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The following pages contain details of a mini-course of three lectures given
at the V International Course of Mathematical Analysis of Andalućıa

(CIDAMA), Almeria, September 12-17, 2011. When I was invited to give this
mini-course and thought about possible topics for it, I decided to talk about

multifunctions because they have always been present in my research on fields

theoretically apart from each other as topology and integration theory. There-
fore you will find here my biased views regarding part of the research that I

have done over the years. The proofs for this material have been published else-

where by me or by some other authors. This mini-survey is written attending
to the invitation of the publishers of this book with the sole purpose of wit-

nessing the given mini-course and with the aim of providing the reader with

connections and ideas that usually are not written in research papers. I thank
the organizers of CIDAMA V as well as the editors of the book for their kind

invitation to give the lecture and write this mini-survey.

In these notes we shall deal with multifunctions (or set-valued maps). Mul-
tifunctions naturally appear in analysis and topology, for instance via inequali-

ties, performing unions or intersections with sets indexed in another set, consid-
ering the set of points minimizing an expression, etc. First, we will present some

results about semi-continuity of multifunctions, namely, lower semi-continuity

and an application of Michael’s selection theorem. Then we will deal with up-
per semi-continuity of multifunctions and an application to the generation of

K-analytic structures with consequences in topology and functional analysis.
We will finish by showing a few results about measurability for multifunctions
related to the Kuratowski-Ryll-Narzesdky selection theorem and their impli-

cations to integrability of multifunctions for non separable Banach spaces.

Keywords: set-valued map, multifunction, lower semi-continuous, upper semi-
continuous, measurable, compactness, metrizability, Lindelöf property, K-
analytic space, Pettis integrability, Effros measurability

1. Settings, first definitions and introduction

Our notation and terminology is standard and it is either explained when

needed or can be found in our references for Banach spaces,1,2 topology3,4
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and vector measures and integration.5

By capital letters D,E, S,X, Y,Ω, . . . we denote sets. Sometimes these

sets are endowed with a topology, i.e., they are topological spaces. In par-

ticular by (E, ‖·‖) we denote a real Banach space (or simply E if ‖·‖ is

tacitly assumed): BE stands for the closed unit ball in E, SE for the unit

sphere, E∗ for the dual space of E and E∗∗ for the bidual space of E; w is

the weak topology and w∗ is the weak∗ topology in the dual. Throughout

this paper (Ω,Σ, µ) is a complete finite measure space.

Definition 1.1. A multifunction (set-valued map) is a map ψ from a set

X into the family of subsets 2Y of another set Y , i.e., for each x ∈ X the

image ψ(x) is a subset of Y .

Example 1.1.

(1) The map log : C \ {0} → 2C that sends every z ∈ C \ {0} to the set

log(z) of all logarithms of z is a multifunction, see [6, p. 39].

(2) If g,G : X → R are two given functions with g(t) ≤ G(t) for every

t ∈ X, then ψ(t) := [g(t), G(t)] defines a multifunction ψ : X → 2R, see

figure 1.

g
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Fig. 1. Example of multifuncion

(3) If f : Y → X is an onto map, then ψ(x) := f−1(x), x ∈ X, defines

multifunction ψ : X → 2Y .

(4) If K is a Hausdorff compact space the map ψ : C(K)→ 2K given by

ψ(f) :=
{
x ∈ K : |f(x)| = sup

t∈K
|f(t)| =: ‖f‖∞

}

is a multifunction defined in the Banach space of scalar-valued contin-

uous functions C(K).

(5) If E is a Banach space the duality mapping J : E → 2BE∗ given by

J(x) := {x∗ ∈ BE∗ : ‖x‖ = x∗(x)}
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is a multifunction, see [2, p. 343].

(6) If E is a Banach space and Y ⊂ E is a closed proximinal subspace,

then the metric projection PY : E → 2Y given by

PY (x) :=
{
y ∈ Y : ‖x− y‖ = inf

z∈Y
‖x− z‖ =: d(x, Y )

}

is a multifunction (recall that by definition Y being proximinal means

PY (x) 6= ∅ for every x ∈ E, see [7, §5]).

(7) If E is a Fréchet space, see [8, §18.2], and U1 ⊃ U2 ⊃ · · · ⊃ Un ⊃ · · · is

a basis of neighborhoods of 0 then ψ : NN → 2E given by

ψ(α) :=

∞⋂

k=1

nkUk, with α = (nk)k,

is a multifunction with ψ(NN) = E, ψ(α) ⊂ ψ(β) if α ≤ β (coordinate-

wise) in NN and {ψ(α) : α ∈ NN} is a fundamental family of bounded

sets of E.

(8) If E = lim
→
En is an (LF) space, see [8, §19.5], and

Um1 ⊃ Um2 ⊃ · · · ⊃ Umn ⊃ · · ·

is a basis of neighborhoods of 0 in Em then ψ : NN → 2E
′

given by

ψ(α) := aco
( ∞⋃

k=1

Uknk

)
◦

, with α = (nk)k,

is a multifunction with ψ(NN) = E′, ψ(α) ⊂ ψ(β) if α ≤ β (coordinate-

wise) in NN and {ψ(α) : α ∈ NN} is a fundamental family of equicon-

tinuous subsets of E′ (polars A◦ are taken in the dual pair 〈E,E′〉,
see [8, §20.8]).

(9) If E is a Banach space, f : Ω → E and r : Ω → [0,∞) are functions

then F : Ω→ 2E given by

F (ω) := f(ω) + r(ω)BE , ω ∈ Ω,

is a multifunction.

(10) If {fi : Ω → E}i∈I is a family of functions we can consider the multi-

function F : Ω→ 2E defined by

F (ω) := co{fi(ω) : i ∈ I}.
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The three intimately connected notions below are the ones that we shall

deal with in these notes.

Definition 1.2. Let X and Y be topological spaces and let ψ : X → 2Y

be a multifunction. We say that ψ is lower semi-continuous (l.s.c.) if the set

{x ∈ X : ψ(x) ∩O 6= ∅}

is open for every open subset O of Y , see [9, §43] and [10, Ch. 7].

Definition 1.3. Let X and Y be topological spaces and let ψ : X → 2Y

be a multifunction. We say that ψ is upper semi-continuous (u.s.c.) if the

set

{x ∈ X : ψ(x) ∩ F 6= ∅}

is closed for every closed subset F of Y , see [9, §43] and [10, Ch. 7].

It is easy to check that ψ as above is u.s.c. if, and only if, for every x0 ∈ X
and every open set V ⊃ ψ(x0) in Y , there is an open neighborhood U ⊂ X
of x0 such that ψ(x) ⊂ V for every x ∈ U , see figure 2.

U

x0

-X 2Y
ψ

x

V

ψ(x)

ψ(x0)

j

:

Fig. 2. Upper semi-continuity

Definition 1.4. Let (Ω,Σ) be a measurable space and let E be a Banach

space. A multifunction F : Ω→ 2E is said to be Effros measurable if

{t ∈ Ω : F (t) ∩O 6= ∅} ∈ Σ for each open set O ⊂ E. (E)

More general notions of measurability can be found in the literature: we

remark that the notion above makes sense for any topological space in the

range, see.10–12
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Natural examples illustrating the above notions are easy to provide.

Beyond those spread out in the literature we isolate, for the purposes of

these notes, the following ones.

Example 1.2.

(1) (A lower semi-continuous multifunction) If X is a topological space

and we assume that in example 1.1.(2) g : X → R is upper semi-

continuous and G : X → R is lower semi-continuos, then it is easily

checked that ψ(t) := [g(t), G(t)] defines a lower semi-continuous mul-

tifunction ψ : X → 2R.

(2) (An upper semi-continuous multifunction) Let us consider N endowed

with its discrete topology and NN with its product topology. The mul-

tifunction ψ defined in example 1.1.(7) is upper semi-continuous when-

ever E is Fréchet-Montel, see [8, §27.2] for the definition, and the basis

U1 ⊃ U2 ⊃ · · · ⊃ Un ⊃ · · · of neighborhoods of 0 is made up of closed

sets.

(3) (A measurable multifunction) Assume here that E is a separable

Banach space. When dealing with Effros measurability for Borel σ-

algebras, the first examples that come to mind are l.s.c. multifunctions

(and u.s.c. multifunctions if they take compact values, see [11, Cor.

III.3]). A quite remarkable example regarding measurability of multi-

functions is the one provided by example 1.1.(10) when I = N and each

fn : Ω → E is measurable. A celebrated result by Castaing-Valadier

says that all Effros measurable multifunctions ψ : Ω→ 2E with closed

values are of the form described in example 1.1.(10) with I = N and

each fn measurable, see [11, Th. III.9].

Definition 1.5. Given a multifunction ψ : X → 2Y a selector (selection)

for ψ is a single-valued function f : X → Y such that

f(x) ∈ ψ(x),

for every x ∈ X, see figure 3.

In our views the leading role of multifunctions in many aspects of math-

ematical analysis and topology is due to their proliferation and the strong

consequences that can be obtained from their study. In the rest of these

notes we shall present some results connected with our research that re-

peatedly go once and again to one of the ideas below:

(a) when dealing with multifunctions defined between topological spaces

ψ : X → 2Y semi-continuity properties of ψ can be used many times:
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Fig. 3. Selection

– to transfer properties from X to Y ;

– to find “good” selectors for ψ (from a topological point of view);

(b) when dealing with multifunctions F : Ω→ 2E their measurability can

be used many times:

– to find “good” selectors for F (from a measurability point of

view);

– to study properties of integrability for F .

For the study of questions as in (a) many names come to our minds, a

few of which are: Argyros, Arkhangel’skĭı, Jayne, Kuratowski, Mercourakis,

Michael, Negrepontis, Talagrand, Rogers, etc. For the study of questions as

in (b) authors like Aumann, Debreu, Hess, Kuratowsky, Ryll Nardzewski,

etc. made very important contributions. Many other authors have made

quite important contributions too to topics related to (a) and (b) above.

Since it is imposible to name all of them we cut our list short without di-

minishing the importance of contributions of those that we cannot name.

Let us stress though that very in particular, Debreu13 and Aumann14 es-

tablished very important results in mathematics and in some models in

economy when dealing with multifunctions (notice that Debreu and Au-

mann received the Nobel prize in economy, 1983 and 2055 respectively).

We finish this introduction collecting three superb selection results.

Theorem 1.1 (Michael,15). Assume that X is a paracompact space, that

E is a Banach space and that ψ : X → 2E is a l.s.c. multifunction such

that ψ(x) is closed, convex and nonempty for every x ∈ X. Then ψ has a

continuos selector, i.e., there is a continuous function f : X → E such that

f(x) ∈ ψ(x) for every x ∈ X.
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Amongst the many applications of Michael’s theorem we can mention

Bartle-Graves’ theorem (if F ⊂ E is a closed subspace of E, the quotient

map π : E → E/F has a positive homogeneous lifting, see [16, Prop.

1.19]) and Borsuk-Kakutani-Didunji’s theorem (if K is compact and H ⊂
K is closed and metrizable, there is a simultaneous extension continuous

operator T : C(H)→ C(K) such that ‖T‖ = 1 and T1 = 1, see [16, Prop.

1.21]).

Theorem 1.2 (Jayne-Rogers, [17, Th. 5.4]). Let E be an Banach

space. The following statements are equivalent:

(i) E is Asplund, i.e., every separable subspace has separable dual;

(ii) the duality mapping J : E → 2BE∗ has a Baire-1 selector, i.e., there is

a sequence of norm-to-norm continuous maps fn : E → E∗ such that

for every x ∈ E there exists limn fn(x) ∈ J(x).

We should note that the implication (i)⇒ (ii) is based on the fact that the

duality mapping J is norm-to-w∗ upper semi-continuos and that whenever

E is an Asplund space then (BE∗ , w
∗) is norm-fragmented, see.18,19 The

above result can be found in [20, Th. 5.2, Rem. 5.11]. Such a remarkable

selection result has played a fundamental role in renorming theory and in

the study of boundaries in Banach spaces,17,20–22

Theorem 1.3 (Kuratowski-Ryll Nardzewski,23). Let (Ω,Σ, µ) be a

complete probability space and F : Ω → 2E a multifunction with closed

non empty values of E. If E is separable and F is Effros measurable, then

F admits a measurable selector f , i.e., there is a f : Ω → E such that

f−1(O) ∈ Σ for every open set O ⊂ E and f(ω) ∈ F (ω) for every ω ∈ Ω.

A proof for the above Kuratowski-Ryll Nardzewski’s theorem can be found

in [11, Th . III.6] and [10, Th. 14.2.1]. Over the years Kuratowski-Ryll

Nardzewski’s theorem has been the milestone result to build up several

theories of multifunction integration that henceforth have been presented

only for separable Banach spaces as range spaces.

2. Lower semi-continuity for multifunctions, an application

This section is the witness of how lower-semicontinuity and Michael selec-

tion theorem ignited the appearance of tools that allowed to rewrite most

of the known results about pointwise and weak compactness in Cp-theory

and functional analysis from a quantitative point of view.
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A straightforward application of Michael’s selection theorem 1.1 is the

following result.

Theorem 2.1 ( [16, Pro. 1.18]). Let X be a paracompact space and let

f1 ≤ f2 be two real functions on X such that f1 is upper semi-continuous

and f2 is lower semi-continuous. Then, there exists a continuous function

h ∈ C(X) such that f1(x) ≤ h(x) ≤ f2(x) for all x ∈ X.

Proof. It is easily proved that the multifunction ψ : X → 2R given by

ψ(x) := [f1(x), f2(x)], x ∈ X, is l.s.c. and therefore theorem 1.1 can be

used to conclude the existence of the continuous selection h, see figure 4.

f1 u. s.

h cont.

S(f2) =
{

(x, y) : y ≥ f2(x)
}

U(f1) =
{

(x, y) : y ≤ f1(x)
}j

f2 l. s.

*

Fig. 4. A sandwich result

As a consequence of the above result we have.

Theorem 2.2 ( [16, Pro. 1.19]). Let X be a paracompact space. For a

given bounded function f ∈ RX the distance of f to the subspace of bounded

and continuous functions on X is given by

d(f, Cb(X)) =
1

2
osc(f)

where

osc(f) = sup
x∈X

osc(f, x) = sup
x∈X

inf{diam f(U) : U ⊂ X open, x ∈ U}.

Proof.
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Fig. 5. Distance to continuous

As in [16, Pro. 1.18]. Put δ =
1
2 osc(f). It is clear that the dis-

tance is at least δ. To prove the

other direction, define

f1(x) := inf
U∈Vx

sup
z∈U

f(z)− δ

f2(x) := sup
U∈Vx

inf
z∈U

f(z) + δ

Then f1 ≤ f2. It is easy to check that f1 is upper semi-continuous and f2
is lower semi-continuous. By theorem 2.1, there is a continuous function

h ∈ C(X) such that

f1(x) ≤ h(x) ≤ f2(x)

for every x ∈ X. On the other hand, for every x ∈ X we have

f2(x)− δ ≤ f(x) ≤ f1(x) + δ

and therefore

h(x)− δ ≤ f2(x)− δ ≤ f(x) ≤ f1(x) + δ ≤ h(x) + δ.

So d(f, h) ≤ δ = 1
2 osc(f) and this finishes the proof.

When X is only a normal space and the functions are not necessarily

bounded a proof for the above result can be found in.24

Theorem 2.2 has been the key and inspiration to prove the four results

that follow.

Theorem 2.3 (25,26). Let K be a compact space and let H be a uniformly

bounded subset of C(K). We have

ck(H)≤d̂(H
RK

, C(K))≤γK(H)≤2 ck(H).

Theorem 2.4 (26). Let K be a compact topological space and let H be a

uniformly bounded subset of RK . Then

γK(H) = γK(co(H))

and as a consequence for H ⊂ C(K) we obtain that

d̂(co(H)
RK

, C(K)) ≤ 2d̂(H
RK

, C(K))

and if H ⊂ RK is uniformly bounded then

d̂(co(H)
RK

, C(K)) ≤ 5d̂(H
RK

, C(K)).
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Theorem 2.5 (26). Let E be a Banach space and let BE∗ be the closed

unit ball in the dual E∗ endowed with the w∗-topology. Let i : E → E∗∗ and

j : E∗∗ → `∞(BE∗) be the canonical embeddings. Then, for every x∗∗ ∈ E∗∗
we have

d(x∗∗, i(E)) = d(j(x∗∗), C(BE∗)) .

Theorem 2.6 (26,27). Let H be a bounded subset of a Banach space E.

Then

ck(H) ≤ k(H) ≤ γ(H) ≤ 2 ck(H) ≤ 2 k(H) ≤ 2ω(H) (1)

γ(H) = γ(co(H)) and ω(H) = ω(co(H).

For any x∗∗ ∈ Hw∗

, there is a sequence (xn)n in H such that

‖x∗∗ − y∗∗‖ ≤ γ(H)

for any cluster point y∗∗ of (xn)n in E∗∗. Furthermore, H is relatively

compact in (E,w) if, and only if, it is zero one (equivalently all) of the

numbers ck(H), k(H), γ(H) and ω(H).

The notation used is the following:

(1) The distance d in RK or C(K) always refers to the supremum distance.

(2) If T be a topological space and A subset of of T , then AN is considered

as the set of all sequences in A. The set of all cluster points in T of a

sequence ϕ ∈ AN is denoted by clustT (ϕ).

(3) If H be a subset RK we define:

ck(H) := sup
ϕ∈HN

d(clustRK (ϕ), C(K)),

d̂(H,C(K)) := sup
g∈H

d(g, C(K)),

and

γK(H) := sup{
∣∣ lim
n

lim
m
fm(xn), lim

m
lim
n
fm(xn)

∣∣ : (fm) ⊂ H, (xn) ⊂ K},

assuming that the involved limits exist.

(4) If E is a Banach space and H ⊂ E is a bounded set, then H
w∗

stands

for its w∗-closure in E∗∗ and

k(H) = d̂(H
w∗

, E) = sup
y∈Hw∗

inf
x∈E
‖y − x‖,
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γ(H) := sup{| lim
n

lim
m
fm(xn)−lim

m
lim
n
fm(xn)| : (fm)m ⊂ BE∗ , (xn)n ⊂ H},

assuming the involved limits exist,

ck(H) := sup
ϕ∈HN

d(clustE∗∗,w∗(ϕ), E)

and

ω(H) := inf{ε > 0 : H ⊂ Kε + εBE and Kε ⊂ X is w-compact}.

For obvious reasons the quantities that appear in theorem 2.6 are called

measures of weak noncompactness, see.28,29 Measures of noncompactness or

weak noncompactness have been successfully applied to the study of com-

pactness, operator theory, differential equations and integral equations, see

for instance.26,27,29–39 Theorem 2.6 tells us that all classical approaches

used so far to study weak compactness in Banach spaces (Tychonoff’s theo-

rem, Eberlein-Šmulian’s theorem, Eberlein-Grothendieck double-limit crite-

rion) are qualitatively and quantitatively equivalent. Quantitative versions

of James compactness theorem can be found in.33 Surveys about these

questions are.24,40,41

3. Upper semi-continuity for multifunctions, applications

This section explains how one can exploit the use of multifunctions

ψ : X → 2Y between topological spaces from two different but connected

angles: (a) transferring properties of X to properties of Y when ψ is up-

per semi-continuous; (b) ensuring how to automatically produce upper-

semicontinuity from descriptive properties.

The two results that follow, theorems 3.1 and 3.2, have been during our

years of research the most useful ones that we have ever found. The first

one is related to property (a) above and the second one to property (b).

The ideas behind them can be traced back to references.42–45

Recall that the weight w(X) of a topological space X is the minimal

cardinality of a basis for the topology of X. By the density d(X) we mean

the minimal cardinality of a dense subset of X. The Lindelöf number l(X)

of X is the smallest infinite cardinal number m such that every open cover

of X has a subcover of cardinality ≤ m.

Theorem 3.1 ( [46, Pro. 2.1]). Let X and Y be topological spaces and

let ψ : X → 2Y be an upper semi-continuous compact-valued map such that

the set Y =
⋃{ψ(x) : x ∈ X}. Assume that w(X) is infinite. Then,

(1) the Lindelöf number l(Y n) ≤ w(X), for every n = 1, 2, . . . ;
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(2) if Y is moreover assumed to be metric then d(Y ) ≤ w(X).

Proof. The proof below is the one that was published in [46, Pro. 2.1] and

it is included in order that the reader can get the flavour of the techniques

needed.

To prove (1) we observe first that for every n = 1, 2, . . . the multi-valued

map ψn : Xn → 2Y
n

given by

ψn(x1, x2, . . . , xn) := ψ(x1)× ψ(x2)× · · · × ψ(xn)

is compact-valued, upper semi-continuous and

Y n =
⋃
{ψn(x1, x2, . . . , xn) : (x1, x2, . . . , xn) ∈ Xn}.

Since w(X) is infinite we have that w(Xn) = w(X) and therefore we only

need to prove (1) for n = 1. Take (Gi)i∈I any open cover of Y . For each

x ∈ X the compact set ψ(x) is covered by the family (Gi)i∈I and therefore

we can choose a finite subset I(x) of I such that

ψ(x) ⊂
⋃

i∈I(x)

Gi.

By upper semi-continuity, for each x in X we can take an open set Ox of

X such that x ∈ Ox and

ψ(Ox) ⊂
⋃

i∈I(x)

Gi.

The family (Ox)x∈X is an open cover of X and therefore there is a set

F ⊂ X such that |F | ≤ w(X) and X =
⋃
x∈F Ox, see [3, Theorem 1.1.14].

Then

Y = ψ(X) =
⋃

x∈F
ψ(Ox) =

⋃

x∈F

⋃

i∈I(x)

Gi.

Hence (Gi)i∈I has a subcover of at most w(X) elements.

For the proof of (2) we refer to [3, Theorem 4.1.15].

Theorem 3.2 ( [46, Th. 2.3],45). Let X be a first-countable topological

space, Y a topological space in which the relatively countably compact subsets

are relatively compact and let φ : X → 2Y be a multifunction satisfying the

property
⋃

n∈N
φ(xn) is relatively compact for each convergent sequence (xn)n in X.

(2)
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If for each x in X we define

ψ(x) :=
⋂
{φ(V ) : V neighborhood of x in X}, (3)

then the multifunction so defined ψ : X → 2Y is upper semi-continuous,

compact-valued and satisfies φ(x) ⊂ ψ(x) for every x in X.

We recall that a topological space Y is said to be K-analytic if there is

a usco map T : NN → 2Y such that T (NN) :=
⋃{T (α) : α ∈ NN} = Y ,47

Recall also that a regular topological space T is angelic if every relatively

countably compact subset A of T is relatively compact and its closure A is

made up of the limits of sequences from A. In angelic spaces the different

concepts of compactness and relative compactness coincide: the (relatively)

countably compact, (relatively) compact and (relatively) sequentially com-

pact subsets are the same, as seen in.7 Examples of angelic spaces include

metric spaces, spaces Cp(K), when K is a countably compact space, see48,49

and all Banach spaces in their weak topologies.

Corollary 3.1 ( [43, Corollary 1.1]). Let Y be an angelic space. As-

sume that there is a family of subsets {Aα : α ∈ NN} of Y with the proper-

ties:

(α) Aα is compact for every α ∈ NN;

(β) Aα ⊂ Aβ if α ≤ β;

(γ) Y =
⋃{Aα : α ∈ NN}.

Then,

(1) Y is K analytic;

(2) if moreover Y metrizable, then Y is separable.

Proof. Let us prove (1). To do so we will use theorem 3.2. We define

φ(α) := Aα, α ∈ NN. We check that φ satisfies the assumptions (2). Indeed,

let πj : NN → N be the j-th projection onto N and if αn → α in NN we

define, for every j ∈ N,

mj := max{πj(αn) : n ∈ N},
and we write β := (mj). Note that αn ≤ β for every n ∈ N and then

condition (β) ensures that Aαn
⊂ Aβ for every n ∈ N. Thus

⋃

n∈N
φ(αn) =

⋃

n∈N
Aαn ⊂ Aβ .

and since condition (α) guarantees that Aβ is compact, we conclude that

requirement (2) is fulfilled. Therefore we can use theorem 3.2 and produce
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the usco map ψ : NN → 2Y with the property φ(α) ⊂ ψ(α) for every α ∈ NN.

Now, condition (γ) applies to conclude that Y =
⋃{ψ(α) : α ∈ NN} and

therefore Y is K-analytic.

Statement (2) straightforwardly follows from statement (1) in combina-

tion with (2) in theorem 3.1, if we bear in mind that NN is second countable,

i.e., the weight w(NN) is countable.

Theorem 3.3 ( [40, Theorem 2.6]). Let K be a compact space and let

∆ be the diagonal of K ×K. The following statements are equivalent:

(1) K is metrizable;

(2) (C(K), ‖ · ‖∞) is separable;

(3) ∆ is a Gδ subset of K ×K;

(4) ∆ =
⋂
nGn with each Gn open in K × K and {Gn : n ∈ N} being a

basis of open neighbourhoods of ∆;

(5) (K × K) \ ∆ =
⋃
n Fn, with {Fn : n ∈ N} an increasing family of

compact subsets in (K ×K) \∆;

(6) (K × K) \ ∆ =
⋃
n Fn, with {Fn : n ∈ N} an increasing family of

compact sets that swallows all the compact subsets in (K ×K) \∆;

(7) (K × K) \ ∆ =
⋃{Aα : α ∈ NN} with {Aα : α ∈ NN} a family of

compact sets that swallows all the compact subsets in (K×K)\∆ such

that Aα ⊂ Aβ whenever α ≤ β;

(8) (K ×K) \∆ is Lindelöf.

Proof. We refer to the proof of this theorem to [40, Theorem 2.6]. We

reproduce here only the implication (7)⇒ (2). Assume that (7) holds and

let us define Oα := (K×K)\Aα, α ∈ N. The family O := {Oα : α ∈ NN} is

a basis of open neighbourhoods of ∆ that satisfies the decreasing condition

Oβ ⊂ Oα, if α ≤ β in NN. (4)

Given α = (nk) ∈ NN and any m ∈ N we write α|m :=

(nm, nm+1, nm+2, . . . ) and define

Bα :=
{
f ∈ n1BC(K) : (m ∈ N, and (x, y) ∈ Oα|m)⇒ |f(x)− f(y)| ≤ 1

m

}
.

Note that each Bα is ‖·‖∞-bounded, closed and equicontinuous as a family

of functions defined on K. Therefore, Ascoli’s theorem, see [4, p. 234], im-

plies that Bα is compact in (C(K), ‖·‖∞). The decreasing property (4) im-

plies that Bα ⊂ Bβ if α ≤ β in NN. We claim that C(K) =
⋃{Bα : α ∈ N}.

To see this, given f ∈ C(K) take M > 0 such that ‖f‖∞ ≤ M . On the
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other hand since O is a basis of neighborhoods of ∆, there exists a sequence(
αm = (nmk )

)
in NN such that

|f(x)− f(y)| ≤ 1

m
for every (x, y) ∈ Oαm .

If we define now n1 := max{n11,M} and nk := max{n1k, n2k−1, . . . , nk1},
k = 2, 3, . . . , then for the sequence α = (nk) ∈ NN we have that f ∈ Bα. The

family {Bα : α ∈ N} of subsets of (C(K), ‖·‖∞) satisfies the hypothesis of

corollary 3.1 and we conclude that (C(K), ‖·‖∞) is separable. This finishes

the proof of (7)⇒ (2) .

Do not be misled by the purely topological aspect of the above theorem.

Our contribution there, that is, implication (7)⇒ (2), was first stated also

in a topological setting (apparently different) in [44, Theorem 1] as kind of

lemma to establish metrizability results for compact sets in locally convex

spaces. On the light of this result we introduced the class G of locally convex

spaces:

Definition 3.1 (44). A locally convex space E belongs to the class G if

there is a family {Aα : α ∈ NN} of subsets of E′ satisfying the properties:

(a) for any α ∈ NN the countable subsets of Aα are equicontinuous;

(b) Aα ⊂ Aβ if α ≤ β;

(c) X =
⋃{Aα : α ∈ NN}.

The class G is a very wide class of locally convex spaces and it is stable

under the usual operations in functional analysis of countable type (comple-

tions, closed subspaces, quotients, direct sums, products, etc.) that contains

metrizable locally convex spaces and their duals and for which (7) ⇒ (2)

collected in theorem 3.3 implies:

Theorem 3.4 (44). If E is a locally convex space in class G, then its com-

pact (even its precompact) subsets are metrizable.

Proof. See [44, Theorem 2].

We should mention that theorem 3.4 solved a number of open question

in those times, for instance one posed by Floret in,50 in which he asked

about the sequential behaviour of compact subsets of (LM)-spaces, i.e.,

inductive limits of metrizable locally convex spaces. Note that since G con-

tains metric spaces and their duals theorem 3.4 provides metrizability of

compact subsets for (LM)-spaces as well as many other classes of spaces for
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which these properties were unknown by then. Since the appearance of44 a

number of authors coming from topology and functional analysis have been

working on topics connected with those developed there: we refer to the

recent book51 for more references, applications and consequences of these

ideas. Another possible survey reference is.40

Next we isolate the result below to show the simplicity, beauty and

power of the techniques involving K-analytic structures.

Theorem 3.5 (Dieudonné, Theorem §.2.(5)8). Every Fréchet-Montel

space E is separable (in particular, for any open set Ω ⊂ C the space of

holomorphic functions (H(Ω), τk) with its compact-open topology is separa-

ble).

Proof. Fix U1 ⊃ U2 ⊃ · · · ⊃ Un . . . a basis of absolutely convex closed

neighborhoods of 0. Given α = (nk) ∈ NN, let us define

Aα :=

∞⋂

k=1

nkUk.

The family {Aα : α ∈ NN} is made up of closed bounded sets, covers E and

satisfies Aα ⊂ Aβ if α ≤ β. Since E is Montel, each Aα is compact and

since E is Fréchet it is metrizable and therefore corollary 3.1 applies to say

that E is separable.

We finish pointing out some some recent developments that got started

with52,53 where the following definition can be found.

Definition 3.2 (52,53). Given topological spaces M and Y , an M -ordered

compact cover of a space Y is a family F = {FK : K ∈ K(M)} ⊂ K(Y )

such that
⋃
F = Y and K ⊂ L implies FK ⊂ FL for any K,L ∈ K(M).

Y is said to be dominated (resp. strongly dominated) by the space M if

there exists an M -ordered compact cover F (resp. that moreover swallows

all compact subsets of Y , in the sense that for any compact C ⊂ Y there is

F ∈ F such that C ⊂ F ) of the space Y .

It can be proved,53 that condition (7) in theorem 3.3 is equivalent to

(K×K)\∆ to be strongly dominated by a Polish space (Polish space means

topological space that is metrizable, separable and complete for some metric

given the topology).
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Proposition 3.1 (54). Let K be a compact space and m a cardinal num-

ber. The following statements are equivalent:

(1) w(K) ≤ m;

(2) There exists a metric space M with w(M) ≤ m and a family O = {OL :

L ∈ K(M)} of open subsets in K×K that is basis of the neighborhoods

of ∆ such that OL1
⊂ OL2

whenever L2 ⊂ L1 in K(M);

(3) (K×K)\∆ is strongly dominated by a metric space M with w(M) ≤ m.

The following questions is to the best of our knowledge still unanswered

in full generality.

Question 3.1. if K is a compact space such that (K×K)\∆ is dominated

by a Polish space, is K metrizable?

In the presence of some extra set theoretical axiom the answer is posi-

tive.

Theorem 3.6 (53). Under MA(ω1), if K is a compact space such that

(K ×K) \∆ is dominated by a Polish space then K is metrizable.

4. Measurability for multifunctions, an application

In this section we will briefly present why we have been interested about

measurable selectors for multifunctions and how we came across what we

called property (P) that has shown to be useful for the existence of these

measurable selectors.

Our interest about measurable selectors for measurable multifunctions

goes back to our interest about integration for multifunctions. As said al-

ready, integration for multifunctions has its origin in the papers by Au-

mann14 and Debreu:13 good references on measurable selections and in-

tegration of multifunctions are the monographs10,11 and the survey;12 a

common thing in all these studies that deal with multifunctions whose val-

ues are subsets of a Banach space E is that E was always assumed to be

separable. The main reason for this limitation on E relies on the fact that

an integrable multifunction should have integrable (measurable) selectors

and the tool to find these measurable selectors has always been the well-

known selection theorem of Kuratowski and Ryll-Nardzewski23 that only

works when the range space is separable. Therefore if one wishes to find

measurable selectors outside the universe of the E’s being separable a dif-

ferent approach should be done. With this in mind the following definition

was introduced.
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Definition 4.1 ( [55, Definition 2.1]). We say that a multifunction

F : Ω→ 2E satisfies property (P) if for each ε > 0 and each A ∈ Σ+

there exist B ∈ Σ+
A and D ⊂ E with diam(D) < ε such that

F (t) ∩D 6= ∅ for every t ∈ B,

see figure 6.

Here the notation that we use is the following: starting with our complete

probability space (Ω,Σ, µ) we write Σ+ to denote the family of all A ∈ Σ

with µ(A) > 0; given A ∈ Σ+, the collection of all subsets of A belonging to

Σ+ is denoted by Σ+
A. We should mention here that our property (P) above

Fig. 6. Property (P)

is inspired in the topological notion of fragmentability for multifunctions

that can be found in.56

It can be proved, see,55 that for a multifunction F : Ω → 2E we have

the following properties:

(i) If there exists a multifunction G : Ω→ 2E satisfying property (P) such

that G(t) ⊂ F (t) for µ-a.e. t ∈ Ω, then F satisfies property (P) as well.

(ii) If there exists a strongly measurable function f : Ω → E such that

F (t) = {f(t)} for µ-a.e. t ∈ Ω, then F satisfies property (P).

(iii) If F admits strongly measurable selectors, then F satisfies property (P).

Recall that f : Ω→ E is said to be strongly measurable if it is the µ-a.

e. limit os a sequence of measurable simple functions. It is easy to observe

that property (P) for a multifunction helps to isolate the ideas behind the

classical Kuratowski and Ryll-Nardzewski theorem that we present below:



May 5, 2014 9:23 WSPC - Proceedings Trim Size: 9in x 6in SurveyAlmeria

19

proposition 4.1, lemma 4.1 and the proof of theorem 4.2 are co-authored

with V. Kadets and J. Rodŕıguez. These results were written in some pre-

liminary version of55 but we finally took them out from the version that

was sent off for publication.

Proposition 4.1 (Cascales, Kadets and Rodŕıguez). Suppose E is

separable. Let F : Ω → 2E be a Effros measurable multifunction. Then

F satisfies property (P).

Proof. Fix ε > 0 and A ∈ Σ+. Since E is separable, we can write E =⋃
n∈N Cn, where each Cn is an open ball with diam(Cn) ≤ ε. By hypothesis,

all the sets Bn := {t ∈ Ω : F (t) ∩ Cn 6= ∅} belong to Σ and, moreover,

Ω =
⋃
n∈NBn. Since µ(A) > 0, there is n ∈ N such that B := A∩Bn ∈ Σ+

A.

Now, the set D := Cn intersects F (t) for all t ∈ B.

Lemma 4.1 (Cascales, Kadets and Rodŕıguez). Let F : Ω → 2E be

a multifunction satisfying property (P). Then for each ε > 0 there exists a

strongly measurable countably-valued function f : Ω → E such that F (t) ∩
B(f(t), ε) 6= ∅ for µ-a.e. t ∈ Ω.

Proof. Property (P) and a standard exhaustion argument allow us to find

a sequence (An) of pairwise disjoint measurable subsets of Ω with µ(Ω \⋃
n∈NAn) = 0 and a sequence (Dn) of subsets of X with diameter less

than or equal to ε such that, for each n ∈ N, we have F (t) ∩ Dn 6= ∅ for

every t ∈ An. Take xn ∈ Dn for all n ∈ N and define f : Ω → E by

f :=
∑
n∈N xnχAn

. This function satisfies the desired property: for each

n ∈ N and each t ∈ An there is some y ∈ F (t) ∩Dn and, bearing in mind

that diam(Dn) ≤ ε, we get y ∈ F (t) ∩B(f(t), ε). The proof is over.

Proposition 4.2 (Kuratowski and Ryll-Nardzewski). Suppose E is

separable. Let F : Ω → 2E be an Effros measurable multifunction having

norm closed values. Then F admits strongly measurable selectors.

Proof. [by Cascales, Kadets and Rodŕıguez]. Let (εm) be a decreasing

sequence of positive real numbers converging to 0.

By Proposition 4.1, F satisfies property (P) and therefore Lemma 4.1

ensures the existence of a strongly measurable countably-valued function

f1 : Ω → E such that F (t) ∩ B(f1(t), ε1) 6= ∅ for all t ∈ A1, where A1 ∈ Σ

and µ(Ω \A1) = 0.
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Define F1(t) := F (t) ∩B(f1(t), ε) if t ∈ A1, F1(t) = {0} otherwise. It is

easily checked that the multifunction F1 is Effros measurable. Again, propo-

sition 4.1 and lemma 4.1 allow us to find a strongly measurable countably-

valued function f2 : Ω→ E such that F1(t)∩B(f2(t), ε2) 6= ∅ for all t ∈ A2,

where A2 ∈ Σ and µ(Ω \ A2) = 0. In this way, we can construct a se-

quence fm : Ω→ E of strongly measurable countably-valued functions and

a sequence (Am) in Σ with µ(Ω \Am) = 0 such that

F (t) ∩
(

p⋂

m=1

B(fm(t), εm)

)
6= ∅ for all p ∈ N (5)

whenever t ∈ A :=
⋂
m∈NAm.

Fix t ∈ A. We claim that the sequence (fm(t)) converges in norm to

some point in F (t). Indeed, given j ≥ i we can use (5) to find

xj ∈ F (t) ∩
(

j⋂

m=1

B(fm(t), εm)

)
,

so that ‖fi(t) − xj‖ ≤ εi and ‖fj(t) − xj‖ ≤ εj , hence ‖fi(t) − fj(t)‖ ≤
εi + εj ≤ 2εi. This shows that (fm(t)) is Cauchy and so it converges in

norm. Since xj belongs to F (t) and ‖fj(t)−xj‖ ≤ εj for all j ∈ N, the limit

of (fm(t)) also belongs to F (t), as claimed.

Let f : Ω→ E be a function such that f(t) = limm→∞ fm(t) whenever

t ∈ A and an arbitrary f(t) ∈ F (t) whenever t ∈ Ω \ A. Clearly, f is a

selector of F . Since each fm is strongly measurable and µ(Ω \ A) = 0, it

follows that f is strongly measurable and the proof is finished.

The good thing regarding property (P) above is that beyond giving a

new insight for the classical proof of Kuratowski and Ryll-Nardzewski’s

theorem it allowed us to characterize when a given multifunction does have

measurable selectors.

In what follows the symbol wk(E) (resp. cwk(E)) stands for the col-

lection of all weakly compact (resp. convex weakly compact) non-empty

subsets of the Banach space E.

Theorem 4.1 ( [55, Theorem 2.5]). For a multifunction F : Ω →
wk(E) the following statements are equivalent:

(i) F admits a strongly measurable selector.

(ii) F satisfies property (P).
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(iii) There exist a set of measure zero Ω0 ∈ Σ, a separable subspace Y ⊂ E
and a multifunction G : Ω \Ω0 → wk(Y ) that is Effros measurable and

such that G(t) ⊂ F (t) for every t ∈ Ω \ Ω0.

We write δ∗(x∗, C) := sup{x∗(x) : x ∈ C} for any set C ⊂ E and any

x∗ ∈ E∗. A multifunction F : Ω → 2E is said to be scalarly measurable if

for each x∗ ∈ E∗ the function t 7→ δ∗(x∗, F (t)) is measurable. In particular

a single valued function f : Ω→ E is scalarly measurable if the composition

x∗ ◦ f is measurable for every x∗ ∈ E∗. Note that every Effros measurable

multifunction F is scalarly measurable.

Here is second result about scalar measurability for multifunctions that

seems that has had some impact in integration for multifunctions.

Theorem 4.2 ( [55, Theorem 3.8]). Every scalarly measurable multi-

function F : Ω→ wk(E) admits a scalarly measurable selector.

To finish let us mention the impact of measurable selections on multi-

function integration. A multifunction F : Ω → cwk(E) is said to be Pettis

integrable if

I δ∗(x∗, F ) is integrable for each x∗ ∈ E∗;
I for each A ∈ Σ, there is

∫
A
F dµ ∈ cwk(E) such that

δ∗
(
x∗,

∫

A

F dµ
)

=

∫

A

δ∗(x∗, F ) dµ for every x∗ ∈ E∗.

For the notion of Pettis ingegrability for single valued functions we refer

to.5

Theorem 4.3 ( [57, Theorem 2.5]). Let F : Ω → cwk(E) be a Pettis

integrable multifunction. Then F admits a Pettis integrable selector.

Theorem 4.4 ( [57, Theorem 2.6]). Let F : Ω → cwk(E) be a Pettis

integrable multifunction. Then F admits a collection {fα}α<dens(E∗,w∗) of

Pettis integrable selectors such that

F (ω) = {fα(ω) : α < dens(E∗, w∗)} for every ω ∈ Ω.

Moreover,

∫

A

F dµ =
{∫

A

f dµ : f is a Pettis integrable selector of F
}

for every A ∈ Σ.
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8. G. Köthe, Topological vector spaces. ITranslated from the German by D.
J. H. Garling. Die Grundlehren der mathematischen Wissenschaften, Band
159, Translated from the German by D. J. H. Garling. Die Grundlehren der
mathematischen Wissenschaften, Band 159 (Springer-Verlag New York Inc.,
New York, 1969).

9. K. Kuratowski, Topology. Vol. IINew edition, revised and augmented. Trans-
lated from the French by A. Kirkor, New edition, revised and augmented.
Translated from the French by A. Kirkor (Academic Press, New York-
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