 kerx∗j .

Similar results for symmetric multilinear forms, including some improved ver-
sions for the case A = BE , can be found in [4, 131].

A related question to that of “norm attaining” (or “sup attaining”) is that of “nu-
merical radius attaining”. More specifically, the numerical radius of a continuous
and linear operator T : E −→ E is the real number v(T ) given by

v(T ) := sup{|x∗T x| : (x,x∗) ∈ Π(E)},

where Π(E) := {(x,x∗) ∈ SE × SE∗ : x∗(x) = 1} and such an operator T is said to
attain the numerical radius when there exists (x0,x∗0) ∈ Π(E) with |x∗0T x0|= v(T ).

The following sufficient condition for reflexivity was stated in [9, Theorem 1]
(see also [132, Corollary 3.5] for a more general statement about weak compact-
ness), and was obtained by applying the minimax theorem [137, Theorem 5].

Theorem 1.48. A Banach space such that every rank-one operator on it attains its
numerical radius is reflexive.

Surprisingly enough, the easy-to-prove part in the classical James’ reflexivity
theorem does not hold. Indeed, a Banach space is finite dimensional if, and only if,
in any equivalent norm each rank-one operator attains its numerical radius, as seen
in [9, Example] and [3, Theorem 7].

However, the James type result that seems to be more applied nowadays, see
Section 1.6, is a perturbed version: there exists a fixed function f : E −→ R∪ {∞}
such that

for every x∗ ∈ E∗, x∗ − f attains its supremum on E.

Let us note that this optimization condition generalizes that in the classical James’
weak compactness theorem. Indeed, x∗ ∈ E∗ attains its supremum on the set A(⊂ E)
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if, and only if, x∗ − δA attains its supremum on E, where δA denotes the indicator
function of A defined as

δA(x) :=
�

0, if x ∈ A
∞, otherwise .

The first result along these lines was stated in [52, 27] by Calvert and Fitzpatrick:

Theorem 1.49. A Banach space is reflexive whenever its dual space coincides with
the range of the subdifferential of an extended real-valued coercive, convex and
lower semicontinuous function whose effective domain has nonempty norm-interior.

The erratum [27] makes [52] more difficult to follow, since the main addendum
requires to correct non-written proofs of some statements in [52], which are adapted
from [84]. A complete and more general approach was presented in Theorems 2, 5
and 7 of [118].

Let us point out that, for a Banach space E and a proper function f : E −→
R∪{∞}, coercive means

lim
�x�→∞

f (x)
�x� = ∞,

and that the effective domain of f , dom( f ), is the set of those x ∈ E with f (x) finite.
Taking into account that for a function f : E −→ R ∪ {∞} which is proper

(dom( f ) �= /0), and x ∈ dom( f ), we have that the subdifferential of f at x is given by

∂ f (x) = {x∗ ∈ E∗ : x∗ − f attains its supremum on E at x},

then the surjectivity assumption in Calvert and Fitzpatrick’s theorem is once again
a perturbed optimization result.

Another perturbed version of James’ weak compactness theorem, different from
the preceding one, was established in [133, Theorem 16] as a consequence of a
minimax result [133, Theorem 14]. In order to state that minimax theorem, general-
izating [137, Theorem 14], the authors used the ideas of Pryce in Lemma 1.2 and a
refinement of the arguments in [138]. Such a perturbed theorem reads as follows in
the Banach space framework:

Theorem 1.50. Let A be a weakly closed subset of a Banach space E for which
there exists ψ ∈ �∞(A) such that

for each x∗ ∈ E∗, x∗|A −ψ attains its supremum.

Then A is weakly compact.

Here the perturbation f (defined on the whole E) is given by

f (x) :=
�

ψ(x), if x ∈ A
∞, for x ∈ E\A .
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The second named author in this survey obtained another perturbed James type
result in the class of separable Banach spaces. This result was motivated by finan-
cial applications, and once again, it was proved by applying adequately Simons’
inequality. Its proof was included in the Appendix of [91]:

Theorem 1.51. Suppose that E is a separable Banach space and that f : E −→ R∪
{∞} is a proper function whose effective domain is bounded and such that

for each x∗ ∈ E∗, x∗ − f attains its supremum on E.

Then for every c ∈ R the sublevel set f−1((−∞,c]) is weakly compact.

In the preceding versions of the weak compactness theorem of James, the per-
turbation functions are coercive. Recently, the following characterization has been
developed in [118, Theorem 5]:

Theorem 1.52. Let E be a Banach space and suppose that f : E −→ R∪{+∞} is a
proper, coercive and weakly lower semicontinuous function. Then

for all x∗ ∈ E∗, x∗ − f attains its supremum on E

if, and only if,

for each c ∈ R, the sublevel set f−1((−∞,c]) is weakly compact.

The proof makes use of the perturbed technique of the undetermined function as
explained in Theorem 1.14.

Let us also emphasize that there are previous topological results along the lines
of Theorem 1.52, see [22, Theorems 2.1 and 2.4].

Since for any reflexive Banach space E the proper, noncoercive and weakly lower
semicontinuous function f = � · � satisfies that for every c ∈ R the sublevel set
f−1((−∞,c]) is weakly compact, although ∂ f (E) = BE∗ , then the coercivity cannot
be dropped in one direction of the former theorem. Nevertheless, for the converse
implication Saint Raymond has just obtained the nice theorem that follows, [134,
Theorem 11]:

Theorem 1.53 (Saint Raymond). If E is a Banach space and f : E −→ R∪{∞} is
a proper weakly lower semicontinuous function such that for every x∗ ∈ E∗, x∗ − f
attains its supremum, then for each c ∈ R, the sublevel set f−1((−∞,c]) is weakly
compact.

Remark 1.54. The fact that for a proper function f : E −→ R∪{∞} with ∂ f (E) =
E∗ all its sublevel sets are relatively weakly compact can be straightforwardly de-
rived from Theorem 1.53. To see it, replace f with the proper weakly lower semi-
continuous function �f : E −→ R∪{∞} defined for every x ∈ E as

�f (x) := inf{t ∈ R : (x, t) ∈ epi( f )
σ(E×R,E∗×R)},
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where epi( f ) is the epigraph of f , that is,

epi( f ) := {(x, t) ∈ E ×R : f (x)≤ t}.

Furthermore, when dom( f ) has nonempty norm-interior, we have that E is reflexive
as a consequence of the Baire Category theorem.

Note that Theorem 1.53 provides an answer to the problem posed in [27]: given a
Banach space E and a convex and lower semicontinuous function f : E −→R∪{∞}
whose effective domain has nonempty norm-interior, is it true that the surjectivity of
its subdifferential is equivalent to the reflexivity of E and the fact that for all x∗ ∈E∗,
the function x∗ − f is bounded above?

On the other hand, Bauschke proved that each real infinite-dimensional reflexive
Banach space E has a proper, convex and lower semicontinuous function f : E −→
R∪{+∞} such that

for each x∗ ∈ E∗, x∗ − f is bounded above,

but f is not coercive, see [16, Theorem 3.6]. From here it follows that ∂ f (E) = E∗,
as seen in [118, Theorem 3]. Thus Theorem 1.53 properly extends one direction of
Theorem 1.52.

Now let us show how Saint Raymond’s result, Theorem 1.53, following the ideas
in [118, Corollary 5], has some consequences for multivalued mappings. Let us
recall that given a Banach space E and a multivalued operator Φ : E −→ 2E∗ , the
domain of Φ is the subset of E

D(Φ) := {x ∈ E : Φ(x) is nonempty},

and its range is the subset of E∗

Φ(E) := {x∗ ∈ E∗ : there exists x ∈ E with x∗ ∈ Φ(x)}.

In addition, Φ is said to be monotone if

inf
x,y∈D(Φ)

x∗∈Φ(x), y∗∈Φ(y)

�x∗ − y∗,x− y� ≥ 0,

and cyclically monotone when the inequality

n

∑
j=1

�x∗j ,x j − x j−1� ≥ 0

holds, whenever n ≥ 2, x0,x1, . . . ,xn ∈ D(Φ) with x0 = xn and for j = 1, . . . ,n, x∗j ∈
Φ(x j).

If Φ is a cyclically monotone operator then there exists a proper and convex
function f : E −→ R∪{+∞} such that for every x ∈ E,
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Φ(x)⊂ ∂ f (x),

see [128, Theorem 1], and so Theorem 1.53 leads to the following James’ type result
for cyclically monotone operators:

Corollary 1.55. Let E be a Banach space and let Φ : E −→ 2E∗ be a cyclically
monotone operator such that D(Φ) has nonempty norm-interior and

Φ(E) = E∗.

Then E is reflexive.

Note that this result does not provide a satisfactory answer to the following open
problem, posed in [52]: Assume that E is a Banach space and Φ : E −→ 2E∗ is
a monotone operator such that D(Φ) has nonempty interior and Φ(E) = E∗. Is E
reflexive?

To conclude this section we provide a proof of Theorem 1.53 for the wide class of
Banach spaces with w∗-convex block compact dual unit balls, which easily follows
from the unbounded Rainwater–Simons theorem, Corollary 1.7, see [119, Theorem
4]. The following lemma produces the sequence needed to apply it:

Lemma 1.56. Suppose that the dual unit ball of E is w∗-convex block compact and
that A is a nonempty, bounded subset of E. Then A is weakly relatively compact if,
and only if, each w∗-null sequence in E∗ is also σ(E∗,Aw∗

)-null.

Proof. If A is weakly relatively compact, then we have A = Aw∗
and the conclusion

follows. According to Proposition 1.12, to see the reverse implication we have to
check the validity of the identity

dist�·�A(L{x∗n},co{x∗n : n ≥ 1}) = 0 (1.25)

for every bounded sequence {x∗n}n≥1 in E∗. Thus, let us fix {x∗n}n≥1 a bounded se-
quence in BE∗ . Since BE∗ is w∗-convex block compact, there exists a block sequence
{y∗n}n≥1 of {x∗n}n≥1 and an x∗0 ∈ BE∗ such that

w∗- lim
n

y∗n = x∗0.

Then, by assumption, {y∗n}n≥1 also converges to x∗0 pointwise on Aw∗
⊂E∗∗. Mazur’s

theorem applied to the sequence of continuous functions {y∗n}n≥1 restricted to the

w∗-compact space Aw∗
tell us that

0 = dist�·�
Aw∗ (x

∗
0,co{y∗n : n ≥ 1}) = dist�·�A(x

∗
0,co{x∗n : n ≥ 1})≥ 0,

It is not difficult to check that x∗0 ∈ L{x∗n} and (1.25) is proved, and we have con-
cluded the proof.
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�
Following [119], we present the next proof of Theorem 1.53 for the class of

Banach spaces with w∗-convex block compact dual unit balls:

Theorem 1.57. Let E be a Banach space whose dual unit ball is w∗-convex block
compact and let f : E −→ R∪{+∞} be a proper map such that

for all x∗ ∈ E∗, x∗ − f attains its supremum on E.

Then

for every c ∈ R, the sublevel set f−1((−∞,c]) is weakly relatively compact.

Proof. We first claim that for every (x∗,λ ) ∈ E∗×R with λ < 0, there exists x0 ∈ E
with f (x0)<+∞ and such that

sup{(x∗,λ )(x, t) : (x, t) ∈ epi( f )}= x∗(x0)−λ f (x0). (1.26)

In fact, the optimization problem

sup
x∈E

{�x,x∗�− f (x)} (1.27)

may be rewritten as
sup

(x,t)∈epi( f )
{(x∗,−1),(x, t)} (1.28)

and the supremum in (1.27) is attained if, and only if, the supremum in (1.28) is
attained.

Let us fix c ∈ R and assume that A := f−1((−∞,c]) is nonempty. The uni-
form boundedness principle and the optimization assumption on f imply that A
is bounded. In order to obtain the relative weak compactness of A we apply Lemma
1.56. Thus, let us consider a w∗-null sequence {x∗n}n≥1 in E∗ and let us show that it
is also σ(E∗,Aw∗

)-null.
It follows from the unbounded Rainwater–Simons theorem, Corollary 1.7, taking

the Banach space E∗ ×R,

B := epi( f )⊂C := epi( f )
σ(E∗∗×R,E∗×R)

and the bounded sequence ��
x∗n,−

1
n

��

n≥1
,

that
σ(E∗ ×R,B)- lim

n

�
x∗n,−

1
n

�
= σ(E∗ ×R,C)- lim

n

�
x∗n,−

1
n

�
,

But w∗- limn≥1 x∗n = 0, so we have that
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σ(E∗ ×R,C)- lim
n

�
x∗n,−

1
n

�
= 0.

As a consequence, since A×{c}⊂ B, then Aw∗
×{c}⊂C, and so

σ(E∗,Aw∗
)- lim

n
x∗n = 0,

as announced.

�
Theorem 1.57 was first presented at the meeting Analysis, Stochastics and Apli-

cations, held at Viena in July 2010, to celebrate Walter Schachermayer’s 60th Birth-
day, see

www.mat.univie.ac.at/ anstap10/slides/Orihuela.pd f ,

where the conjecture of its validity for any Banach space was considered. Later
on, in the Workshop on Computational and Analytical Mathematics in honor of
Jonathan Borwein’s 60th Birthday, held at Vancouver in May 2011, see

htt p : //con f erences.irmacs.s f u.ca/ jon f est2011/,

Theorem 1.57 and its application Theorem 1.61 were discussed too. Both results
can be found published by the second and third named authors of this survey in the
paper [119]. In September 2011 we were informed by J. Saint Raymond that he had
independently obtained Theorem 1.57 without any restriction on the Banach space
E in [134]: Saint Raymond’s proof is based upon a clever and non trivial reduction to
the classical James’ weak compactness theorem instead of dealing with unbounded
sup-limsup results as presented here, as well as in [119]. Nevertheless, our approach
contains classical James’ result without using it inside the proof, together with the
generalizations of Simons’ inequalities for unbounded sets in Section 2.

The proof of Theorem 1.57 has been obtained by means of elementary techniques
for Banach spaces with a w∗-convex block compact dual unit ball, in particular for
the separable ones. For this very reason, an easy reduction to the separable case
would provide us with a basic proof of the theorem. In that direction, we suggest the
following question:

Question 4. Let E be a Banach space, ρ : E∗ ×E∗ −→ [0,∞) a pseudometric on E∗

for pointwise convergence on a countable set A( ⊂ BE∗∗ ), where

A = A0 ∪{x∗∗0 },A0 ⊂ E,x∗∗0 ∈ A0
w∗
.

Given {x∗n}n≥1 a sequence in BE∗ such that

σ(E∗,A0)- lim
n

x∗n = 0,

is it possible to find a sequence {y∗n}n≥1 in E∗ with

http://www.mat.univie.ac.at/~anstap10/slides/Orihuela.pdf
http://conferences.irmacs.sfu.ca/jonfest2011/
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w∗- lim
n

y∗n = 0

and
lim

n
ρ(x∗n,y∗n) = 0?

1.6 Applications to convex analysis and finance

Since its publication, the applicability of James’ weak compactness theorem has
been steady. As mentioned in the Introduction, James’ weak compactness theorem
implies almost straightforwardly a number of important results in Functional Anal-
ysis. In this section we focus on some consequences of Theorem 1.53, which have
been recently obtained from Theorems 1.52 and 1.57 in the areas of finance and vari-
ational analysis. But before describing them, a bit of history on known applications
of the theorem of weak compactness of James.

It is in 1968 when appeared the first work mentioning application: in [147] it
was proved that a quasi-complete locally convex space valued measure always has
a relatively weakly compact range. On the other hand, Dieudonné [47] gave an ex-
ample of a Banach space for which the Peano theorem about the existence of so-
lutions to ordinary differential equations fails. Then Cellina [37] stated, with the
aid of James’ reflexivity theorem, that a Banach space is reflexive provided that the
Peano theorem holds true for it. Later, Godunov [62] proved that indeed the space is
finite-dimensional. In [13] one can find some related results to the failure of Peano’s
theorem in an infinite-dimensional Banach space, as a consequence of James’ re-
flexivity theorem. Finally, let us emphasize the well-known fact (see for instance
[26, Theorem 2.2.5]) that the completeness of a metric space is equivalent to the va-
lidity of the famous Ekeland variational principle. In [143] a characterization of the
reflexivity of a normed space is established, also in terms of the Ekeland variational
principle, and making use once again of James’ reflexivity theorem.

1.6.1 Nonlinear Variational Problems

Our goal is to deal with some consequences of Theorem 1.53 for nonlinear varia-
tional problems, following the ideas in [118, §4]. For this very reason, let us first
recall that variational equations are the standard setting to studying and obtaining
weak solutions for large portion of differential problems. Such variational equations,
in the presence of symmetry, turn into variational problems for which one has to de-
duce the existence of a minimum. We prove that this kind of result, always stated in
the reflexive context, only make sense for this class of Banach spaces.

To be more precise, let us evoke the so-called main theorem on convex minimum
problems, (see for instance [153, Theorem 25E, p.516]), which is a straightforward
consequence of the classical theorem of Weierstrass (continuous functions defined
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on a compact space attain their minimum): in a reflexive Banach space E the sub-
differential of every proper, coercive, convex and lower semicontinuous function
f : E −→ R∪{+∞} is onto, that is, for each x∗ ∈ E∗, the optimization problem

find x0 ∈ E such that f (x0)− x∗(x0) = inf
x∈E

( f (x)− x∗(x)) (1.29)

admits a solution. This result guarantees the solvability of nonlinear variational
equations derived from the weak formulation of a wide range of boundary value
problems. For instance, given 1 < p < ∞, a positive integer N and a bounded open
subset Ω of RN , let E be the reflexive Sobolev space W 1,p

0 (Ω) and consider the
coercive, convex and continuous function f : E −→ R defined by

f (x) :=
1
p

�

Ω
|∇x|pdλ , (x ∈ E),

where | · | is the Euclidean norm. By the main theorem on convex minimum problems
we have ∂ f (E) = E∗. But taking into account that the p-laplacian operator �p,
defined for each x ∈ E as

�p(x) := div
�
|∇x|p−2∇x

�
,

satisfies that for all x ∈ E
∂ f (x) = {−�px},

see [98, Proposition 6.1], then given any h∗ ∈ E∗, the nonlinear boundary value
problem �

−�px = h∗ in Ω
x = 0 on ∂Ω

admits a weak solution x ∈ E.
We conclude this subsection by applying Theorem 1.53 (see also Remark 1.54) to

show that the adequate setting for dealing with some common variational problems,
as p-laplacian above, is that of the reflexive spaces. To properly frame the result
it is convenient to recall some usual notions. For a Banach space E, an operator
Φ : E −→ E∗ is said to be strongly monotone if

inf
x,y∈E
x �=y

�Φ(x)−Φ(y),x− y�
�x− y�2 > 0,

hemicontinuous if for all x,y,z ∈ E, the function

t ∈ [0,1] �→ (Φ(x+ ty))(z) ∈ R

is continuous, bounded when the image under Φ of a bounded set is also bounded,
and coercive whenever the function

x ∈ E �→ (Φ(x))(x) ∈ R
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is coercive. The result below appears in [28, Corollary 2.101] and it includes as a
special case the celebrated Lax–Milgram theorem:

Proposition 1.58. If E is a reflexive Banach space and Φ : E −→ E∗ is a monotone,
hemicontinuous, bounded and coercive operator, then Φ is surjective.

This result applies to several problems in nonlinear variational analysis, including
one of its most popular particular cases: in a real reflexive Banach space E, given
x∗0 ∈ E∗, the equation

find x ∈ E such that Φ(x) = x∗0
admits a unique solution, whenever Φ : E −→ E∗ is a Lipschitz continuous and
strongly monotone operator. We refer to [70, Example 3.51] for usual applications.

When Φ is symmetric, that is,

for every x,y ∈ E, �Φ(x),y�= �Φ(y)),x�,

the equation Φ(x) = x∗0 leads to the nonlinear optimization problem involving the
function

f (x) :=
1
2
(Φ(x))(x), x ∈ E.

As a consequence of Theorem 1.53, or more specifically of Remark 1.54, the natural
context for Proposition 1.58, at least with symmetry, is the reflexive one, as shown
in the next corollary whose proof is completely analogous to that of [118, Corollary
3]:

Corollary 1.59. A Banach space E is reflexive, provided there exists a monotone,
symmetric and surjective operator Φ : E −→ E∗.

1.6.2 Mathematical Finance

We now turn our attention to some recent applications of James’ weak compactness
theorem in mathematical finance. Let us fix a probability space (Ω ,F ,P) together
with X , a linear space of functions in RΩ that contains the constant functions. We
assume here that (Ω ,F ,P) is atomless, although in practice this is not a restriction,
since the property of being atomless is equivalent to the fact that we can define a
random variable on (Ω ,F ,P) that has a continuous distribution function. The space
X will describe all possible financial positions X : Ω −→ R, where X(ω) is the
discounted net worth of the position at the end of the trading period if the scenario
ω ∈Ω is realized. The problem of quantifying the risk of a financial position X ∈X
is modeled with functions ρ : X −→ R that satisfy:

(i) Monotonicity: if X ≤ Y , then ρ(X)≥ ρ(Y ).
(ii)Cash invariance: if m ∈ R then ρ(X +m) = ρ(X)−m.
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Such a function ρ is called a monetary measure of risk (see Chapter 4 in [54]).
When ρ is also a convex function, then it is called a convex measure of risk. In
many occasions we have X = L∞(Ω ,F ,P), and it is important to have results for
representing the risk measure as

ρ(X) = sup
Y∈L1(Ω ,F ,P)

{E[Y ·X ]−ρ∗(Y )}. (1.30)

Here ρ∗ is the Fenchel–Legendre conjugate of ρ , that is, for every Y ∈ (L∞(Ω ,F ,P))∗,

ρ∗(Y ) = sup
X∈L∞(Ω ,F ,P)

{�Y,X�−ρ(X)}.

To have this representation is equivalent to have the so-called Fatou property, i.e.,
for any bounded sequence {Xn}n≥1 that converges pointwise almost surely (shortly,
a.s) to some X ,

ρ(X)≤ liminf
n

ρ(Xn)

(see [54, Theorem 4.31]). A natural question is whether the supremum (1.30) is
attained. In general the answer is no, as it is shown by the essential supremum map
on L∞(Ω ,F ,P), see [54, Example 4.36]. The representation formula (1.30) with a
maximum instead of a supremum has been studied by Delbaen, see [41, Theorems
8 and 9] (see also [54, Corollary 4.35] in the case of coherent risk measures, that
is, the convex ones that also are positively homogeneous. The fact that the order
continuity of ρ is equivalent to the supremum becoming a maximum, that is, for
every X ∈ L∞(Ω ,F ,P):

ρ(X) = max
Y∈L1(Ω ,F ,P)

{E[Y ·X ]−ρ∗(Y )},

for an arbitrary convex risk measure ρ , is the statement of the so-called Jouini–
Schachermayer–Touzi theorem in [41, Theorem 2] (see also [91, Theorem 5.2] for
the original reference). Let us remark that order sequential continuity for a map ρ
in L∞(Ω ,F ,P) is equivalent to have

lim
n

ρ(Xn) = ρ(X),

whenever {Xn}n≥1 is a bounded sequence in L∞ pointwise a.s. convergent to X .
Indeed, it is said that a map ρ : L∞(Ω ,F ,P) −→ R∪ {+∞} verifies the Lebesgue
property provided that it is sequentially order continuous. The precise statement is
the following one:

Theorem 1.60 (Jouini, Schachermayer and Touzi). Let ρ : L∞(Ω ,F ,P) −→ R
be a convex risk measure with the Fatou property, and let ρ∗ : (L∞(Ω ,F ,P))∗ −→
[0,+∞] be its Fenchel–Legendre conjugate. The following are equivalent:

(i) For every c ∈R, {Y ∈ L1(Ω ,F ,P) : ρ∗(Y )≤ c} is a weakly compact subset of
L1(Ω ,F ,P).
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(ii) For every X ∈ L∞(Ω ,F ,P), the supremum in the equality

ρ(X) = sup
Y∈L1(Ω ,F ,P)

{E[XY ]−ρ∗(Y )}

is attained.
(iii) For every bounded sequence {Xn}n≥1 in L∞(Ω ,F ,P) tending a.s. to X ∈

L∞(Ω ,F ,P), we have
lim

n
ρ(Xn) = ρ(X).

The proof of this result required compactness arguments of the perturbed James
type and it was based on Theorem 1.51, see [91, Theorem A.1]. In [41] this result is
already presented as a generalization of James’ weak compactness theorem. Let us
observe that we can apply Theorem 1.57 for f = ρ∗ to obtain the proof for the main
implication (ii) ⇒ (i) above. Indeed, L1(Ω ,F ,P) is weakly compactly generated
and so its dual ball is w∗-sequentially compact.

Delbaen gave a different approach for Theorem 1.60. His proof is valid for non-
separable L1(Ω ,F ,P) spaces, and it is based in a homogeneization trick to reduce
the matter to a direct application of the classical James’ weak compactness theo-
rem, as well as the Dunford–Pettis theorem characterizing weakly compact sets in
L1(Ω ,F ,P).

For our next application let us recall that a Young function Ψ is an even, convex
function Ψ : E → [0,+∞] with the properties:

1. Ψ(0) = 0.
2. limx→∞Ψ(x) = +∞.
3. Ψ <+∞ in a neighborhood of 0.

The Orlicz space LΨ is defined as:

LΨ (Ω ,F ,P) := {X ∈ L0(Ω ,F ,P) : there exixts α > 0 with eP[Ψ(αX)]<+∞},

and we consider the Luxembourg norm on it:

NΨ (X) := inf{c > 0 : eP[Ψ(
1
c

X)]≤ 1}, (X ∈ LΨ (Ω ,F ,P)).

With the usual pointwise lattice operations, LΨ (Ω ,F ,P) is a Banach lattice and we
have the inclusions:

L∞(Ω ,F ,P)⊂ LΨ (Ω ,F ,P)⊂ L1(Ω ,F ,P).

Moreover, (LΨ )∗ = LΨ∗ ⊕ G where G is the singular band and LΨ∗ is the order
continuous band identified with the Orlicz space LΨ∗ , where

Ψ ∗(y) := sup
x∈R

{yx−Ψ(x)}
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is the Young function conjugate to Ψ , [126].
Risk measures defined on LΨ (Ω ,F ,P) and their robust representation are of

interest in mathematical finance too. Delbaen has recently proved that a risk measure
defined on L∞(Ω ,F ,P) finitely extends to an Orlicz space if, and only if, it verifies
the equivalent conditions of Theorem 1.60, see [42, Section 4.16]. Theorem 1.60 is
extended to Orlicz spaces in [119, Theorem 1]:

Theorem 1.61 (Lebesgue risk measures in Orlicz spaces). Let Ψ be a Young
function with finite conjugate Ψ ∗ and let

α : (LΨ (Ω ,F ,P))∗ → R∪{+∞}

be a σ((LΨ )∗,LΨ )-lower semicontinuous penalty function representing a finite
monetary risk measure ρ as

ρ(X) = sup
Y∈MΨ∗

{−E[X ·Y ]−α(Y )}.

The following are equivalent:

(i) For each c ∈ R, α−1((−∞,c]) is a weakly compact subset of MΨ∗
(Ω ,F ,P).

(ii) For every X ∈ LΨ (Ω ,F ,P), the supremum in the equality

ρ(X) = sup
Y∈MΨ∗

{−E[X ·Y ]−α(Y )}

is attained.
(iii) ρ is order sequentially continuous.

Let us notice that order sequential continuity for a map ρ in LΨ is equivalent to
having

lim
n

ρ(Xn) = ρ(X)

whenever (Xn) is a sequence in LΨ a.s. convergent to X and bounded by some
Z ∈ LΨ , i.e. |Xn| ≤ Z for all n ∈ N. For that reason it is also said that a map
ρ : LΨ → (−∞,+∞] verifies the Lebesgue property whenever it is sequentially order
continuous. Orlicz spaces provide a general framework of Banach lattices for appli-
cations in mathematical finance, for a general picture see [38, 18, 19]. Non coercive
growing conditions for penalty functions in the Orlicz case have been studied in
[38]. More precisely, let us recall that a Young function Φ verifies the ∆2 condition
if there exist t0 > 0 and K > 0 such that for every t > t0

Φ(2t)≤ KΦ(t).

In addition, the Orlicz heart MΨ is the Morse subspace of all X ∈ LΨ such that for
every β > 0

eP[Ψ(βX)]<+∞.

In [38, Theorem 4.5] it is proved that a risk measure ρ , defined by a penalty function
α , is finite on the Morse subspace MΨ ⊂ LΨ if, and only if, α satisfies the growing
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condition
α(Y )≥ a+b�Y�Ψ∗

for all Y ∈ LΨ∗ , and fixed numbers a,b with b > 0. Theorem 1.57 can be applied
for f = ρ∗ because the spaces involved in the representation formulas have w∗-
sequentially compact dual balls.

When Ψ is a Young function such that either Ψ or its conjugate verify the ∆2
condition we have the following result for the risk measures studied by Cheredito
and Li in [38]:

Corollary 1.62 ([119], Corollary 6 and 7). Let Ψ be a Young with finite conjugate
Ψ ∗ and such that either Ψ or Ψ ∗ verify the ∆2 condition. Let ρ : LΨ (Ω ,F ,P)→R
be a finite convex risk measure with the Fatou property, and

ρ∗ : LΨ∗
(Ω ,F ,P)→ R∪{+∞}

its Fenchel–Legendre conjugate defined on the dual space. The following are equiv-
alent:

(i) For every c∈R, (ρ∗)−1((−∞,c]) is a weakly compact subset of MΨ∗
(Ω ,F ,P).

(ii) For every X ∈ LΨ (Ω ,F ,P), the supremum in the equality

ρ(X) = sup
Y∈(MΨ∗ )+,e(Y )=1

{−E[X ·Y ]−ρ∗(−Y )}

is attained.
(iii) ρ is sequentially order continuous.
(iv) limn ρ(Xn) = ρ(X) whenever Xn � X in LΨ .
(v) dom(ρ∗)⊂MΨ∗ .

We conclude this section with the following question:

Question 5. Does Corollary 1.59 remain valid in absence of symmetry?

Acknowledgements To finish our contribution let us remark we are very grateful to the anony-
mous referee who highly improved the redaction of our paper.
B. Cascales and J. Orihuela’s research was partially supported by MTM2008-05396 and MTM2011-
25377/MTM Fondos FEDER; Fundación Sénaca 08848/PI/08, CARM; and that of M. Ruiz Galán
by Junta de Andalucı́a grant FQM359.

References

1. M.D. Acosta, A. Aizpuru, R. Aron and F.J. Garcı́a-Pacheco, Functionals that do not attain
their norm, Bull. Belg. Math. Soc. Simon Stevin 14 (2007), 407–418.

2. M. D. Acosta, J. Becerra Guerrero and M. Ruiz Galán, Dual spaces generated by the interior
of the set of norm attaining functionals, Studia Math. 149 (2002), 175–183.

3. M. D. Acosta, J. Becerra Guerrero and M. Ruiz Galán, Numerical-radius-attaining polynomi-
als, Quart. J. Math. 54 (2003), 1–10.



1 COMPACTNESS, OPTIMALITY AND RISK 51

4. M.D. Acosta, J. Becerra Guerrero and M. Ruiz Galán, James type results for polynomials and
symmetric multilinear forms, Ark. Mat. 42 (2004), 1–11.

5. M.D. Acosta and V. Kadets, A characterization of reflexivity, Math. Ann. 349 (2011), 577–
588.

6. M.D. Acosta and V. Montesinos, On a problem of Namioka on norm-attaining functionals,
Math. Z. 256 (2007), 295–300.

7. M.D. Acosta and M. Ruiz Galán, New characterizations of the reflexivity in terms of the set of
norm attaining functionals, Canad. Math. Bull. 41 (1998), 279–289.

8. M.D. Acosta and M. Ruiz Galán, Norm attaining operators and reflexivity, Rend. Circ. Mat.
Palermo 56 (1998), 171–177.

9. M.D. Acosta and M. Ruiz Galán, A version of James’ theorem for numerical radius, Bull.
London Math. Soc. 31 (1999), 67–74.

10. C. Angosto, Distance to function spaces, PhD thesis, Universidad de Murcia, 2007.
11. C. Angosto and B. Cascales, Measures of weak noncompactness in Banach spaces, Topology

Appl. 156 (2009), 1412–1421.
12. K. Astala and H.O. Tylli, Seminorms related to weak compactness and to Tauberian operators,

Math. Proc. Cambridge Philos. Soc. 107 (1990), 367–375.
13. D. Azagra and T. Dobrowolski, Smooth negligibility of compact sets in infinite-dimensional

Banach spaces, with applications, Math. Ann. 312 (1998), 445–463.
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63. M. González and J.M. Gutiérrez, Polynomial Grothendieck properties, Glasgow Math. J. 37

(1995), 211–219.
64. A.S. Granero, An extension of the Krein–Šmulian theorem, Rev. Mat. Iberoam. 22 (2006),
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