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Part I

 GW theory
  
                                               



Newtonian vs General Relativistic gravity 

Source: mass density

Gravitational field: scalar  

  Source: energy-momentum tensor   
   (includes mass densities/currents)

 Gravitational field: metric tensor 

Newtonian field equations GR field equations
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GWs: origins

• Electromagnetism: accelerating charges produce EM radiation.

• Gravitation: accelerating masses produce gravitational radiation.              
(another hint: gravity has finite speed.)



GWs in linear gravity

• We consider weak gravitational fields:

• The GR field equations in vacuum reduce to the standard wave equation:

• Comment: GR gravity like electromagnetism has a “gauge” freedom 
associated with the choice of coordinate system. The above equation  
applies in the so-called “transverse-traceless (TT)” gauge where

gµ⌫ ⇡ ⌘µ⌫ + hµ⌫ +O(h2
µ⌫)

flat Minkowski metric
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Wave solutions

• Solving the previous wave equation in weak gravity is easy. The 
solutions represent “plane waves”:

• Basic properties:

• Amplitude:
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GWs: polarization

• GWs come in two polarizations:

“+” polarization “x” polarization



GWs: more properties 

•  EM waves: at lowest order the radiation can be emitted by a dipole 
source (l=1). Monopolar radiation is forbidden as a result of charge 
conservation.  

• GWs: the lowest allowed multipole is the quadrupole (l=2). The 
monopole is forbidden as a result of mass conservation. Similarly, 
dipole radiation is absent as a result of momentum  conservation.    

• GWs represents propagating “ripples in spacetime” or, more accurately, 
a propagating curvature perturbation. The perturbed curvature 
(Riemann tensor) is given by (in the TT gauge):                                              
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GWs and curvature 

• As we mentioned, GWs represent a fluctuating curvature field.

• Their effect on test particles is of tidal nature.

• Equation of geodetic deviation (in weak gravity):

• Newtonian limit: 
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GWs vs EM waves

• Similarities:

✓  Propagation with the speed of light.

✓Amplitude decreases as ~ 1/r.

✓Frequency redshift (Doppler, gravitational, cosmological).

• Differences:

✓  GWs propagate through matter with little interaction. Hard to detect, but they  
carry uncontaminated information about their sources.

✓Strong GWs are generated by bulk (coherent) motion. They require strong 
gravity/high velocities (compact objects like black holes and neutron star).

✓EM waves originate from small-scale, incoherent motion of charged particles. 
They are subject to “environmental” contamination (interstellar absorption etc.).



Effect on test particles (I)

• We consider a pair of test particles on the cartesian axis Ox at 
distances           from the origin and we assume a GW traveling 
in the z-direction.

•  Their distance will be given by the relation:
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Effect on test particles (II)

• Similarly for a pair of particles placed on the y-axis:

• Comment: the same result can be derived                                           
using the geodetic deviation equation.
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The quadrupole formula

• Einstein (1918) derived the quadrupole formula for gravitational radiation by solving the 
linearized field equations with a source term:

• This solution suggests that the wave amplitude is proportional to the second time 
derivative of the quadrupole moment of the source:

 

• This result is quite accurate for all sources, as long as the wavelength is much longer than   
the source size R.
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GW luminosity

•  GWs carry energy. The stress-energy carried by GWs cannot be localized 
within a wavelength. Instead, one can say that a certain amount of stress-
energy is contained in a region of the space which extends over several 
wavelengths. The stress-energy tensor can be written as:

• Using the previous quadrupole formula we obtain the GW luminosity:                                                        

LGW =
1
5

G

c5
h
...
Q

TT
µ⌫

...
Q

µ⌫
TTi

TGW
µ⌫ =

c4

32⇡G
h@µhTT

ij @⌫hij
TTi

LGW =
dEGW

dt
=

Z
dA TGW

0j n̂j



Basic estimates (I)

•  The quadrupole moment of a system is approximately equal to the mass M of 
the part of the system that moves, times the square of the size R of the system. 
This means that the 3rd-order time derivative of the quadrupole moment is:

      v = mean velocity of source’s non-spherical motion,                                                                            

  Ens = kinetic energy of non-spherical motion                                                                   

      T = timescale for a mass to move from one side of the system to the other.    

• For a self gravitating system:

• This relation provides a rough estimate of the characteristic frequency of the 
system f ~ 2π/T.
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Basic estimates (II)

•  The luminosity of GWs from a given source is approximately:

 where                                        is the Schwarzschild radius of the source. It is obvious that the 
maximum GW luminosity can be achieved if                        and v ~ c.                                               
That is, the source needs to be compact and relativistic.

• Using the above order-of-magnitude estimates, we can get a rough estimate of the 
amplitude of GWs at a distance r from the source:    

                the kinetic energy fraction that is able to produce GWs. 
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Basic estimates (III)

• Another estimate for the GW amplitude can be derived from the flux formula

• We obtain:

for example, this formula could describe the GW strain from a supernova explosion at 
the Virgo cluster during which the energy            is released in GWs at a frequency of    
1 kHz, and with signal duration of the order of  1 ms. 

• This is why GWs are hard to detect: for a GW detector with arm length of                                       
we are looking for changes in the arm-length of the order of 
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Part II 

GW sources
  
                                               



GW emission from a binary system (I)

• The binary consists of the two bodies M1 and M2 at distances       and       

from the center of mass. The orbits are circular and lie on the x-y plane. The 

orbital angular frequency is Ω.

• We also define:   

      
a1 a2

a = a1 + a2, µ = M1M2/M, M = M1 + M2



GW emission from a binary system (II)

• The only non-vanishing components of the quadrupole tensor are :

• And the GW luminosity of the system is (we use Kepler's 3rd law                                )                                                                                                                     
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GW emission from a binary system (III)

• The total energy of the binary system can be written as :

• As the gravitating system loses energy by emitting radiation, the distance between 

the two bodies shrinks at a rate:

• The orbital frequency increases accordingly                                 . 

• The system will coalesce after a time:                                                                                                             

E =
1
2
⌦2

�
M1a

2
1 + M2a

2
2

�
� GM1M2

a
= �1

2
GµM

a

dE

dt
=

GµM

2a2

da

dt
! da

dt
= �64

5
G3

c5

µM

a3
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GW emission from a binary system (IV)

• In this analysis we have assumed circular orbits. In general the orbits can be 

elliptical, but it has been shown that GW emission circularizes them faster than 

the coalescence timescale.   

• The GW amplitude is (ignoring geometrical factors):                                                                              

h ⇡ 5⇥ 10�22

✓
M

2.8M�

◆2/3 ✓
µ

0.7M�

◆ ✓
f

100 Hz

◆2/3 ✓
15 Mpc

r

◆

( set distance to the Virgo cluster, why? )



PSR 1913+16: a Nobel-prize GW source

• The now famous  Hulse & Taylor binary neutron star system provided the first 

astrophysical evidence of the existence of GWs ! 

• The system’s parameters:

• Using the previous equations we can predict:                                                                                                                                                                            

r = 5Kpc, M1 ⇡M2 ⇡ 1.4 M�, T = 7h 45min

Ṫ = �2.4⇥ 10�12 sec/sec, fGW = 7⇥ 10�5 Hz, h ⇠ 10�23, ⌧ ⇡ 3.5⇥ 108 yr



Theory vs observations

• How can the orbital parameters be 

measured with such high precision?  

• One of the neutron stars is a pulsar, 

emitting extremely stable periodic 

radio pulses. The emission is 

modulated by the orbital motion.

• Since the discovery of the H-T 

system in 1974 more such binaries 

were found by astronomers.  



The double pulsar system

• Discovered in 2003, this binary system consists of 
two pulsars: PSR J0737–3039A & B.

• This rare system allows for                                              
high- precision tests of GR.



Do GWs exist? a historical footnote

They do Exist They 
don’t …
They do!

No, wait, 
they 

don’t … 
or maybe 
they do

I’m skeptical

Albert Einstein
Arthur S. Eddington

Howard P. Robertson



Part III 

Detection of GWs
                                                     
                                                        



GW detectors: prehistory

• For decades after the formulation of Einstein’s 
GR the notion of GWs was a topic for 
speculations and remote from real 
astrophysics. 

• Joe Weber pioneered the construction of the 
first “primitive” bar detector. However, his 
claims of a GW detection were never verified ...

• Theoretical work in the 1970s-1990s (and the 
discovery of the Hulse-Taylor pulsar) 
advanced the popularity of GWs. 

• GW astronomy is expected to become reality in 
the present decade. 



• Consider a GW propagating along the z-axis (with a “+” polarization and frequency ω), 
impinging on an idealized detector consisting of two masses joined by a spring (of length 
L)  along the x-axis

• The resulting motion is that of a forced oscillator (with friction τ, natural frequency        ): 

• The solution is:

• The maximum amplitude is achieved at                    and has a size:

• The detector can be optimized by increasing                 .  

A toy model GW detector
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Bar detectors

• Bar detectors are narrow bandwidth instruments (like the previous toy-
model)

Sensitivity curves of various bar detectors



Detectors: laser interferometry

• A laser interferometer is an alternative choice for GW detection, offering a 
combination of very high sensitivities over a broad frequency band.

• Suspended mirrors play the role of “test-particles”, placed in perpendicular 
directions. The light is reflected on the mirrors and returns back to the beam 
splitter and then to a photodetector where the fringe pattern is monitored.



Noise in interferometric detectors

• Seismic noise (low frequencies). At frequencies below 60 Hz, the noise in the 
interferometers is dominated by seismic noise. The vibrations of the ground couple 
to the mirrors via the wire suspensions which support them. This effect is strongly 
suppressed by properly designed suspension systems. Still, seismic noise is very 
difficult to eliminate at frequencies below 5-10 Hz.

• Photon shot noise (high frequencies).                                                                           
The precision of the measurements                                                                                                             
is restricted by fluctuations in the fringe                                                                 
pattern due to fluctuations in the number                                                                                       
of detected photons. The number of                                                                                       
detected photons is proportional to the                                                                               
intensity of the laser beam. Statistical                                                                                            
fluctuations in the number of detected                                                                                                               
photons imply an uncertainty in the                                                                     
measurement of the arm length.                                                                                  



Detectors:  real-life sensitivity

Seismic noise laser photon noise



Detectors: the present (I)

The twin LIGO detectors (L = 4 km) at Livingston Louisiana and    
Hanford Washington  (US).



Detectors: the present (II)

The VIRGO detector (L= 3 km) near Pisa, Italy



Going to space: the LISA detector

• Space-based detectors: “noise-free” environment, abundance of space!

• Long-arm baseline, low frequency sensitivity

• LISA: Up until recently a joint NASA/ESA mission, now an ESA mission only.                     
To be launched around 2020. 



Going underground: the ET

• The Einstein Telescope will be the next generation underground detector.



GWs detectors: ground and space



GW-related research in Spain

• Barcelona:  binary BH systems, GW data analysis.

• Valencia: numerical GR/hydrodynamics, neutron star physics.

• Palma de Mallorca: GW data analysis, binary BHs.

• Alicante: neutron star physics.


