Parallel Processing Thread Model

This topic explains the processing of the parallelized program and adds more definitions of the
terms used in the parallel programming.

The Execution Flow

A program containing OpenMP C++ API compiler directives begins execution as a single process,
called the master thread of execution. The master thread executes sequentially until the first parallel
construct is encountered.

In the OpenMP C++ API, the #pragma omp parallel directive defines the parallel construct. When
the master thread encounters a parallel construct, it creates a team of threads, with the master thread
becoming the master of the team. The program statements enclosed by the parallel construct are
executed in parallel by each thread in the team. These statements include routines called from
within the enclosed statements.

The statements enclosed lexically within a construct define the static extent of the construct. The
dynamic extent includes the static extent as well as the routines called from within the construct.
When the #pragma omp parallel directive is encountered, the threads in the team synchronize at that
point, the team is dissolved, and only the master thread continues execution. The other threads in
the team enter a wait state. You can specify any number of parallel constructs in a single program.
As a result, thread teams can be created and dissolved many times during program execution.

General Performance Guidelines

For applications where the workload depends on application input that can vary widely, delay the
decision about the number of threads to employ until runtime when the input sizes can be
examined. Examples of workload input parameters that affect the thread count include things like
matrix size, database size, image/video size and resolution, depth/breadth/bushiness of tree based
structures, and size of list based structures. Similarly, for applications designed to run on systems
where the processor count can vary widely, defer the number of threads to employ decision till
application run-time when the machine size can be examined.

For applications where the amount of work is unpredictable from the input data, consider using a
calibration step to understand the workload and system characteristics to aid in choosing an
appropriate number of threads. If the calibration step is expensive, the calibration results can be
made persistent by storing the results in a permanent place like the file system. Avoid creating more
threads than the number of processors on the system, when all the threads can be active
simultaneously; this situation causes the operating system to multiplex the processors and typically
yields sub-optimal performance.

When developing a library as opposed to an entire application, provide a mechanism whereby the
user of the library can conveniently select the number of threads used by the library, because it is
possible that the user has higher-level parallelism that renders the parallelism in the library



unnecessary or even disruptive.

Finally, for OpenMP, use the num_threads clause on parallel regions to control the number of
threads employed and use the if clause on parallel regions to decide whether to employ multiple
threads at all. The omp_set_num_threads function can also be used but it is not recommended
except in specialized well-understood situations because its affect is global and persists even after
the current function ends, possibly affecting parents in the call tree. The num_threads clause is local
in its effect and so does not impact the calling environment.

Using Orphaned Directives

In routines called from within parallel constructs, you can also use directives. Directives that are not
in the lexical extent of the parallel construct, but are in the dynamic extent, are called orphaned
directives. Orphaned directives allow you to execute major portions of your program in parallel
with only minimal changes to the sequential version of the program. Using this functionality, you
can code parallel constructs at the top levels of your program call tree and use directives to control
execution in any of the called routines. For example:

Example 1

i nt mai n(voi d)

{
.#.p.ragma onp parall el
phasel();

}
voi d phasel(void)

#b.ragrra onp for private(i) shared(n)

for(i=0; i < n; i++)
{

some_wor k(i);
}

}

This is an orphaned directive because the parallel region is not lexically present.

Data Environment Directive

A data environment directive controls the data environment during the execution of parallel
constructs.

You can control the data environment within parallel and worksharing constructs. Using directives
and data environment clauses on directives, you can:

+ Privatize named common blocks by using THREADPRIVATE directive
+ Control data scope attributes by using the THREADPRIVATE directive's clauses.

+ The data scope attribute clauses are:



- COPYIN

- DEFAULT

- PRIVATE

- FIRSTPRIVATE
- LASTPRIVATE
- REDUCTION

- SHARED

You can use several directive clauses to control the data scope attributes of variables for the

duration of the construct in which you specify them. If you do not specify a data scope attribute

clause on a directive, the default is SHARED for those variables affected by the directive.

Example 2: Pseudo Code of the Parallel Processing Model

mai n() { 11

11

#pragma onp parall el 11

/11

/11

/11

#pragm onp sections /1

#pragma onp section /1
{...}

#pragma onp section /1
{...}

} 11

. /11

#pragma onp for nowait 11
for(...)

{ /11

I

} /11

Begi n serial execution
Only the naster thread executes

Begin a Parallel Construct, form
a team This is Replicated Code
(each team nenber executes

t he sane code)

Begi n a Wbrksharing Construct
One unit of work

Anot her unit of work

Wait until both units of work conplete
More Replicated Code

Begi n a Worksharing Construct
Each iteration is unit of work

Work is distributed anong the team nenbers
End of Worksharing Construct

/1 nowait was specified, so threads proceed
#pragma onp critical /1 Begin a Critical Section
/1l Replicated Code, but only one
/'l thread can execute it at a
} /1 given tine
/1 More Replicated Code
#pragma onp barrier /1 Wait for all team nenbers to arrive
/1 More Replicated Code
} // End of Parallel Construct
/1 di sband team and continue serial execution

/1 Possibly nmore Parall el
} // End serial execution

constructs



	Parallel Processing Thread Model
	The Execution Flow
	General Performance Guidelines

	Using Orphaned Directives
	Example 1
	Data Environment Directive
	Example 2: Pseudo Code of the Parallel Processing Model



