ECUACIONES EN DERIVADAS PARCIALES y SERIES DE FOURIER

3° de Matemáticas (y 4° PES), Curso 2019-20

Objetivos: introducción a las Ecuaciones en Derivadas Parciales (EDPs) y sus técnicas más clásicas de resolución, entre ellas los desarrollos en serie de Fourier. En particular, aprender a formular, analizar y resolver algunas de las EDPs más importantes, incluyendo las ecuaciones del calor, de Laplace y de ondas.

1. Ejemplos clásicos de EDPs

- La ecuación de la cuerda vibrante. Planteamiento físico. Solución de D'Alembert y método de separación de variables. Significado de las condiciones de contorno. Propiedades básicas: velocidad propagación finita, conservación energía.
- La ecuación del calor. Planteamiento físico. Método de resolución de Fourier. Significado de las condiciones de contorno. Propiedades básicas: propagación infinita, conservación energía.
- La ecuación de Laplace: Significado físico. Condiciones de contorno de Dirichlet y Neumann. Cambio a coordenadas polares, y resolución por separación de variables. Propiedades: principio del máximo, unicidad, propiedad valor medio.

2. Teoría de las series de Fourier

El concepto de serie de Fourier. Primeros ejemplos. Criterio de convergencia de Dini. Series de Fourier en L² y fórmula de Parseval. Convoluciones. Núcleos de Dirichlet y de Féjer. Convergencia uniforme de las medias de Cesàro. Algunas aplicaciones.

3. Más sobre Ecuaciones en Derivadas Parciales

- Sistemas de Sturm-Liouville. Autovalores y bases de autofunciones. Funciones de Bessel.
- Ecuaciones de Laplace, del calor, y de la membrana vibrante en dominios rectangulares y circulares. Significado y análisis de las soluciones.
- Ecuación de ondas en R² y R³. Fórmulas explícitas. Consecuencias: unicidad, dominio de propagación, principio Huygens, concentración singularidades. Ecuación no homogéna y fórmula de Duhamel.
- Otros temas: transformada de Fourier, funciones armónicas, ejemplos de EDPs no lineales,...

Textos recomendados:

E. Stein, R. Shakarchi, Fourier Analysis: An introduction. Princeton Univ Press, 2003.

W. Strauss, Partial Differential Equations, an introduction. Wiley 2008.

R. Haberman, EDPs, series de Fourier y problemas de contorno, Prentice-Hall, 2003.

R. Churchill, J. Brown, Fourier series and boundary value problems, McGraw Hill, 2008.

L. Evans, Partial Differential Equations, 2nd Ed, Amer Math Soc, 2010.

I. Peral, Primer curso de Ecuaciones en Derivadas Parciales, Addison-Wesley, 1995

G. Folland, Fourier Analysis and its Applications, Amer Math Soc, 2009.

Profesor: Gustavo Garrigós Web: webs.um.es/gustavo.garrigos

Despacho: 1.10. **Tutorías:** J 12:00-14:00 ó cita previa

Fechas de examen: final 21 mayo (m), extraordinario 26 junio (t)

Calificación final: Se obtendrá de la fórmula

 $máx{ 0'7 EF + 0'3 EC, EF}$ donde

EF= nota del examen final

EC= calificación media de las pruebas de evaluación continua (tests de problemas).

Además, se valorará positivamente la participación del alumno mediante la resolución de ejercicios en la pizarra.