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Abstract. We show that in a super-reflexive Banach space, the conditionality
constants of a quasi-greedy basis B grow at most like kN (B) = O(logN)1−ε, for
some ε > 0. This extends results by the first author and Wojtaszczyk [11], where
this property was shown for quasi-greedy bases in Lp when 1 < p <∞.

1. Introduction

Let X be a Banach space with a countable Schauder basis B = {ej}∞j=1, which we
shall assume semi-normalized, that is c1 ≤ ‖ej‖ ≤ c2 for some constants c2 ≥ c1 > 0.
For x ∈ X we write the corresponding basis expansion as x =

∑∞
j=1 aj(x)ej.

Associated with B, we consider, for each finite A ⊂ N, the projection operators

x ∈ X 7−→ SA(x) :=
∑
j∈A

aj(x)ej,

and define the sequence

kN = kN(B,X) := sup
|A|≤N

∥∥SA∥∥, N = 1, 2, . . .

Notice that B is unconditional if and only if kN = O(1). In general, kN may grow
as fast as O(N), and this sequence may be used to quantify the conditionality of the
basis B in X. It is a consequence of a classical result of Gurarii-Gurarii [12] and James
[17] that if X is a super-reflexive Banach space (ie, isomorphic to a uniformly convex
or a uniformly smooth space), then

kN = O(N1−ε), for some ε > 0.

In this paper we shall be interested in bases B which are quasi-greedy [19, 25], that
is their expansions converge when the summands are rearranged in decreasing order.
More precisely, if we define N th-order greedy operators by

x ∈ X 7−→ GN(x) =
∑

j∈ΛN(x)

aj(x)ej, (1.1)

where ΛN(x) is a set of cardinality N such that minj∈ΛN (x) |aj| ≥ maxj /∈ΛN (x) |aj|,
then {ej} is a quasi-greedy basis when GN(x)→ x, for all x ∈ X. We refer to [22] for
background and applications of quasi-greedy bases in the study of non-linear N -term
approximation in Banach spaces.
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It follows from a result of Dilworth, Kalton and Kutzarova [6, Lemma 8.2] that
quasi-greedy bases cannot be not “too conditional”, namely they satisfy

kN(B,X) = O(logN), (1.2)

see also [8, 10]. Moreover, there are examples of quasi-greedy bases in certain Banach
spaces for which the logarithmic growth is actually attained; see [10, §6].

More recently, it was noticed in [11] that (1.2) can be improved to kN = O(logN)1−ε,
for some ε > 0, at least when X = Lp and 1 < p <∞. The purpose of this note is to
show that this improvement continues to hold for any super-reflexive Banach space.

Theorem 1.1. Let X be a super-reflexive Banach space, and B = {ej}∞j=1 a quasi-
greedy basis. Then, there exists some ε = ε(B,X) > 0 such that

kN(B,X) = O(logN)1−ε.

We remark that bounds on the sequence kN are useful in N -term approximation.
In particular, if B is an almost-greedy basis in X, in the sense of [7] (ie, quasi-greedy
and democratic), then kN quantifies the performance of the greedy algorithm versus
the best N -term approximation. More precisely, if ΣN = {

∑
λ∈Λ cλeλ : Card Λ ≤ N},

we have the following

Corollary 1.2. Let X be super-reflexive and B = {ej}∞j=1 an almost-greedy basis.
Then, there exists ε = ε(B,X) > 0 and c > 0 such that

‖x−GNx‖ ≤ c (logN)1−ε dist (x,ΣN)

for all x ∈ X and N = 2, 3, . . .

This is a direct consequence of Theorem 1.1 and [23, Thm 2.1] (or [10, Thm 1.1]).

We conclude by recalling some examples where super-reflexivity occurs. This is a
well known property in Functional Analysis, satisfied by all Banach spaces with an
equivalent norm which is either uniformly convex or uniformly smooth [17, 9]. In
particular, this is the case for Lp(µ) with 1 < p < ∞ over any measure space, but
also for most examples of reflexive Banach spaces arising in harmonic and functional
analysis. Here we list some of them:

(i) Bochner-Lebesgue spaces Lp(µ,X) over any measure space are uniformly convex
if X is uniformly convex and 1 < p < ∞. As a consequence, a space Lp(µ,X) and
its subspaces inherit the super-reflexivity from X. That covers the classical families
of Sobolev, Besov and Triebel-Lizorkin spaces in Rn for a wide range of parameters,
exactly the ones making them reflexive. The isomorphic embedding into a space of
the form Lp(µ, Lq(ν)) comes from their very definition, see [24], but it is also possible
to show isomorphisms with the help of special bases, see for instance [4] for certain
Sobolev and Besov spaces.

(ii) Orlicz spaces satisfying Luxemburg’s characterizations of reflexivity [20] are super-
reflexive; see [1]. We note that Luxemburg assumptions on the measure cover the most
usual cases, as Orlicz sequence spaces or function spaces on Rn with the Lebesgue
measure.
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(iii) Super-reflexivity has also been studied in Lorentz-type spaces, where its charac-
terization is very close to reflexivity, see for instance [13, 18, 15].

(iv) Uniformly non-square Banach spaces are also super-reflexive. These spaces, in-
troduced by James in [16], are those that satisfy

sup{min{‖x+ y‖, ‖x− y‖} : ‖x‖ = ‖y‖ = 1} < 2.

(v) Super-reflexivity is preserved as well by certain operations to produce new spaces
such as finite products, quotients, ultrapowers and interpolation. In fact, if one of the
spaces of the interpolation pair is super-reflexive then all the intermediate spaces are
super-reflexive, either with the real [3] or the complex method [5].

2. Proof of Theorem 1.1

The proof will follow the arguments sketched in [11, §5]. All we shall need from the
space X is a weak variant of the paralellogram law.

Now, assume that X is a super-reflexive Banach space. As we said above, this notion
was introduced by James [17] and has several equivalent formulations, one of which
being the existence of an equivalent norm ||| · ||| in X which is uniformly convex; see [9].
Moreover, a well-known result of Pisier [21] shows that ||| · ||| can be chosen so that its
associated modulus of convexity

δ(ε) = inf
{

1− |||x+y
2
||| : |||x||| = |||y||| = 1, |||x− y||| = ε

}
(2.1)

is actually of power type for some p ≥ 2, that is there exists c > 0 such that

δ(ε) ≥ c εp, for all ε > 0. (2.2)

We need the following result, attributed in the literature to Hoffmann-Jørgensen [14].

Lemma 2.1. Let X be a Banach space whose modulus of convexity (2.1) satisfies (2.2)
for some p ≥ 2 and c > 0. Then there exists a constant η = η(p, c) > 0 such that

|||x+ y|||p + η |||x− y|||p ≤ 2p−1
(
|||x|||p + |||y|||p

)
(2.3)

for all x, y ∈ X.

A proof of this lemma can be found in [2, Proposition 7], but we sketch a direct
argument in the appendix. We also remark that a version of (2.3) is already satisfied
by the uniformly convex renorming of a super-reflexive space done by Pisier [21,
Theorem 3.1(a)].

The property of B being quasi-greedy (and semi-normalized) is preserved under
equivalent norms in X. Thus, from now on we shall use ‖ · ‖ instead of ||| · |||, and
assume that the former norm satisfies the weak paralellogram inequality in (2.3). We
shall also denote by κ = κ(B,X) > 0 the smallest constant such that

‖GNx‖ ≤ κ‖x‖ and ‖x−GNx‖ ≤ κ‖x‖, ∀ x ∈ X, N = 1, 2, . . . (2.4)

for all operators GN as in (1.1). The existence of such constant is actually equivalent
to the quasi-greediness of B; see [25, Thm 1].

Theorem 1.1 will then be a consequence of the following.
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Theorem 2.2. Let X be a Banach space satisfying (2.3) for some p ≥ 2 and η > 0.
If B = {ej}∞j=1 is a quasi-greedy basis, then there exists ε = ε(κ, p, η) > 0 such that

kN(B,X) = O(logN)1−ε.

2.1. Proof of Theorem 2.2. The proof is a small variation of [11, Theorem 5.1].

We shall use the notation x % y when x =
∑

j∈A xjej and y =
∑

k∈B ykek have

disjoint supports (ie, A ∩ B = ∅) and minj∈A |xj| ≥ maxk∈B |yk|. We first establish
the following key lemma.

Lemma 2.3. Assume that X satisfies (2.3) and B is quasi-greedy. Then∥∥x+ y
∥∥p ≤ γ

(
‖x‖p + ‖y‖p

)
, ∀ x < y. (2.5)

where γ = 2p−1 − η
2κp

.

Proof. Call N the cardinality of suppx. Since x < y, a use of (2.4) gives

‖x‖ =
∥∥GN(x−y)

∥∥ ≤ κ
∥∥x−y∥∥ and ‖y‖ =

∥∥(I−GN)(x−y)
∥∥ ≤ κ

∥∥x−y∥∥. (2.6)

Thus,
‖x− y‖p ≥ 1

2κp

(
‖x‖p + ‖y‖p

)
.

Inserting this estimate into the weak parallelogram inequality in (2.3) we obtain

‖x+ y‖p ≤ 2p−1
(
‖x‖p + ‖y‖p

)
− η ‖x− y‖p ≤

(
2p−1 − η

2κp

) (
‖x‖p + ‖y‖p

)
,

as we wished to show.
2

Iterating this result one easily proves the following (see [11, Lemma 2.4]).

Lemma 2.4. With the assumptions of Lemma 2.3, if x1 < x2 < . . . < xm have
pairwise disjoint supports, then∥∥x1 + . . .+ xm

∥∥p ≤ γdlog2me
m∑
j=1

‖xj‖p. (2.7)

We now prove Theorem 2.2. We must show that, for A ⊂ N with |A| = N ≥ 2, and
every x =

∑
i aiei ∈ X it holds

‖SA(x)‖ ≤ C (logN)1−ε ‖x‖, (2.8)

for a suitable ε > 0 (independent of x and N) to be determined. By scaling we may
assume that maxi |ai| = 1 (which using (2.4) implies ‖x‖ ≥ 1

κ
‖G1x‖ ≥ c1/κ).

Let m = dlog2Ne, so that 2m−1 < N ≤ 2m. For ` = 1, . . . ,m, we define

F` = {j : 2−` < |aj| ≤ 2−(`−1)} and Fm+1 = {j : |aj| ≤ 2−m}.
Next write A as a disjoint union of the sets A` = A ∩ F`, ` = 1, . . . ,m + 1. Clearly

‖SAm+1x‖ ≤
∑

i∈Am+1

|ai|‖ei‖ ≤ c2 2−mN ≤ c2 ≤
κc2

c1

‖x‖. (2.9)

For the other terms we quote Lemmas 5.2 and 5.3 in [10], which use the quasi-greedy
property and the fact that A` ⊂ {j : 2−` < |aj| ≤ 2−(`−1)} to obtain

‖SA`
x‖ ≤ C ‖x‖,
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for a positive constant C (independent of x and `). Now, Lemma 2.4 gives

‖
m∑
`=1

SA`
x‖p ≤ γdlog2me

m∑
`=1

‖SA`
x‖p ≤ Cp γdlog2mem ‖x‖p. (2.10)

Now we can write

γlog2mm = 2log2m log2 γm = m1+log2 γ = mpα,

if we set α = (1 + log2 γ)/p. Notice that α < 1 since γ < 2p−1, by Lemma 2.3. Thus,
combining (2.9) with (2.10) we obtain

‖SAx‖ ≤ C ′mα ‖x‖ ≤ C ′′ (logN)α ‖x‖,
which implies (2.8) if we set

ε = 1− α = 1− (1 + log2 γ)/p =
p− 1− log2

(
2p−1 − η

2κp

)
p

,

which is a positive constant.
2

3. Appendix: Proof of Lemma 2.1

Although Lemma 2.1 is well-known in the functional analysis community, we sketch
a direct proof which we could not find explicitly in the literature.

We assume that the modulus of convexity satisfies (2.2). Then for all x, y ∈ X with
‖x‖ = ‖y‖ = 1 we have

1−
∥∥x+y

2

∥∥p ≥ 1−
∥∥x+y

2

∥∥ ≥ c ‖x− y‖p .
This implies ∥∥∥x+ y

2

∥∥∥p + bp
∥∥∥x− y

2

∥∥∥p ≤ ‖x‖p + ‖y‖p

2
, ‖x‖ = ‖y‖ = 1 , (3.1)

with a constant bp = 2pc > 0 (setting y = −x we also see that b ≤ 1). Our goal
is to show that (3.1) continues to hold for all x, y ∈ X, this time with the constant
bp/(1 + bp

′
)p−1.

By symmetry and homogeneity, we may assume that 1 = ‖x‖ ≤ ‖y‖. Consider the
unit vector v = y/‖y‖ . Then, from (3.1) and the triangle inequality we can deduce

‖x‖p + ‖y‖p

2
=
‖x‖p + ‖v‖p

2
+
‖y‖p − 1

2

≥
∥∥∥x+ v

2

∥∥∥p + bp
∥∥∥x− v

2

∥∥∥p +
‖y‖p − 1

2

≥
(‖x+ y‖ − ‖y − v‖

2

)p
+ bp

∥∥∥x− v
2

∥∥∥p +
‖y‖p − 1

2
. (3.2)

Let A and B be given by

A := ‖x+ y‖ ≥ ‖y‖ − 1 = ‖y − v‖ := B .

With this notation we can write(‖x+ y‖ − ‖y − v‖
2

)p
=
(A−B

2

)p
=
(A

2

)p(
1− B

A

)p
.
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A simple argument shows that (1 − x)p ≥ 1 − px + x2 if p ≥ 2 and x ∈ [0, 1]. Thus,
since A ≥ B we have(‖x+ y‖ − ‖y − v‖

2

)p
≥

(A
2

)p[
1− p B

A
+
(B
A

)2 ]
≥

∥∥∥x+ y

2

∥∥∥p − p BAp−1

2p
+
∥∥∥y − v

2

∥∥∥p , (3.3)

where in the last step we have used that Ap−2B2 ≥ Bp = ‖y − v‖p (since p ≥ 2).
Inserting this into (3.2) we obtain

‖x‖p + ‖y‖p

2
≥
∥∥∥x+ y

2

∥∥∥p +D + E , (3.4)

where

D = bp
∥∥∥x− v

2

∥∥∥p +
∥∥∥y − v

2

∥∥∥p and E =
‖y‖p − 1

2
− pBAp−1

2p
.

To estimate D notice that the triangle and Hölder’s inequalities give

‖x− y‖ ≤ ‖x− v‖+ ‖v − y‖ ≤
(
bp‖x− v‖p + ‖v − y‖p

) 1
p (1 + b−p

′
)1/p′ ,

and therefore

D ≥ bp

(1 + bp′)p−1

∥∥∥x− y
2

∥∥∥p.
So, it remains to show that E ≥ 0. Now using A = ‖x+ y‖ ≤ ‖y‖+ 1 we can write

E ≥ ‖y‖
p − 1

2
− p(‖y‖ − 1)(‖y‖+ 1)p−1

2p
.

It is then enough to prove that

λp − 1

2
≥ p(λ− 1)(λ+ 1)p−1

2p
, for all λ > 1 .

With the change λ = 1/u, this is equivalent to show

1− up ≥ p(1− u)
(1 + u

2

)p−1

, 0 < u < 1 ,

which can be written as

1

1− u

∫ 1

u

tp−1dt ≥
(1 + u

2

)p−1

, 0 < u < 1 .

But this is a consequence of Jensen’s inequality, since ϕ(t) = tp−1 is convex when
p ≥ 2, and

1

1− u

∫ 1

u

ϕ(t)dt ≥ ϕ
( 1

1− u

∫ 1

u

tdt
)

= ϕ
(1 + u

2

)
=
(1 + u

2

)p−1

.

2
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