
[The following essay appeared in the November, 1992 issue of SIAM News and the March,1993 issue of the Bulletin of the Institute for Mathematics and Applications.]THE DEFINITION OF NUMERICAL ANALYSISLloyd N. TrefethenDept. of Computer ScienceCornell UnviersityLNT@cs.cornell.edu1992What is numerical analysis? I believe that this is more than a philosophical question. Acertain wrong answer has taken hold among both outsiders to the �eld and insiders, distortingthe image of a subject at the heart of the mathematical sciences.Here is the wrong answer:Numerical analysis is the study of rounding errors. (D1)The reader will agree that it would be hard to devise a more uninviting description of a�eld. Rounding errors are inevitable, yes, but they are complicated and tedious and|notfundamental. If (D1) is a common perception, it is hardly surprising that numerical analysis iswidely regarded as an unglamorous subject. In fact, mathematicians, physicists, and computerscientists have all tended to hold numerical analysis in low esteem for many years|a mostunusual consensus.Of course nobody believes or asserts (D1) quite as baldly as written. But consider the followingopening chapter headings from some standard numerical analysis texts:Isaacson & Keller (1966): 1. Norms, arithmetic, and well-posed computations.Hamming (1971): 1. Roundo� and function evaluation.Dahlquist & Bj�orck (1974): 1. Some general principles of numerical calculation.2. How to obtain and estimate accuracy: : : .Stoer & Bulirsch (1980): 1. Error analysis.Conte & de Boor (1980): 1. Number systems and errors.Atkinson (1987): 1. Error: its sources, propagation, and analysis.Kahaner, Moler & Nash (1989): 1. Introduction.2. Computer arithmetic and computational errors.\Error" : : : \roundo�" : : : \computer arithmetic"|these are the words that keep reappearing.What impression does an inquisitive college student get upon opening such books? Or considerthe de�nitions of numerical analysis in some dictionaries:1



Webster's New Collegiate Dictionary (1973): \The study of quantitative approxi-mations to the solutions of mathematical problems including consideration of theerrors and bounds to the errors involved."Chambers 20th Century Dictionary (1983): \The study of methods of approximationand their accuracy, etc."The American Heritage Dictionary (1992): \The study of approximate solutions tomathematical problems, taking into account the extent of possible errors."\Approximations" : : : \accuracy" : : : \errors" again. It seems to me that these de�nitionswould serve most e�ectively to deter the curious from investigating further.The singular value decomposition (SVD) a�ords another example of the perception of nu-merical analysis as the science of rounding errors. Although the roots of the SVD go backmore than 100 years, it is mainly since the 1960s, through the work of Gene Golub and othernumerical analysts, that it has achieved its present degree of prominence. The SVD is asfundamental an idea as the eigenvalue decomposition; it is the natural language for discussingall kinds of questions of norms and extrema involving nonsymmetric matrices or operators.Yet today, thirty years later, most mathematical scientists and even many applied mathe-maticians do not have a working knowledge of the SVD. Most of them have heard of it, butthe impression seems to be widespread that the SVD is just a tool for combating roundingerrors. A glance at a few numerical analysis textbooks suggests why. In one case after an-other, the SVD is buried deep in the book, typically in an advanced section on rank-de�cientleast-squares problems, and recommended mainly for its stability properties.I am convinced that consciously or unconsciously, many people think that (D1) is at leasthalf true. In actuality, it is a very small part of the truth. And although there are historicalexplanations for the in
uence of (D1) in the past, it is a less appropriate de�nition today andis destined to become still less appropriate in the future.I propose the following alternative de�nition with which to enter the new century:Numerical analysis is the study of algorithmsfor the problems of continuous mathematics. (D2)Boundaries between �elds are always fuzzy; no de�nition can be perfect. But it seems to methat (D2) is as sharp a characterization as you could come up with for most disciplines.The pivotal word is algorithms. Where was this word in those chapter headings and dictionaryde�nitions? Hidden between the lines, at best, and yet surely this is the center of numericalanalysis: devising and analyzing algorithms to solve a certain class of problems.These are the problems of continuous mathematics. \Continuous" means that real or complexvariables are involved; its opposite is \discrete." A dozen quali�cations aside, numerical ana-lysts are broadly concerned with continuous problems, while algorithms for discrete problemsare the concern of other computer scientists.Let us consider the implications of (D2). First of all it is clear that since real and complexnumbers cannot be represented exactly on computers, (D2) implies that part of the businessof numerical analysis must be to approximate them. This is where the rounding errors comein. Now for a certain set of problems, namely the ones that are solved by algorithms that takea �nite number of steps, that is all there is to it. The premier example is Gaussian elimination2



for solving a linear system of equationsAx = b. To understandGaussian elimination, you haveto understand computer science issues such as operation counts and machine architectures,and you have to understand the propagation of rounding errors|stability. That's all youhave to understand, and if somebody claims that (D2) is just a more polite restatement of(D1), you can't prove him or her wrong with the example of Gaussian elimination.But most problems of continuous mathematics cannot be solved by �nite algorithms! UnlikeAx = b, and unlike the discrete problems of computer science, most of the problems of numer-ical analysis could not be solved exactly even if we could work in exact arithmetic. Numericalanalysts know this, and mention it along with a few words about Abel and Galois when theyteach algorithms for computing matrix eigenvalues. Too often they forget to mention thatthe same conclusion extends to virtually any problem with a nonlinear term or a derivativein it|zero�nding, quadrature, di�erential equations, integral equations, optimization, youname it.Even if rounding errors vanished, numerical analysis would remain. Approximating merenumbers, the task of 
oating-point arithmetic, is indeed a rather small topic and maybe evena tedious one. The deeper business of numerical analysis is approximating unknowns, notknowns. Rapid convergence of approximations is the aim, and the pride of our �eld is that,for many problems, we have invented algorithms that converge exceedingly fast.These points are sometimes overlooked by enthusiasts of symbolic computing, especially recentconverts, who are apt to think that the existence of Maple or Mathematica renders Matlaband Fortran obsolete. It is true that rounding errors can be made to vanish in the sense that inprinciple, any �nite sequence of algebraic operations can be represented exactly on a computerby means of appropriate symbolic operations. Unless the problem being solved is a �niteone, however, this only defers the inevitable approximations to the end of the calculation, bywhich point the quantities one is working with may have become extraordinarily cumbersome.Floating-point arithmetic is a name for numerical analysts' habit of doing their pruning atevery step along the way of a calculation rather than in a single act at the end. Whicheverway one proceeds, in 
oating-point or symbolically, the main problem of �nding a rapidlyconvergent algorithm is the same.In summary, it is a corollary of (D2) that numerical analysis is concerned with rounding errorsand also with the deeper kinds of errors associated with convergence of approximations, whichgo by various names (truncation, discretization, iteration). Of course one could choose to make(D2) more explicit by adding words to describe these approximations and errors. But oncewords begin to be added it is hard to know where to stop, for (D2) also fails to mentionsome other important matters: that these algorithms are implemented on computers, whosearchitecture may be an important part of the problem; that reliability and e�ciency areparamount goals; that some numerical analysts write programs and others prove theorems;and most important, that all of this work is applied, applied daily and successfully to thousandsof applications on millions of computers around the world. \The problems of continuousmathematics" are the problems that science and engineering are built upon; without numericalmethods, science and engineering as practiced today would come quickly to a halt. They arealso the problems that preoccupied most mathematicians from the time of Newton to thetwentieth century. As much as any pure mathematicians, numerical analysts are the heirsto the great tradition of Euler, Lagrange, Gauss and the rest. If Euler were alive today, hewouldn't be proving existence theorems. 3



* * *Ten years ago, I would have stopped at this point. But the evolution of computing in thepast decade has given the di�erence between (D1) and (D2) a new topicality.Let us return to Ax = b. Much of numerical computation depends on linear algebra, and thishighly developed subject has been the core of numerical analysis since the beginning. Nu-merical linear algebra served as the subject with respect to which the now standard conceptsof stability, conditioning, and backward error analysis were de�ned and sharpened, and thecentral �gure in these developments, from the 1950s to his death in 1986, was Jim Wilkinson.I have mentioned that Ax = b has the unusual feature that it can be solved in a �nitesequence of operations. In fact, Ax = b is more unusual than that, for the standard algorithmfor solving it, Gaussian elimination, turns out to have extraordinarily complicated stabilityproperties. Von Neumann wrote 180 pages of mathematics on this topic; Turing wrote one ofhis major papers; Wilkinson developed a theory that grew into two books and a career. Yetthe fact remains that for certain n � n matrices, Gaussian elimination with partial pivotingampli�es rounding errors by a factor of order 2n, making it a useless algorithm in the worstcase. It seems that Gaussian elimination works in practice because the set of matrices withsuch behavior is vanishingly small, but to this day, nobody has a convincing explanation ofwhy this should be so.In manifold ways, then, Gaussian elimination is atypical. Few numerical algorithms havesuch subtle stability properties, and certainly no other was scrutinized in such depth by vonNeumann, Turing, and Wilkinson. The e�ect? Gaussian elimination, which should have beena sideshow, lingered in the spotlight while our �eld was young and grew into the canonicalalgorithm of numerical analysis. Gaussian elimination set the agenda, Wilkinson set the tone,and the distressing result has been (D1).Of course there is more than this to the history of how (D1) acquired currency. In the earlyyears of computers, it was inevitable that arithmetic issues would receive concerted atten-tion. Fixed-point computation required careful thought and novel hardware; 
oating-pointcomputation arrived as a second revolution a few years later. Until these matters were wellunderstood it was natural that arithmetic issues should be a central topic of numerical anal-ysis, and, besides this, another force was at work. There is a general principle of computingthat seems to have no name: the faster the computer, the more important the speed of algo-rithms. In the early years, with the early computers, the dangers of instability were nearlyas great as they are today, and far less familiar. The gaps between fast and slow algorithms,however, were narrower.A development has occurred in recent years that re
ects how far we have come from thattime. Instances have been accumulating in which, even though a �nite algorithm exists fora problem, an in�nite algorithm may be better. The distinction that seems absolute from alogical point of view turns out to have little importance in practice|and in fact, Abel andGalois notwithstanding, large-scale matrix eigenvalue problems are about as easy to solve inpractice as linear systems of equations. For Ax = b, iterative methods are becoming moreand more often the methods of choice as computers grow faster, matrices grow larger and lesssparse (because of the advance from 2D to 3D simulations), and the O(N3) operation countsof the usual direct (= �nite) algorithms become ever more painful. The name of the newgame is iteration with preconditioning. Increasingly often it is not optimal to try to solve a4



problem exactly in one pass; instead, solve it approximately, then iterate. Multigrid methods,perhaps the most important development in numerical computation in the past twenty years,are based on a recursive application of this idea.Even direct algorithms have been a�ected by the new manner of computing. Thanks to thework of Skeel and others, it has been noticed that the expense of making a direct methodstable|say, of pivoting in Gaussian elimination|may in certain contexts be cost-ine�ective.Instead, skip that step|solve the problem directly but unstably, then do one or two steps ofiterative re�nement. \Exact" Gaussian elimination becomes just another preconditioner!Other problems besides Ax = b have undergone analogous changes, and the famous exampleis linear programming. Linear programming problems are mathematically �nite, and fordecades, people solved them by a �nite algorithm: the simplex method. Then Karmarkarannounced in 1984 that iterative, in�nite algorithms are sometimes better. The result hasbeen controversy, intellectual excitement, and a perceptible shift of the entire �eld of linearprogramming away from the rather anomalous position it has traditionally occupied towardsthe mainstream of numerical computation.I believe that the existence of �nite algorithms for certain problems, together with otherhistorical forces, has distracted us for decades from a balanced view of numerical analysis.Rounding errors and instability are important, and numerical analysts will always be theexperts in these subjects and at pains to ensure that the unwary are not tripped up bythem. But our central mission is to compute quantities that are typically uncomputable,from an analytical point of view, and to do it with lightning speed. For guidance to thefuture we should study not Gaussian elimination and its beguiling stability properties, but thediabolically fast conjugate gradient iteration|or Greengard and Rokhlin's O(N) multipolealgorithm for particle simulations|or the exponential convergence of spectral methods forsolving certain PDEs|or the convergence in O(1) iteration achieved by multigrid methodsfor many kinds of problems|or even Borwein and Borwein's magical AGM iteration fordetermining 1,000,000 digits of � in the blink of an eye. That is the heart of numericalanalysis.NotesMany people, too numerous to name, provided comments on drafts of this essay. Theirsuggestions led me to many publications that I would otherwise not have found.I do not claim that any of the ideas expressed here are entirely new. In fact, 30 years ago, inhis Elements of Numerical Analysis, Peter Henrici de�ned numerical analysis as \the theory ofconstructive methods in mathematical analysis." Others have expressed similar views; JosephTraub (Communications of the ACM, 1972), for example, de�ned numerical analysis as \theanalysis of continuous algorithms." For that matter, both the Random House and the OxfordEnglish dictionaries o�er better de�nitions than the three quoted here.And should the �eld be called \numerical analysis," \scienti�c computing," or something elseentirely? (\mathematical engineering?"). That is another essay.5


