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1
Velocity and Position

Exercise 1
Suppose the velocity 1 of a car is constant and equal to 60km/h.

(1) Let f be the function which describes the position of the car with respect to time.

Draw the graph f for t ranging from 0 to 3 hours.

(2) Let v be the function which describes the velocity of the car with respect to time.

Draw the graph of v for t ranging from 0 to 3 hours.

(3) Given the position graph, how can one find the velocity of the car at any given time?

(4) Given the velocity graph, how can one find the position of the car after any given time?

4! Note the difference: velocity (deduced from position) is local. It is possible to give
the velocity at a given time. Position (deduced from velocity) is global. It is only possible to
find the variation of the position over an interval of time.

Exercise 2
The velocity of a car (in km/h) is given by the following function with respect to time (in h):
(decimal division of hours for simplicity)

v : t 7→


60 if 0 ≤ t ≤ 0.5

120 if 0.5 < t ≤ 2

80 if 2 < t ≤ 2.5

60 if 2.5 < t ≤ 3

Calculate the positions at t = 1, t = 2 and t = 3.
Draw the velocity graph and indicate on the velocity graph where the position at t = 2 can

be drawn.

1The velocity is speed with a direction. Speed is always positive (or zero); velocity can be negative.
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CHAPTER 1. VELOCITY AND POSITION

Exercise 3
The following curve can be approximated by a piecewise linear function whose slope is easily

calculated by pieces. If this curve represents the position function of a moving body, use the
linear pieces to give a (graphical) representation of the velocity function. (The exact values are
not important here, approximate relative values will do.)

1 2 3 t

10

20

30
km

Exercise 4
The following curve can be approximated by a “staircase” function whose area is calculated

by adding the areas of the rectangles. If this curve represents the velocity function of a moving
body, use the rectangles to give a (graphical) representation of the position function. (The exact
values are not important here, approximate relative values will do.)

1 2 3 t

10

20

30
km/h

The main goal of the subject called mathematical analysis will be to check when and
how to approximate a curve by pieces of straight lines and when and how to approximate areas
by rectangles and to understand what these can be used to calculate. Intuitively, it should seem
clear that in order for the approximation to be good, the pieces of straight lines or the rectangles
must be small – or that the number of pieces is large. The crucial questions are: How small?
and How large?
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2
Basic Principles

Exercise 5
Hold a pencil in your hand. Do not move.
Now drop the pencil.

First the pencil was motionless. Then it was in motion.
How did the motion start? How is the transition from "not moving" to "moving"?

Exercise 6
If δ is a positive value which is extremely small (even smaller than that!),

(1) what can you say about the size of δ2, 2 · δ and −δ?

(2) what can you say about 2 + δ and 2− δ?

(3) what can you say about 1
δ ?

Exercise 7
If N is a positive huge number (really very huge!),

(1) what can you say about N2, 2N and −N?

(2) what can you say about N + 2 and N − 2?

(3) what can you say about 1
N ?

(4) what can you say about N
2 ?
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CHAPTER 2. BASIC PRINCIPLES

0 1 2 3 4 5

2 + δ

2 2 + δ 2 + 2δ2− δ

31

Zooming in

Exercise 8
Let f : x 7→ x2, and let δ be "vanishingly small" and positive.

(1) Draw the result of a zoom on f centred on 〈2; 4〉 so that δ becomes visible.
Show, on the drawing, the values 2 and f(2), 2 + δ and f(2 + δ), 2− δ and f(2− δ).
What does the curve look like?

(2) For the same function, draw the result of a zoom centred on 〈1; 1〉
Show, on the drawing, the values 1 and f(1), 1 + δ and f(1 + δ), 1− δ and f(1− δ).

(3) Similar question for a zoom centred on 〈0; 0〉.

Exercise 9
Draw the result of zooms so that δ becomes visible for
g : x 7→ x3, and h : x 7→ |x|
For g: centres are 〈1; 1〉, 〈2; 8〉 and 〈0; 0〉
For h: centres are 〈1; 1〉, 〈2; 2〉 and 〈0; 0〉

Exercise 10
Draw a zoom centred on 〈0; 0〉 and another zoom centred on 〈0;−1〉 for

k : x 7→


−1 if x < 0

0 if x = 0

1 if x > 0
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CHAPTER 2. BASIC PRINCIPLES

Observability and Closure
Imagine levels of resolution as with microscopes. Some numbers are always observable –

observable without microscope. One can always observe all the numbers you have encountered
so far which can be defined, described or computed without using the concept of observability,
such as

1 ; 0, 2 ; 0 ; 3/4 ;
√

2 ; π; . . . .

If we zoom in, they remain observable (even though when we zoom we see a shorter range of
numbers)

Some numbers are ultrasmall relative to these.
Consider objects that can be seen with the unaided eye. You will need optical tools such

as microscopes and telescopes to see more objects. With this "optical" level of resolution, we
discover smaller and larger objects. But this is not the end of the story: there are ultrasmall
numbers relative to this finer level of resolution. We will need radio-telescopes and electronic
microscopes. Then huge and tiny objects become observable... and so on and so forth!

4! When we use a finer level of resolution we do not lose sight of the numbers which
were already observable: a number observable at a given level of resolution is observable at all
finer levels of resolution.

This means that if y is less observable than x, then x remians observable when y is observ-
able.

We also use that every real number is observable at some level of observation.

These properties are summarised here:

Properties of Observability Let x, y and z be real numbers.

(1) x is as observable as x.

(2) If y is less observable than x, then x is observable when y is observable..

(3) If y is less observable than x and if z is less observable than y, then z is less observable
than x.

Definition 1
The context of a property, function or set is the list of parameters used in its definition.

The word "observable" refers to a context whether it is explicitly mentioned or not. If a number
is observable whenever any other number is observable, we say that it is always observable. It is
thus meaningless to use the concept of observability if it is not possible to determine the context.
An informal way to define the context is: the context is the parameters, sets and functions the
statement is about. Therefore to determine the context of a statement, one must be able to
understand it and describe what it says and about what it says something.

Closure Principle
Numbers, sets or functions, defined without reference to observability are always observable.
If a number, set or function, satisfies a given property, then there is an observable number
satisfying that property
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CHAPTER 2. BASIC PRINCIPLES

In the last sentence the context of observability is given by the property.

The closure principle tells us that all "familiar" numbers such as 1; 3; 1010;
√

2 or π are
always observable

It also tells us that if a number is uniquely calculated using some parameters, the resulting
number will be observable. Non observable results do not show up unless explicitly summoned.
We also have

f(a) is observable

This refers to the context, by the word "observable". The only parameters of this property are f
and a and since a function has a unique output, it is observable

The sets of whole numbers (N), of integers (Z), of rationals (Q) and real numbers (R) are
defined without reference to observability, hence are always observable.

The interval [a, b] satisfies the property {x ∈ R | a ≤ x ≤ b} which has parameters a and b
and R. Hence it is as observable as a, b and R. Since R is always observable it is as observable
as a and b, and in fact will be as visible as the least visible of a and b.

Example: Let f : x 7→ x2 + 3, The parameters of f are 2 and 3 which are always observable.
The number f(4) is thus also always observable.

Definition 2
A real number is ultrasmall if it is nonzero and strictly smaller in absolute value than any strictly
positive observable number

This definition makes an implicit reference to a context.

4! Note that 0 is not ultrasmall.

Principle of ultrasmallness
Relative to any number, there exist ultrasmall real numbers.

Exercise 11
Consider a context such that ε is ultrasmall.
Explain why ε is not observable.

Exercise 12
Consider a context such that a is observable and ε is ultrasmall.
Explain why a+ ε is not observable.

Definition 3
A real number is ultralarge if it is larger in absolute value than any strictly positive observable
number

4! Note the asymmetry: if h is ultrasmall relative to an observable x, then h is not
observable. But then x is observable relative to h (property 2 of observability), hence x is not
ultralarge relative to h.
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CHAPTER 2. BASIC PRINCIPLES

With respect to a given number
ultrasmall numbers are somewhere here

0

/ / / /

With respect to a given number
ultralarge numbers are somewhere over there

/ ///

0

Definition 4
Let a, b be real numbers. We say that a is ultraclose to b, written

a ' b,

if b− a is ultrasmall or if a = b.

This definition makes an implicit reference to a context.
In particular, x ' 0 if x is ultrasmall or zero.

If a ' b then a and b are said to be neighbours. If (relative to some context) a is a neighbour
of b and is observable then a is the observable neighbour of b.

A rational number may have an observable neighbour which is not rational. The number
√

2
is always observable because it is completely and uniquely defined by the parameter 2. Relative
to this context consider an ultralarge N and take the first N digits of

√
2. This is a rational

number which is not observable (it depends on N and is therefore as observable as N ). Yet it
is ultraclose to an observable number which is

√
2.

The existence of an observable neighbour is given by the following.

Principle of the observable neighbour
Relative to a context, any real number x which is not ultralarge can be written in the form
a+ h where a is observable and h ' 0.

Theorem 1
Relative to a context:
If a and b are observable and if a ' b, then a = b

11



CHAPTER 2. BASIC PRINCIPLES

Exercise 13
Show that if x has an observable neighbour, then it is unique. This is in fact equivalent to

proving theorem 1.

This unique number is the observable neighbour of x.

Exercise 14
Prove the following:

Theorem 2
Let a and b be the context. If x ∈ [a; b] then the observable neighbour of x is in [a; b].

Exercise 15
Prove the following:

(1) If ε is ultrasmall relative to x then 1
ε is ultralarge relative to x.

(2) If M is ultralarge relative to x then 1
M is ultrasmall relative to x.

Exercise 16
Prove the following theorems (together they give all the rules needed for analysis and will

be referred to by "ultracomputation" or "ultracalculus"):

Theorem 3
Let ε and δ be ultrasmall relative to a context and let a be observable.

(1) Then: a · ε is ultrasmall.

(2) Then: ε+ δ ' 0

(3) Then: ε · δ is ultrasmall

(4) If a 6= 0 Then: a
ε

is ultralarge

Theorem 4 (Ultracomputation)
Relative to a context: If a and b are observable and if a ' x and b ' y,

(1) a+ b ' x+ y

(2) a− b ' x− y

(3) a · b ' x · y

(4) If also b 6= 0, a
b
' x

y
.

For the last item of theorem 4, it is enough to show

Theorem 5
Relative to a context. If b is observable and b 6= 0 and if b ' y then 1

b
' 1

y

and use item 3 to conlcude.
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CHAPTER 2. BASIC PRINCIPLES

Practice exercise 1 Answer page 14
Consider a context.

(1) Give an example of x and y such that x ' y but x2 6' y2.

(2) Give an example of x and y such that x ' y but 1
x 6'

1
y .

Practice exercise 2 Answer page 14
Relative to a context.
In the following, assume that ε, δ are positive ultrasmall and H,K positive ultralarge num-

bers. Determine whether the given expression yields an ultrasmall number, an ultralarge number
or a number in between.

(1) 1 +
1

ε

(2)
√
δ

δ

(3)
√
H + 1−

√
H − 1

(4) H +K

H ·K

(5) 5 + ε

7 + δ
− 5

7

(6)
√

1 + ε− 2√
1 + δ

Practice exercise 3 Answer page 15
Relative to a context find ultrasmall ε and δ (or the relation between them) such that ε

δ
is:

(1) not ultralarge and not ultrasmall,

(2) ultralarge,

(3) ultrasmall.

4! The previous exercise show that if no relation is known between ultrasmall numbers
ε and δ, their quotient can be of any possible magnitude.

Contextual Notation
The only acceptable properties are those that do not refer to observability or those that use
the symbol "'" understood as relative to the context of the property in question.

A context is extended if parameters are added to the list.
Since observable numbers remain observable if we zoom further in, a property is not changed

if the context is extended.
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CHAPTER 2. BASIC PRINCIPLES

Answers to practice exercises

Answers to practice exercice 1, page 13

(1) Let x = N be ultralarge, and y = N + 1
N so x ' y but x2 = N2 6' N2 + 2 + 1

N2 = y2.

(2) Let h be ultrasmall, then let x = h and y = h2. Then x ' 0 and y ' 0 hence x ' y.
Then 1

h and 1
h2

are both ultralarge and 1
h2
− 1

h = 1
h( 1

h − 1). By ultracomputation, this is
ultralarge, hence 1

x 6'
1
y .

Answers to practice exercice 2, page 13
The terms ultrasmall or ultralarge all refer to a given context.

(1) As 1
ε is ultralarge 1 + 1

ε is ultralarge.

(2) We have
√
δ
δ = 1√

δ
which is ultralarge.

(If δ < c for any observable c, then
√
δ <
√
c and

√
δ ' 0 hence 1√

δ
is ultralarge.)

(3) Maybe surprisingly, this is ultrasmall. To see this we multiply and divide by the conjugate:

√
H + 1−

√
H − 1 =

(
√
H + 1−

√
H − 1)(

√
H + 1 +

√
H − 1)√

H + 1 +
√
H − 1

=
(H + 1)− (H − 1)√
H + 1 +

√
H − 1

=
2√

H + 1 +
√
H − 1

.

H is assumed positive, its square root (plus or minus 1) is also a positive ultralarge. The
sum of 2 positive ultralarge numbers is ultralarge hence the quotient is ultrasmall.

(4) H +K

HK
=

1

K
+

1

H
is ultrasmall.

(5) 5 + ε

7 + δ
− 5

7
=

35 + 7ε− 35− 5δ

49 + 7δ
=

'0︷ ︸︸ ︷
7ε− 5δ

49 + 7δ︸ ︷︷ ︸
'49

is ultrasmall or zero.

(6)

'−1︷ ︸︸ ︷√
1 + ε− 2√

1 + δ︸ ︷︷ ︸
'1

' −1, hence not ultralarge and not ultrasmall.
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CHAPTER 2. BASIC PRINCIPLES

Answers to practice exercice 3, page 13

(1) Take ε = δ then ε

δ
= 1.

(2) Take δ = ε2, then ε

δ
=

1

ε
is ultralarge.

(3) Take ε = δ2, then ε

δ
= δ is ultrasmall.
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3
Derivatives

We will often use dx to indicate an ultrasmall increment1 of the variable x. It may be positive
or negative but will never – by definition – 0.

Exercise 17
Let

f : x 7→ x2

The graph of this function is a curve (a parabola). Zoom in on the point 〈2, 4〉. 2 and 4 are
always observable. Consider the value of the function at 2+dx, and draw a straight line passing
through 〈2, 4〉 and 〈2 + dx, f(2 + dx)〉.

• What is the slope of this straight line?

• What is the observable neighbour of this slope?

Definition 5
A real function f defined on an interval containing a is differentiable at a if there is an observable
value D such that, for any dx

f(a+ dx)− f(a)

dx
' D

Then D = f ′(a) is the derivative of f at a.

The "for any dx" means that the value of D must not depend on the choice of the ultrasmall
dx, in particular, whether it is positive or negative.

When the derivative exists, it is the observable neighbour of f(a+ dx)− f(a)

dx
.

4! This is a statement about f at a, hence the context is the list of parameters of f
and a.

Metaphorically, finding the derivative can be described by: Zoom in. If what you see is
indiscernible from a straight line, then measure the slope of that line. Zoom out. Drop what you
cannot see anymore.

1increment: a positive or negative change in a variable. The term is generally used to mean a small change.

17



CHAPTER 3. DERIVATIVES

Exercise 18
Using definition 5 calculate the derivatives (if they exist) of the following:

(1) f : x 7→ 3x2 + x− 5 at x = −2 and x = 2.

(2) g : x 7→ 2x3 − 2 at x = 1 and x = 0.

(3) h : x 7→ |x| at x = 2, x = −2 and at x = 0.

Exercise 19
Let f : x 7→ x3 − x− 6. Check that 2 is a root of f . Are there other roots?
At what values of x is the derivative equal to zero? What is the value of the function at these

points? At what values of x de we have f ′(x) > 0 and at what values do we have f ′(x) < 0?
Use all this information to make a rough sketch of the function.

Exercise 20
Let f : x 7→ 2x3 − 4x2 + 2x. At what values of x is the function equal to zero? At what

values of x is the derivative equal to zero? What is the value of the function at these points?
At what values of x de we have f ′(x) > 0 and at wha

Use all this information to make a rough sketch of the function.

Practice exercise 4 Answer page 29
Calculate the derivative of the following:

(1) f : x 7→ 5x2 − 10x at x = 2

(2) g : x 7→ 5(x− 10)2 at x = 3

(3) h : x 7→ x4 + x3 + x2 + x+ 1 at x = 1

(4) k : x 7→ 5x2 + 10 at x = 2

Exercise 21
Consider the derivative at x (general case) of the function

f : x 7→ x2 + 3x.

Show that it is differentiable for all x and that f ′(x) = 2x+ 3.

Notice that in a derivative, the division is always between two ultrasmall numbers. They
cannot be replaced by 0 since 0

0 is not defined.
If a function is differentiable for all x in an interval, then f is said to be differentiable on

the interval.
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CHAPTER 3. DERIVATIVES

Definition 6
If f ′(x) exists for all x in I the derivative function is

f ′ : I → R
x 7→ f ′(x)

If f ′(a) = 0, then in an ultrasmall neighbourhood of a the function is stationary – on an
ultrasmall neighbourhood [a− dx; a+ dx] its variation is of the form ε · dx for ultrasmall ε – its
graph is indistinguishable from a horizontal line.

Exercise 22
Differentiate f : x 7→ x2 and g : x 7→ x3 at general x.

Notation: Let dx be ultrasmall relative to f and x. We write

∆f(a) = f(a+ dx)− f(a) or f(a+ dx) = f(a) + ∆f(a).

Hence, we have:

∆f(a)

dx
' f ′(a).

Notation: A "'" symbol may be replaced by a "=" symbol by adding a value ultraclose to
zero on one of the sides i.e., A ' B ⇒ A = B + ε where ε ' 0. Sometimes working with
equality is safer.

Hence
∆f(a)

dx
= f ′(a) + ε with ε ' 0

a a+ dx

f(a)

f(a+ dx)

dx

∆f(a)

Note: drawings involving ultrasmall or ultralarge values are not meant to be to scale nor be a
correct representation. Their purpose – as all drawings used in mathematics – is merely to help
the mind.
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CHAPTER 3. DERIVATIVES

Practice exercise 5 Answer page 29
Using definition 5, give the derivative functions of the following functions:

(1) f : x 7→ 3x+ 2

(2) g : x 7→ 2x2 − x

(3) h : x 7→ 5x3 + 2x2 − x

(4) k : x 7→ 5x3 + 2x2 + 3x+ 2

In some cases, the slope to the right of a point is not the same as the slope to the left of
that point. The derivative is the slope when it is the same on both sides.

Exercise 23
Using definition 5 calculate the derivatives (if they exist) of the following:

(1) g : x 7→

{
x2 − 1 if x < 0

x− 1 if x ≥ 0
at x = −3, x = 1 and x = 0.

(2) h : x 7→

{
x2 − 1 if x < 0.5

x− 1.25 if x ≥ 0.5
at x = 0.5.

(3) k : x 7→

{
x2 if x > 0

−x3 if x ≤ 0
at x = 0.

(4) f : x 7→

{
x2 − 1 if x < 0.5

x+ 1 if x ≥ 0.5
at x = 0.5.

Exercise 24
Let f : x 7→ ax+ b.
Show that the slope of f is a.

Theorem 6 (Derivative at a maximum or a minimum.)
Let f be a real function defined on an open interval ]a; b[ differentiable at c ∈]a; b[.
If f(c) is a maximum (or a minimum) then f ′(c) = 0.

Exercise 25
Prove theorem 6. (Hint, consider the variation ∆f(c).)
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CHAPTER 3. DERIVATIVES

Exercise 26
Prove the theorem 7.

Theorem 7 (Critical Point Theorem)
Let f be a continuous function on I and suppose that c is a point in I and f has either a
maximum or a minimum at c. Then one of the following three things must happen:

(1) c is an end point of I .

(2) f ′(c) is undefined.

(3) f ′(c) = 0

c c c

Exercise 27
A factory wants to make cardboard boxes (with no top) out of sheets of 30cm× 16cm

x

x

The volume will be a function of x. The dimensions of the base are 30− 2x and 16− 2x (in
centimetres). The height is x. What value(s) of x give(s) the maximum volume for the box?

Suppose f is differentiable at x0. We observe that through a microscope, the curve of a
function f at x0 is indistinguishable from a straight segment. This straight segment meets the
function at 〈x0; f(x0)〉 and there is a (unique) line which extends this segment with slope equal
to the derivative. This line is the tangent line.

Definition 7
Let f be differentiable at x0. The tangent line Tx0 is a line through 〈x0; f(x0)〉 with slope
f ′(x0).

The tangent line satisfies T (x0) = f(x0) and T ′(x0) = f ′(x0).

Exercise 28
Let f : x 7→ x2. Find the equation of the straight line tangent to f at x = 3.
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CHAPTER 3. DERIVATIVES

Exercise 29
Show that

Tx0 : x 7→ f ′(x0)(x− x0) + f(x0).

Exercise 30
Give the equation of the line tangent to x 7→ x3 − 3 · x2 at x = 2. For which values of x is

this tangent horizontal?

Exercise 31

(1) Find the slope of the curve given by y = 5x3 − 25x2 at x = 3.5.

Equivalent statement: compute f ′(x)

∣∣∣∣
x=3.5

(2) Find the equation of the line tangent to the curve at x = 1.

Exercise 32

(1) For f : x 7→ x2 + 5 and the point A〈0; 0〉, what is the equation of the line passing through
A, and tangent to f?

(2) If g : x 7→ ax2 + b, what values must a and b take to make g(x) tangent to t : x 7→ 3x− 2
at x = 5? What are the coordinates of the contact point?

Exercise 33
Differentiate

(1) f : x 7→ 1
x for x = 1 and x = 2.

(2) g : x 7→ 1
3x+2 for x = 0 and x = 1.

(3) h : x 7→ 1
x2

for x = 1 and x = −1.
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CHAPTER 3. DERIVATIVES

Linearity of the derivative

Theorem 8
Let f and g be real functions differentiable at a. Then the function f + g is differentiable at a
and

(f + g)′(a) = f ′(a) + g′(a).

Theorem 9
Let c ∈ R and f be a real function differentiable at a. Then the function c · f is differentiable
at a and

(c · f)′(a) = c · f ′(a).

Exercise 34
Prove theorems 8 and 9

Theorem 10
Let c ∈ R and f : x 7→ c, for x ∈ R

f ′(x) = 0.

Exercise 35
Prove theorem 10

Antiderivatives

Definition 8 (Antiderivative)
If f ′ is the derivative function of f , then f is the antiderivative function of f ′.

Exercise 36
The velocity of an object is given by the derivative of its position (variation of position divided

by variation of time).
The acceleration is given by the derivative of the velocity (variation of velocity divided by

variation of time).
On earth, the acceleration of a falling body is constant (when there is no air friction) and

approximately equal to 9.81m
s2

, written g.

(1) Find the formula for the velocity with respect to time.

(2) Given the formula for velocity, find the formula for the position of a falling body with
respect to time.

23



CHAPTER 3. DERIVATIVES

Exercise 37
Show that if F is an antiderivative of f , then for any constant C , F + C is also an an-

tiderivative of f .

Exercise 38
Considering previous exercise, reconsider your answers for exercise 36. Think in terms of

units to determine what the constants could represent.

Exercise 39
Find the antiderivatives for the following:

(1) x 7→ 3x

(2) x 7→ x2

(3) x 7→ 5

(4) t 7→ 3t+ 5

(5) u 7→ u2 + 3u+ 5

(6) v 7→ v3

Check your results by differentiating them.

Area under the curve of x 7→ x2

Exercise 40
To find the area under f : x 7→ x2 between x = 0 and x = 2, the idea is to consider the

variation of the area in order to find the area itself.
Assume that the area under f , between 0 and x is given by a function A(x). Consider the

variation ∆A(x), for ultrasmall variation of x noted dx.

∆A(x)

x

Even though the exact value of ∆A(x) may not be directly seen, it can be shown to be
between two values, m and M calculated by rectangles.

m < ∆A(x) < M
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• Give a formula for m, using x and f .

• Give a formula for M , using x and f .

• Divide all terms by dx.

• Show that all resulting quotients are ultraclose.

• Conclude that the area is given by a function which is the derivative of a known function.

THINGS TO LOOK OUT FOR
f ′(a) is NOT equal to ∆f(a)

dx
.

The relation is one of ultracloseness.

f ′(a) ' ∆f(a)

dx
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Practice exercise 6 Answer page 29
Find the derivative of each of the following functions and specify its domain, starting from

the definition.

(1) a : x 7→ 1

(2) b : x 7→ |x|

(3) c : x 7→ x

(4) d : x 7→ x2

(5) e : x 7→ |x2|

(6) f : x 7→ x3

(7) g : x 7→ |x3|

(8) h : x 7→ 1

x

(9) i : x 7→ 1

x2

Practice exercise 7 Answer page 29
Find the derivative of each of the following functions and specify its domain, using linearity

and the results from the previous exercise.

(1) a : x 7→ 2x2 − 4x+ 5

(2) b : x 7→ x3 + 2x

7

(3) c : x 7→ 3x3 − 2

x

(4) d : x 7→ x2 − 2x+ 5

x

(5) e : x 7→ 5x3 − 7|x|+ 8

Practice exercise 8 Answer page 30
Find all the antiderivatives of each of the following functions, using linearity and the results

from the exercise 1.

(1) a : x 7→ 10x

(2) b : x 7→ x2

(3) d : x 7→ x

|x|

(4) e : x 7→ 3x− 4

(5) f : x 7→ x2 − 2x+ 4

(6) g : x 7→ 1

x2

(7) h : x 7→ 2x2 − 1

2x2
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Practice exercise 9 Answer page 30
Let

f : x 7→ 1

3
x3 +

7

2
x2 + 12x

Calculate its derivative, find where the derivative is positive, where it is negative and where
it is equal to zero.

Calculate the intercepts of f and sketch the graph of f .

Practice exercise 10 Answer page 31
Consider the functions differentiated above:

(1) a : x 7→ 2x2 − 4x+ 5

(2) b : x 7→ x3 + 2x

7

For a, give the equation the line tangent to the curve at x = −2
For b, give the equation the line tangent to the curve at x = 1
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Answers to practice exercises

Answers to practice exercice 4, page 18

(1) f ′(2) = 10

(2) g′(3) = −70

(3) h′(1) = 10

(4) k′(2) = 20

Answers to practice exercice 5, page 20

(1) f ′(x) = 3

(2) g′(x) = 4x− 1

(3) h′(x) = 15x2 + 4x− 1

(4) k′(x) = 15x2 + 4x+ 3

Answers to practice exercice 6, page 26

(1) a′(x) = 0 Domain=R

(2) b′(x) =


1 if x > 0

undefined if x = 0

−1 if x < 0

Domain=R \ {0}

(3) c′(x) = 1 Domain=R

(4) d′(x) = 2x Domain=R

(5) e′(x) = 2x Domain=R

(6) f ′(x) = 3x2 Domain=R

(7) g′(x) =


3x2 if x > 0

0 if x = 0

−3x2 if x < 0

Domain=R

(8) h′(x) =
−1

x2
Domain=R

(9) i′(x) =
−2

x3
Domain=R

Answers to practice exercice 7, page 26

(1) a′(x) = 4x− 4 Domain=R

(2) b′(x) =
3x2 + 2

7
Domain=R

(3) c′(x) = 9x2 + 2
x2

Domain=R \ {0}
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(4) d′(x) = 1− 5

x2
Domain=R \ {0}

(5) e′(x) =


15x2 − 7 if x > 0

undefined if x = 0

15x2 + 7 if x < 0

Domain=R \ {0}

Answers to practice exercice 8, page 26

(1) A(x) = 5x2 + C for any C ∈ R

(2) B(x) =
x3

3
+ C for any C ∈ R

(3) D(x) = C for any C ∈ R (function undefined at x = 0)

(4) E(x) =
3

2
x2 − 4x+ C for any C ∈ R

(5) F (x) =
x3

3
− x2 + 4x+ C for any C ∈ R

(6) G(x) = −1

x
+ C for any C ∈ R

(7) H(x) =
2

3
x3 +

1

2x
+ C for any C ∈ R

Answers to practice exercice 9, page 27

f(x) = x

(
1

3
x2 +

7

2
x+ 12

)
S = {0}
f ′(x) = x2 + 7x+ 12 = (x+ 3)(x+ 4)

S ′ = {−3,−4}
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x

y

-10 -5 0 5

-15

-10

-5

0

5

−3

−13.5

−4

−13.333

Answers to practice exercice 10, page 27

(1) ta : x 7→ −12x− 3

(2) tb : x 7→ 5

7
x− 2

7
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4
Continuity

Informally: a function is continuous at x = a if it is where you would expect it to be by observing
where it is in the neighbourhood of a.

Definition 9 (Continuity )
Let f be a real function defined around a. We say that f is continuous at a if (for any x)

x ' a⇒ f(x) ' f(a).

The continuity of f at a is a property of f and a. Hence the context is given by f and a.
The definition of continuity can also be interpreted in the following ways:

Definition 10 (Continuity: equivalent definition)
Let f be a real function defined around a. We say that f is continuous at a if

f(a+ dx) ' f(a) not depending on dx.

(As for the derivative, the context is f and a.)

Exercise 41
Show that f : x 7→ x3 is continuous at a = 2.

Exercise 42
Show whether f : x 7→ x

x2 + 1
is continuous for all values of x.

Exercise 43

(1) Show that f : x 7→ |x| is continuous at x = 0, at x = 1, at x = −1 and at x in general.

(2) Show that g : x 7→

{
x2 if x ≥ 0

x3 if x < 0
is continuous at x = 0 and at x in general.

(3) Show that g : x 7→

{
x2 if x ≥ −1

x3 if x < −1
is not continuous at x = −1 but is continuous for all

other values of x.
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Exercise 44
Prove the following theorem:

Theorem 11
If a real function f is differentiable at a then f is continuous at a.

(1) Give a direct proof.

(2) Give a proof by contrapositive.

Exercise 45
Use an induction proof to show that x 7→ xn is continuous for all n.

Exercise 46

Use an induction proof to show that x 7→ a0 +

n∑
k=1

akx
k is continuous for all n.

Exercise 47
Prove the following theorem:

Theorem 12
Let f and g be two real functions continuous at a. Then

(1) f ± g is continuous at a.

(2) f · g is continuous at a.

(3) f

g
is continuous at a if g(a) 6= 0.

Exercise 48
Prove the following theorem:

Theorem 13
Let f and g be two real functions. If f is continuous at a and g is continuous at f(a), then g ◦ f
is continuous at a.

Definition 11 (Continuity on an Interval)
(1) Let f be a real function defined on the open interval ]a; b[. Then f is continuous on ]a; b[

if f is continuous at all x ∈]a; b[.

(2) Let f be a real function defined on the closed interval [a; b]. Then f is continuous on [a; b]
if f is continuous at all x ∈]a; b[ and if f continuous on the right at a and on the left at b.

Informally: a function is continuous on an interval if its curve can be drawn without lifting
the pencil, or if the function is where you expect it to be if it is hidden by a vertical line.
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Exercise 49
Determine whether f : x 7→ x2 is continuous on its domain.

Clearly, if f and g are continuous on an interval I then the sum, difference, product and
quotient (if g(x) 6= 0) are continuous on I . Moreover, if g is continuous on an interval containing
f(I) then g ◦ f is continuous on I .
Exercise 50

Show, using the definition of continuity, whether the following functions are continuous on
the given intervals.

(1) f1 : x 7→ 1
3x+

√
2 on R

(2) f2 : x 7→ x2 − 3x− 1 on R

(3) f3 : x 7→ x+ 2

x− 1
on ]1; +∞[

Exercise 51
Determine whether f : x 7→ 1

x is continuous on its domain.

Exercise 52

(1) If at 8 am a thermometer indicated 15◦C and indicated 20◦C a 12 o’clock, is it possible to
assert that there was at least one moment between 8 am and noon when the thermometer
indicated 18◦C?
If yes, is it possible to say at what time?

(2) A person in a car starts then drives 100km in 1 hour. Is it possible to assert that at least
at one instant during their trip their speedometer indicated 80kmh ? 100kmh ? 120kmh ?

Theorem 14 (Intermediate Value theorem)
Let f be a real function continuous on [a; b]. Let d be a real number between f(a) and f(b).
Then there exists c in [a; b] such that f(c) = d.

This theorem does not tell us how to find the root or the value c such that f(c) = d. It
only asserts the existence of such a number. For specific functions where we can calculate the
roots explicitly this theorem is not really necessary but, when proving theorems about continuous
functions in general, it is the only way to know that there is a root.
Exercise 53

Give an example of a function f discontinuous on [a; b] with f(a) < 0 and f(b) > 0 such
that there is no c in the interval [a; b] such that f(c) = 0.
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Exercise 54
Proving theorem 14.
Let f be continuous on an interval [a; b].
Assume d = 0 and f(a) < 0 < f(b).
The context is f , a, b and 0. Take an ultralarge positive integer N and partition [a; b] into N

even parts, each of ultrasmall length dx = b−a
N . We thus have x0 = a, x1 = x0+dx, . . . , xN = b.

Call xj the first point of the partition such that f(xj) ≥ 0. Hence f(xj−1) < 0.

(1) How close are f(xj) and f(xj−1)?

(2) Let c be the observable part of xj . Is it the observable part of xj−1?

(3) Is f(c) observable?

(4) How close is f(c) from f(xj) and f(xj−1)?

(5) What is the value of f(c)?

(For d 6= 0 the theorem would hold for g(x) = f(x)+d; for f(a) > f(b), reverse all inequality
symbols.)

Definition 12
A function has maximum (respectively minimum) on an interval I if there is a c ∈ I such that
for any x ∈ I we have f(c) ≥ f(x) (respectively f(c) ≤ f(x)).
If a point is either a maximum or a minimum, it is an extremum.

Theorem 15 (Extreme value)
Let f be a continuous function on [a; b]. Then it has a maximum and a minimum on [a; b].

Exercise 55
Without loss of generality, we consider the case of a maximum (for the minimum replace f

by −f ). Context is f, a and b.
We proceed similarly to exercise 54.
Let f be continuous on an interval [a; b].
Take an ultralarge positive integer N and partition [a; b] into N even parts, each of length

dx = b−a
N . We thus have x0 = a, x1 = x0 + dx, . . . , xN = b.

Call xj the first point of the partition such that f(xj) ≥ f(xi) for any i between 0 and N .

(1) Call c the observable part of xj . Is f(c) observable?

(2) Let x be observable. Then there is an i such that xi ≤ x ≤ xi+1. Using continuity,
conclude that f(x) ≤ f(xj).

(3) By the closure principle, conclude that f(c) is the maximum.
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Continuity and Differentiability

Theorem 16 (Rolle)
Let f be a real function continuous on [a; b] and differentiable on ]a; b[. If f(a) = f(b), then
there is a c ∈]a; b[ such that

f ′(c) = 0.

Exercise 56
Prove Rolle’s theorem.

Theorem 17 (Mean Value)
Let f be a real function continuous on [a; b] and differentiable on ]a; b[. Then there is a c ∈]a; b[
such that

f(b)− f(a) = f ′(c) · (b− a).

Exercise 57
Consider g which is obtained by subtracting the line `(x) through (a, f(a)) and (b, f(b))

from the function f i.e., g(x) = f(x)− `(x).

a b

Show that g satisfies Rolle’s theorem and conclude with the mean value theorem.

Variation

We now make the link between global variation and derivative.

Definition 13
Let f be a real function defined on an interval I .

(1) The function f is increasing on I if f(x) ≤ f(y), whenever x < y in I .

(2) The function f is decreasing on I if f(x) ≥ f(y), whenever x < y in I .
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If the inequalities are strict, then we say that the function is strictly increasing or strictly
decreasing.

Theorem 18 (Variation and Derivative)
Let f be a real function differentiable on an interval I . Then

(1) If f ′(x) ≥ 0 (> 0) whenever x ∈ I then f is (resp. strictly) increasing on I .

(2) If f ′(x) ≤ 0 (< 0) whenever x ∈ I then f is (resp. strictly) decreasing on I .

(3) If f ′(x) = 0 whenever x ∈ I then f is constant on I .

The converse is obvious: if f is increasing at a, then f ′(a) > 0.
Exercise 58

Prove theorem 18 using the mean value theorem.

Exercise 59
Prove that following theorem:

Theorem 19
The antiderivative of a function – when it exists – is unique up to an additive constant i.e.,
for any constant C

f ′ = g′ ⇒ f = g + C

Exercise 60
Consider the trigonometric circle. The chord BC is shorter than the arc BC . Trigonometric

functions are defined as vertical and horizontal coordinates of a point on the unit circle, thus
without reference to observability and are therefore always observable.

x

y

−∆ cos(θ)

∆ sin(θ)

θ
dθ

C

B

s

10

Show that sine and cosine are continuous functions.

Practice exercise 11 Answer page 39
Let f be continuous and positive on [a; b]
Assuming the area function under f is given by A. Show how A can be bounded above and

below. Show that there is a value c ∈ [a; b] such that A = f(c) · (b− a).
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Answers to practice exercice 11, page 38
Since f is continous on the interval, it has a minimum 〈m, f(m)〉 and a maximum 〈M,f(M)〉
Then f(m)·(b−a) ≤ A ≤ f(M)·(b−a). So f(m) ≤ A

b−a ≤ f(M). By the intermediate value
theorem (f is continuous) there is c ∈ [a; b] such that f(c) = A

b−a hence that A = f(c) · (b− a).

39



CHAPTER 4. CONTINUITY

40



5
Integrals

Area under a curve
Consider a nonnegative function f continuous on a closed interval [a; b]. Note A(x) the area
between the curve of f and the horizontal x-axis.

The variation between x and x+ dx is ∆A(x).

a b

x+ dx

x

∆A(x)A(x)

f

Exercise 61
Using the drawing above, consider f : x 7→ 3x2 + x between 2 and 2 + dx.

(1) Write the formula for the variation of the area ∆A(2) or at least for upper and lower
bounds to ∆A(2).

(2) Determine the equation of A.

Theorem 20
Let f be a non-negative function continuous on [a; b]. Then the function

A : x 7→ A(x),

where A(x) is the area under the curve of f between a and x, has the following properties

(1) A′(x) = f(x), whenever x ∈ [a; b].

(2) A(a) = 0.
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Exercise 62
Prove theorem 20.
Reread exercises 40 and 61 and generalise the proof. At one point you will need the extreme

value theorem (theorem 15).

Exercise 63
Calculate the area under f : x 7→ 5x3 − 2x2 + x− 2 between x = 1 and x = 4.
Use A′ = f and A(1) = 0.

Exercise 64
Consider the area under f between a and b. Show that if A′ = f and A(a) = 0, then

A(x) + C leads to C = −A(a).
Hence the area is calculated by A(b)−A(a).

Notation

A(b)−A(a) is written A(x)
∣∣∣b
a

A
∫

um of
∫

lices

Exercise 65
Let g : x 7→ x2, a = 0 and b = 5.

(1) Cut the interval [a; b] into an ultralarge number N of pieces. Put all these pieces together
again – add all their lengths. What is the result?

Write this using the symbol for a sum i.e., sum for k = 0 to N − 1.

(2) For each dx = b−a
N there is a corresponding ∆y. Add all the ∆y between f(a) and f(b).

Find the result.

(3) Use the microscope equation to express ∆y in terms of y or y′. Add all these terms. Find
the result.

The (vertical) variation of f between a and b is written f(x)
∣∣∣b
a
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Fundamental Theorem of Calculus

Definition 14
Let f be a real function defined on [a; b]. Let n be a positive integer. Let dx =

b− a
n

and
xi = a+ i · dx, for i = 0, . . . , n. We say that f is integrable on [a; b] if there is an observable I
such that for any ultralarge integer n with dx =

b− a
n

and xi = a+ i · dx, for i = 0, . . . , n, we
have

n−1∑
i=0

f(xi) · dx ' I.

If such an I exists, it is called the integral of f between a and b; written∫ b

a
f(x) · dx.

Note that this sum is defined whether f is positive or not.

Theorem 21
Let f be an function continuous on [a; b]. Let 1

N ' 0, dx = b−a
N and xk = a+ k · dx, then there

exists a point c ∈ [a; b] such that

f(c) · (b− a) =
N−1∑
k=0

f(xk) · dx

Exercise 66
Prove theorem 21. To prove this, use that since f is continuous on [a; b] there is a minimum

f(m) and a maximum f(M) of f on [a; b]. Replace all f(xk) one by f(m) then by f(M) to
conclude that the sum is not ultralarge and then use continuity again to conclude the proof.

Theorem 22 (Additivity of the integral)
Let f be a real integrable function continuous on [a; c] and b ∈ [a; c]. Then∫ b

a
f(x) · dx+

∫ c

b
f(x) · dx =

∫ c

a
f(x) · dx.

Exercise 67
Prove theorem 22.

Theorem 23
If f is continuous an [a; b] then f is integrable on [a; b]
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Exercise 68
Difficult!
To prove theorem 23, you must show that for 1

N ' 0 and 1
M ' 0 with du = b−a

N and
uk = a+ k · du and also dv = b−a

M and vj = a+ j · dv then

N−1∑
k=0

f(uk) · du '
N−1∑
j=0

f(vj) · dv

This can be done by using
∑N ·M−1

i=0 f(wi) · dw with dw = b−a
M ·M and comparing each sum

with this one.
By symmetry, it is enough to show that

N−1∑
k=0

f(uk) · du '
N ·M−1∑
i=0

f(wi) · dw

Consider an interval [u`;u`+1] and the same interval [wM ·`;wM ·`+M ], this interval of length
du is one step in the sum of f(uk) · dx and M steps in the sum of f(wi) · dw.

Show that

f(u`) · du '
M ·`+M−1∑
i=M ·`

f(wi) · dw

and conclude the proof.

Theorem 24
If f is a continuous function on [a, b] then

F (x) =

∫ x

a
f(t) · dt

is an antiderivative of f on ]a, b[ and the only one satisfying F (a) = 0.

Exercise 69
Prove theorem 24 starting with the definition of the derivative applied to the integral. By

theorem 23, it is integrable.

Theorem 25 (Fundamental theorem of Calculus)
Let f be a function continuous on [a; b]. Let F be an antiderivative of f on [a; b]. Then∫ b

a
f(x) · dx = F (b)− F (a).

The method used in the proof can also be seen as looking at the link between the global
variation of a function F and its derivative f .
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Exercise 70
Consider the variation of F between a and b.
Let n ∈ N such that 1/N ' 0 and dx = b−a

N and xk = a+ k · dx.
Then clearly, we have

F (b)− F (a) =
N−1∑
k=0

∆F (xk)

Here the context is f, a, b – not necessarily any given xj!

(1) On each interval [xk, xk+1] (which is also in the form [xk, xk + dx]) there is a c such that

F (xk + dx)− F (xk) = f(c) · dx,

Why is this? By what theorem?

(2) Explain why we have f(c) ' f(xk).

(3) Conclude by explaining why:

N−1∑
k=0

F (xk + dx)− F (xk) =
N−1∑
k=0

f(xk) · dx+
N−1∑
k=0

εk · dx.

Exercise 71
Explain and prove that (

N−1∑
k=0

εk · dx

)
' 0

hence that

F (b)− F (a) '
N−1∑
k=0

f(xk) · dx

Hence, the global variation of F between a and b is, up to an ultrasmall value, the sum of
F ′(xi) · dx provided F ′ is continuous on [a, b].

Page 41 we looked at one slice of the area under a positive function. Now we show that if
we sum up all slices on the area under a curve, the antiderivative gives the answer. Hence we
have

area '
N−1∑
i=0

f(xk) · dx.

45



CHAPTER 5. INTEGRALS

a bxk

xk

f(xk)

dx

area of rectangle is f(xk) · dx

4! The drawing can be misleading. It is only a specific case. A continuous function
does not necessarily appear as a straight line under magnification. The extreme value theorem
ensures that it has a maximum and minimum on the interval.

Notation: we write
F (x)

∣∣∣b
a

= F (b)− F (a).

If bounds are given, the integral represents a value: it is a definite integral. If no bounds
are given, it represents an antiderivative: it is an indefinite integral.

Exercise 72
Show that for a definite integral, it does not matter which antiderivative is chosen.

Exercise 73
What conditions would a function need to satisfy in order to be non-integrable? Give such

a function.

Exercise 74
A constant function f : x 7→ C from a to b defines a rectangle. Check that the area under f

is the “usual” formula: (b− a) · C

Exercise 75
The function y = x defines a triangle. Show that the area of the triangle from 0 to a yields

the “usual” result for the area of a triangle.
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Exercise 76

(1) Calculate the area between the curve and the x-axis for y = x2 from x = −5 to x = 5.

(2) Calculate the area between the curve and the x-axis for y = x3 from x = 0 to x = 3.

(3) Calculate the area between the curve and the x-axis for y = x3 from x = −2 to x = 0.

(4) Calculate the area between the curve and the x-axis for y = x3 from x = −10 to x = 10.

Notice that the integral can be a negative value. If f represents the velocity of an object, a
negative integral means that the distance is becomming smaller. If the integral is equal to zero,
the object is back where it started.

So far we have assumed that an area function exists. Now we can give a definition.

Definition 15 (Area)
The area between a positive continuous function and the x-axis, on an interval [a; b] is given by
the integral of the function on [a; b].

Exercise 77
Calculate the mean value of x 7→ x2 on [−4; 4].

Linearity

Theorem 26 (Linearity of the integral)
Let f and g be real functions continuous on [a; b]. Let λ, µ be real numbers. Then

(1) ∫ b

a
(λ · f(x)) · dx = λ ·

∫ b

a
f(x) · dx

(2) ∫ b

a
(f(x) + g(x)) · dx =

∫ b

a
f(x) · dx+

∫ b

a
g(x) · dx.

Note that if f and g are integrable then all linear combinations of f and g are integrable.
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Theorem 27 (Monotonicity of the integral)
Let f be a real function continuous on [a; b].

(1) If f(x) ≥ 0 (resp. > 0) for each x ∈ [a; b] then∫ b

a
f(x) · dx ≥ 0 (resp. > 0).

(2) If f(x) = 0 for each x ∈ [a; b] then ∫ b

a
f(x) · dx = 0.

(3) If f(x) ≤ 0 (resp. < 0) for each x ∈ [a; b] then∫ b

a
f(x) · dx ≤ 0 (resp. < 0).

Exercise 78
Prove theorems 26 and 27.
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Differential Calculus

For the following rules, the proofs proceed by steps:

(1) Definition of the derivative.

(2) Definition of ∆.

(3) Definition of operations on functions.

(4) Expansion of f(a+ dx) as f(a) + ∆f(a).

(5) Division by dx.

(6) Algebra.

(7) Definition of the antiderivative for the inverse rule about integration.

Exercise 79
Prove the following theorem:

Theorem 28
Let f and g be two real functions differentiable at a. Then the function f · g is differentiable at
a and

(f · g)′(a) = f ′(a) · g(a) + f(a) · g′(a).

Exercise 80
Using the derivatives of f : x 7→ x2 and g : x 7→ x3, calculate the derivative of h : x 7→ x5

(= x2 · x3).

Exercise 81
Prove :

Theorem 29

(xn)′ = n · xn−1

by induction.
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Exercise 82
Calculate the area between y = 5x4− 3x3 + 2x2− 10 and the x-axis from x = −1 to x = 1.

Exercise 83
Sketch the curve of f : x 7→ x2 and g : x 7→ x3. Calculate the points where f(x) = g(x)

Calculate the closed geometric area of the surface between the two curves.

Circular functions

Exercise 84
Observe the following drawing where the angle β has been drawn on top of the angle α.

(1) Explain why the angle right at the top is equal to α

(2) Express the lengths of a, b and c in terms of sin(α), cos(α), sin(β) and cos(β).

x

y

α

β

α

10
a

b

c

Exercise 85
Finish the proof of

Theorem 30

sin(α+ β) = sin(α) cos(β) + cos(α) sin(β)

cos(α+ β) = cos(α) cos(β)− sin(α) sin(β)
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Exercise 86
Use the definition of the derivative and theorem 30 to expand ∆ sin(a)

Exercise 87
To continue, you will need to prove theorem 31:

Theorem 31

sin(dθ)

dθ
' 1.

Suppose first that θ > 0 is in the first quadrant.

cos(θ)

sin(θ)
θ

tan(θ)

Comparing the area of the sector with that of the inside and outside triangles, we obtain

inside triangle ≤ sector ≤ outside triangle.

Rewrite this chain of inequalities replacing the areas by the corresponding formulae.
By using −θ if θ is negative, we see that the same inequalities are true for negative θ (in

the fourth quadrant).
Let θ be ultrasmall. By continuity, cos(θ) ' 1. Then conclude the proof of the theorem.

Exercise 88
Show that

1− cos(dθ)

dθ
' 0.

Hint: multiply above and below by (1 + cos(dθ))

Exercise 89
Using theorem 31 and previous exercise, find the derivative of sin(x) and of cos(x).

These results are summarised here:

Theorem 32
(1) sin′(θ) = cos(θ)

(2) cos′(θ) = − sin(θ)
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Exercise 90
Prove theorem 33.

Theorem 33 (Integration by parts)
Let f and g be real functions continuous on [a; b] such that f ′ and g′ are continuous on [a; b].
Then ∫ b

a
f ′(x) · g(x) · dx = f(x) · g(x)

∣∣∣∣b
a

−
∫ b

a
f(x) · g′(x) · dx.

Example: Consider the integral ∫ π/2

0
x · sin(x) · dx.

To integrate by parts, use f ′ : x 7→ sin(x) et g : x 7→ x. We have f(x) = − cos(x) and g′(x) = 1,
hence ∫ π/2

0
x · sin(x) · dx = −x · cos(x)

∣∣∣∣π/2
0

+

∫ π/2

0
cos(x) · dx = sin(x)

∣∣∣∣π/2
0

= 1.

We also deduce that ∫
x · sin(x) · dx = −x · cos(x) + sin(x) + C.

Exercise 91
Use integration by parts to compute the following integrals:

(1)
∫
x · cos(x) · dx

(2)
∫

(cos(x))2 · dx

(3)
∫
x2 · sin(x) · dx

(4)
∫

sin(x) · cos(x) · dx

Exercise 92
Prove:

Theorem 34
Let f and g be two real functions differentiable at a and g(a) 6= 0. Then the function f

g
is

differentiable at a and (
f

g

)′
(a) =

f ′(a) · g(a)− f(a) · g′(a)

g2(a)
.

Exercise 93
Calculate tan′(x) using tan(x) =

sin(x)

cos(x)
.
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Exercise 94
Find the slope of f : x 7→ x2 − 2x+ 1

x3 + x2
at x = 1.

Exercise 95
Show that for m ∈ Z

(xm)′ = m · xm−1.

Exercise 96
Given that the gravitational force between two masses is F = G

m1 ·m2

d2
(where d is the

distance between the two masses and G the universal constant of gravitation), what is the force
between objects A and B in the following situation? (For simplicity, the linear mass will be
considered to have no width and the other will be considered reduced to a point.)

A 6kg

3m6m

B 18kg

Practice exercise 12 Answer page 65
Differentiate the following for general x:

(1) f : x 7→ 5x4 + x3 − 2x2 + 25

(2) g : x 7→ 5
√

3 x2 − 100

(3) h : x 7→ x2 + 2x− 1

x3 − 5

(4) j : x 7→ 5x4 +
1

3x2 − 2x+ π

(5) k : x 7→ (5x+ 2) · 1

5x+ 2

(6) l : x 7→ 1

x
+

1

x2
+

1

x3
+

1

x4

(7) m : x 7→ 1 + x

1 + 1+x
x2

Practice exercise 13 Answer page 65
Sketch the curve of y = −(x− 3)(x+ 1)(x− 1).

Practice exercise 14 Answer page 65
Let y =

10x

x2 + 1
. Sketch the curve and give the equation of the line tangent to the curve at

x = 3.
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Practice exercise 15 Answer page 66
Consider each of the following as a function f , find the corresponding derivative function f ′.

(1) x3 + x2 + 2x− 4

(2) −x3 + 2x2 − 2x+ 1

(3) 1
3x

3 − 5
2x

2 + 6x

(4) 1
3(x− 2)3

(5) x2

x+ 2

(6) x− 1 +
9

x+ 1

(7) 4x2 + 4x+ 5

4x+ 2

(8) −x2 − 2x− 1

x+ 3

(9) |x− 2|

(10) x2

|x|+ 2

(11) x+ 2− 1

x+ 1

(12) |x3 − 6x2 + 11x− 6|

Exercise 97
Find the derivative of the following functions. Since they are piecewise defined, the answer

will be in 3 parts – one special point is the meeting point for both rules.

(1)

f : x 7→

{
x2 if x ≥ 1

2x− 1 if x < 1

(2)

g : x 7→

{
x2 if x > 2

x+ 2 if x ≤ 2

(3)

h : x 7→

{
x2 if x ≥ 3

2x if x < 3

Exercise 98
For each of the following functions, find an antiderivative:

(1) f : t 7→ 3t2 + 1

(2) f : t 7→ 4− 3t3

(3) f : s 7→ 7s−3

(4) f : x 7→ (x− 6)2

(5) f : y 7→ y
3
2

(6) f : x 7→ |x|

(7) f : u 7→ u2 + u−2

(8) f : x 7→ 4

(9) f : t 7→ t

(10) f : z 7→ 2

z2

Check your results by differentiating them.
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Exercise 99

(1) If F ′(x) = x+ x2 for all x, find F (1)− F (−1).

(2) If F ′(x) = x4 for all x, find F (2)− F (1).

(3) If F ′(t) = t
1
3 for all t, find F (8)− F (10).

Exercise 100
The following computation may seem correct:

∫ 1
−1 x

−2dx = − 1
x

∣∣∣∣1
−1

= −2 yet there is no

x ∈ [−1, 1] such that f(x) < 0. By theorem 27 we should therefore have a positive value for the
integral. Why is this not so?

Chain rule

Exercise 101
Prove the following theorem, assuming that ∆g(a) 6= 0:

Theorem 35 (Chain Rule)
Let f and g be real functions such that g is differentiable at a and f is differentiable at g(a).
The the function f ◦ g is differentiable at a and

(f ◦ g)′(a) = f ′(g(a)) · g′(a).

Exercise 102
Prove that the theorem holds also if ∆g(a) = 0.

Exercise 103
Give the derivatives of the following functions:

(1) f : x 7→ (x3 + 2x)4

(2) g : x 7→ (5x3 + 3x2)13

Exercise 104
Use (

√
x)2 = x and theorem 35 to find the derivative of y =

√
x (for x > 0) – assuming it

exists.
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Exercise 105
Give the derivatives of the following functions:

(1) f : x 7→ (
√
x+ 1)4

(2) g : x 7→
√

5x3 + 3x2

(3) h : x 7→
√
x2

Practice exercise 16 Answer page 66
Find the derivatives of the following:

(1) f1 : x 7→
√

3x3 + 2x+ 1

(2) f2 : x 7→ (x2 + 3)5

(3) f3 : x 7→ (ax+ b)n

(4) f4 : x 7→
√
x3 + 1

(5) f5 : x 7→ sin(x2 + 3x)

(6) f6 : θ 7→ cos2(3θ)

(7) f7 : u 7→ sin(sin(u))

(8) f8 : x 7→ tan2(tan2(x2))

(9) f9 : v 7→ sin(v)

tan(v)

(10) f10 : x 7→ sin2(x) + cos2(x)

Theorem 36 (Integration with inside derivative)
Let f and g be real functions differentiable on [a; b] such that f ′ and g′ are continuous on [a; b].
Then ∫ b

a
f ′(g(x)) · g′(x) · dx = f(g(x))

∣∣∣∣b
a

.

Exercise 106
Prove theorem 36.

Exercise 107
Compute the following integrals:

(1)
∫

2x · sin(x2) · dx

(2)
∫
x2 · (x3 + 1) · dx

(3)
∫

sin(x) · cos(cos(x)) · dx

(4)
∫

sin(x) · cos2(x) · dx
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The differential

Definition 16
Let f be a real function differentiable on an interval around a. Let dx be ultrasmall. The
differential of f at a, written df(a), is

df(a) = f ′(a) · dx.

Thus
df(a)

dx
= f ′(a)

or still (if we use y = f(a))
dy

dx
= y′

.
If f is differentiable the following holds:

∆f(a)

dx
' df(a)

dx

Whereas ∆f(a) is the variation of the function, the differential is the variation along the
tangent line.

f(a)

a
a+ dx

f(a+ dx)
f(a) + f ′(a) · dx

df(a)∆f(a)

Let f be a function. Recall that the inverse function of f , if it exists, is written f−1 and is
such that f−1(f(x)) = x amd if we write f(x) = y then we also have f(f−1(y)) = y.

4! f−1(x) is not 1

f(x)
.

A function has an inverse if the image of its curve by a symmetry through the y = x axis is
the curve of a function.
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f

y

x

∆x

∆y

f−1

y

∆y

∆x

x

Theorem 37 (Derivative of the Inverse)
If f : I → J is a function, differentiable on I and has an inverse f−1, and f ′(a) 6= 0 then this
inverse is differentiable at b = f(a) ∈ J and

df−1(b)

dy
=

1

f ′(a)
.

In general form:
df−1(y)

dy
=

1

f ′(x)

You may also use the following drawing to observe that the slope of the tangent of the inverse
is the reciprocal of the slope of the original tangent.

f

y

x

dx

dy

f−1

x

y

dx

dy

Exercise 108
Find the derivative of y = x

1
n .
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Exercise 109
Find the derivative of y = x

m
n .

This shows that the rule in exercise 81 holds also for rational n.

Exercise 110
Use | x |=

√
x2 to find an expression for the derivative of | x |.

Exercise 111
Difficult exercise!
Let h be ultrasmall relative to 1.

H : x 7→


0 if x ≤ −h
1
2h (x+ h) if −h < x < h

1 if x ≥ h

(1) What is the context of the function?

(2) Calculate H ′(x).

(3) Sketch H , first with horizontal scale [−2; 2] and vertical scale [0; 1] then, for same vertical
scale, take a horizontal scale [−2 · h; 2 · h].

Exercise 112
For the inverse functions, it is convenient to use the differential.
Prove the following theorem:
Hint: Suppose that arcsin(x) = y i.e., sin(y) = x. Then arcsin′(x) = dy

dx = dy
d sin(x) .

Theorem 38
(1) arcsin′(x) =

1√
1− x2

(2) arccos′(x) = − 1√
1− x2

(3) arctan′(x) =
1

1 + x2

Exercise 113
Let ε be ultrasmall relative to 1. Consider the function

H : x 7→ 1

2
+

1

π
· arctan

(x
ε

)
.

Calculate H ′(x) and sketch the curves of H and H ′.
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Exercise 114

(1) Show that x 7→ cos
(
1
x

)
cannot be extended continuously at x = 0.

(2) Show that

x 7→

{
x2 · sin

(
1
x

)
if x 6= 0

0 if x = 0

is differentiable for all x ∈ R but that its derivative x 7→ g′(x) is not continuous at 0.

Exercise 115
Compute the derivatives of the following:

(1) f : x 7→ sin2(3x+ π)

(2) g : x 7→ x · sin(x2 + 1)

(3) h : x 7→ sin2

(
x

x2 + 1

)
+ cos2

(
x

x2 + 1

)
(4) j : x 7→ 1 + tan2(x)

Exercise 116

(1) Show that f : x 7→ sin6(x) + cos6(x) + 3 sin2(x) cos2(x) is a constant function.
(Hint: use the derivative. . . )

(2) At what values does f : x 7→ sin(x) + cos(x) have stationary points?

(3) What is the equation of the straight line tangent to y = sin2(x) at x = π
4 ?

Variable substitution

Consider
∫ b

a
f(x) · dx.

If x is a function of u written x = g(u) then dx = g′(u) · du,
f(x) becomes f(g(u)) and the limits must be changed to a1 and b1 so that g(a1) = a and

g(b1) = b

Example: Let ∫ 1

0

√
1 +
√
x · dx.
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Consider the variable change u = 1 +
√
x. Then x = (u − 1)2 = g(u), the derivative of g is

continuous. If x = 0 then u = 1 and if x = 1 then u = 2. Moreover f(g(u)) =
√
u and

dx = 2 · (u− 1) · du.

Replacing all terms we obtain∫ 1

0

√
1 +
√
x · dx = 2

∫ 2

1

√
u · (u− 1) · du = 2

∫ 2

1

(
u3/2 − u1/2

)
· du

so that
2

(
2

5
u5/2 − 2

3
u3/2

) ∣∣∣∣2
1

=
8 + 8

√
2

15
.

As g has an inverse which is x 7→ 1 +
√
x and is differentiable (except at x = 0), we can revert

to the variable x and find an antiderivative:∫ √
1 +
√
x · dx =

4

5

(√
1 +
√
x

)5

− 4

3

(√
1 +
√
x

)3

+ C.

Exercise 117
Calculate ∫ 1

0

√
5x+ 2 · dx.

Use u = 5x+ 2. Calculate du, change the bounds, calculate the integral.
Same integral. Use v =

√
5x+ 2

The difficulty is usually to find which variable substitution is best.

Exercise 118
Use variable substitution to evaluate the following:

(1)
∫ 10

0

1

(2x+ 2)2
· dx

(2)
∫

(3− 4z)6 · dz

(3)
∫ 1

−1
2t
√

1− t2 · dt

(4)
∫ b

a

√
3y + 1 · dy

(5)
∫

4y

(2 + 3y2)2
· dy

(6)
∫ 2

−2
x(4− 5x2)2 · dx

(7)
∫

(1− x)
3
2 · dx
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Practice exercise 17 Answer page 67

(1)
∫ 1

0

u√
1− u2

· du

(2)
∫ 2

1

u√
1− u2

· du

(3)
∫ 1

0

√
1 +
√
x · dx

(4)
∫ 10

0
t(t2 + 3)−2 · dt

(5)
∫ 5

√
6
x(x2 + 2)

1
3 · dx

(6)
∫ 1

−1

x2

(4− x3)2
· dx

(7)
∫ 2

1

1

t2
√

1 +
1

t

· dt

Variable substitution is formalised in the following theorem.

Theorem 39 (Integration by variable substitution)
Let f be a real function continuous on [a; b]. Let g be a function whose derivative is continuous
and such that for e, d ∈ R we have g(d) = a and g(e) = b. Then∫ b

a
f(x) · dx =

∫ e

d
f(g(u)) · g′(u) · du.

This formula looks probably quite difficult, but hopefully, the exercises done above show that
it amounts to a systematic procedure.
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A simplified writing can be used: we have already used the writing y = f(x) where y is a
dependent variable and x the independent variable. When several functions are used, we can
write u = f(x) and v = g(x), then we have (for constant c and for U ′ = u and V ′ = v):

• c′ = 0

• (c · u)′ = c · u′

• (u+ v)′ = u′ + v′

• (u · v)′ = u′ · v + u · v′

•
(u
v

)′
=
u′ · v − u · v′

v2

• (u ◦ v)′ = u′ · v′ (in this case, u depends on v which depends on x).

• (xn)′ = nxn−1

• sin′(x) = cos(x)

• cos′(x) = − sin(x)

• tan′(x) = 1 + tan2(x) =
1

cos2(x)

•
∫
c · u · dx = c · U + k

•
∫

(u+ v) · dx = U + V + k

•
∫
u(v) · v′ · dx = U(v) + k

•
∫
u′ · v · dx = u · v −

∫
u · v′ · dx
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Optimisation Problems

Exercise 119
A 1l milk pack is made of cardboard. Its sides can only be rectangles. The height is twice

one of the other two dimensions. The area of the outside of the pack must be minimal.
What are the dimensions of the pack?

Exercise 120
Imagine you want to protect a part of a rectangular garden against a wall. You have 100m

of fence. (No fence is needed against the wall.)
What is the biggest area that you can protect?

Exercise 121
A cylindrical jar has a volume defined by its radius and its height. If it contains one litre

(1dm3), what are the dimensions that will make it have the least outside area?

Exercise 122
Find the length and width of the rectangle inscribed within the ellipse given by the formula

4x2 + y2 = 16 (sides parallel to the coordinate axes) such that its area is maximal.

Exercise 123
Let P be the parabola given by x 7→ x2 and A be the point 〈0; 5〉.
Find the point(s) on the parabola P such that its (their) distance to A is minimal.
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Answers to practice exercises

Answers to practice exercice 12, page 53

(1) f ′(x) = 20x3 + 3x2 − 4x

(2) g′(x) = 10
√

3x

(3) h′(x) = −x
4 + 4x3 − 3x2 + 10x+ 10

(x3 − 5)2

(4) j′(x) = 20x3 − 6x− 2

(3x2 − 2x+ π)2

(5) k′(x) = 0

(6) l′(x) = − 1

x2
− 2

x3
− 3

x4
− 4

x5

(7) m′(x) =
(x2 + x+ 1)(3x2 + 2x)− (x3 + x2)(2x+ 1)

(x2 + x+ 1)2
=
x(x3 + 2x2 + 4x+ 2)

(x2 + x+ 1)2

Answers to practice exercice 13, page 53

-2 3

-15

15

Answers to practice exercice 14, page 53
Tangent line is y = −4

5
x+

27

5
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-5 10

-5

7

Answers to practice exercice 15, page 54

(1) 3x2 + 2x+ 2

(2) −3x2 + 4x− 2

(3) x2 − 5x+ 6

(4) (x− 2)2

(5) x(x+ 4)

(x+ 2)2

(6) x2 + 2x− 8

(x+ 1)2

(7) 4x2 + 4x− 3

(2x+ 1)2

(8) −x
2 + 6x+ 5

(x+ 3)2

(9)


1 if x > 2

−1 if x < 2

not differentiable if x = 2

(10)


x(x+ 4)

(x+ 2)2
if x ≥ 0

−x(x− 4)

x− 2)2
if x ≤ 0

(11) x2 + 2x+ 2

(x+ 1)2

(12)


3x2 − 12x+ 11 if x ∈]1; 2[∪]3;∞[

−3x2 + 12x− 11 if x ∈]−∞; 1[∪]2; 3[

not differentiable if x ∈ {1; 2; 3}

Answers to practice exercice 16, page 56

(1) f ′1 : x 7→ 9x2 + 2

2
√

3x3 + 2x+ 1

(2) f ′2 : x 7→ 10x · (x2 + 3)4

(3) f ′3 : x 7→ an · (ax+ b)n−1

(4) f ′4 : x 7→ 3x2

2
√
x3 + 1

(5) f ′5 : x 7→ cos(x2 + 3x) · (2x+ 3)

(6) f ′6 : θ 7→ −6 cos(3θ) · sin(3θ)

(7) f ′7 : u 7→ cos(sin(u)) · cos(u)
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(8) f ′8 : x 7→ 8x tan(tan2(x2)(1 + tan2(tan2(x2))(tan(x2)(1 + tan2(x2))

(9) f9 : v 7→ − sin(v) (10) f ′10 : x 7→ 0

Answers to practice exercice 17, page 62

(1) 1 Use x = 1− u2.

(2) undefined – for u > 1 we have the square
root of a negative number.

(3) 8(
√
2+1)
15 Use u = 1 +

√
x

(4) 50
309 Use u = t2 + 3

(5) 195
8 Use u = x2 + 2

(6) 2
45 Use u = 4− x3

(7) −
√

6 + 2
√

2 Use u = 1 + 1
t
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7
More on integration

Exercise 124
Prove the following:

Theorem 40
Let f be a function continuous on [a, b] and let g(x) be defined by the following:

g : x 7→
∫ x

a
f(t)dt

Then g is an antiderivative of f .

Definition 17
The ∞ symbol in the bounds of an integral indicates a limit.∫ ∞

a
f(x) · dx = lim

n→∞

∫ n

a
f(x) · dx

This is calculated by taking ultralarge N in
∫ N
a and taking the observable part of the result

(if it exists and is independent of N ).

Exercise 125
Check that an derivative of x 7→ x

x+ 1
is x 7→ 1

(x+ 1)2
.

Sketch the curve of f : x 7→ 1

(x+ 1)2
for x > 0.

Calculate the area under f between 0 and 10.
Calculate the area under f between 0 and +∞

Exercise 126
Do infinitely long objects have a finite area?

(1) Calculate the area under f : x 7→ 1
x2

between x = 1 and x =∞, i.e: show that this area
does not depend on which ultralarge is chosen.

(2) Without any calculation, explain why the total length of both sides (the curve above and
the straight line below) is infinite.
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(3) Does this prove that a finite amount of paint would be enough to cover the area but not
enough to paint the border lines?

Definition 18
If the function to integrate is not defined at one of the bounds, then∫ b

a
f(x) · dx = lim

u→a+

∫ b

u
f(x) · dx

or ∫ b

a
f(x) · dx = lim

u→b−

∫ u

a
f(x) · dx

Exercise 127
Evaluate the integrals:

(1)
∫ 1

0
2x−2 · dx

(2)
∫ 3

−2
u−3 · du

(3)
∫ 2

−1
−5(t+ 1)−1/4 · dt

(4)
∫ 4

0

1

2
√
x
· dx

Exercise 128
In the following problems an object moves along the y axis. Its velocity varies with respect

to the time. Find how far the object moves between the given times t0 and t1.

(1) v = 2t+ 5 t0 = 0 t1 = 2

(2) v = 4− t t0 = 1 t1 = 4

(3) v = 3 t0 = 2 t1 = 6

(4) v = 3t2 t0 = 1 t1 = 3

(5) v = 10t−2 t0 = 1 t1 = 100

Antiderivative of x 7→ 1

x

Let n be a positive integer. From (xn+1)′ = (n+ 1) · xn we can deduce∫
xn · dx =

1

n+ 1
xn+1 + C, n 6= −1.

Hence an antiderivative of x 7→ 1

x
is not a particular case of this formula.
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Exercise 129
Let f be an antiderivative of x 7→ 1

x (why is there one?). Then f is strictly increasing (why?)
and so it has an inverse, call it g. Show that this implies g′(x) = g(x).

Exercise 130
Let a, b > 0. Use the substitution u = t

a to show that (considering f to be the antiderivative
of 1

x .) ∫ a·b

a

1

t
· dt =

∫ b

1

1

u
· du.

Deduce that f(a · b) = f(a) + f(b).

Exercise 131
Let a > 0 and b a rational number. Show that (considering f to be the antiderivative of 1

x .)

f(ab) = b · f(a).

(To find the substition, consider the transformation of the bounds.)

Exercise 132
What kind of function has the properties f(a · b) = f(a) + f(b) and f(ab) = b · f(a)?

Theorem 41
The antiderivative f of 1

x satisfies the following limits:

lim
x→0+

f(x) = −∞ and lim
x→+∞

f(x) = +∞.

Exercise 133
Prove theorem 42. Hint: for ultralarge x use ultralarge N such that 2N ≤ x.

Definition 19
The natural logarithm is the function ln :]0; +∞[→ R defined by

x 7→
∫ x

1

1

t
· dt.

Definition 20
We define e to be the unique number such that

ln(e) = 1.

e is an irrational number whose first digits are

e = 2.71828 . . .
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Definition 21
The exponential function exp : R −→]0; +∞[ is defined as the inverse of ln.

We have, for rational x, that ax = exp(x ln(a)), hence ex = exp(x). For irrational x, we
define ax to be exp(x ln(a)) hence also ex = exp(x) for all x.

We also have ln(ay) = y · ln(a) for all y. Writing x = ay we get ln(x) = loga(x) · ln(a) so
loga(x) = ln(x)

ln(a) .
The following property makes it a remarkable function.

Theorem 42

(exp(x))′ = exp(x).

(this was proven by exercise 136).

Theorem 43
(1) Let b ∈ R. The function x 7→ xb is differentiable on its domain and (xb)′ = b · xb−1, for all

x ∈ R.

(2) Let a > 0. The base a exponential is differentiable on its domain and (ax)′ = ln(a) · ax,
for x > 0.

(3) Let a > 0. The base a logarithm is differentiable and (loga(x))′ = 1
ln(a)·x .

Exercise 134
Prove theorem 44.

Exercise 135
Let f be a positive real function whose derivative is continuous. Calculate:∫

f ′(x)

f(x)
· dx

Exercise 136
Calculate ∫

tan(x) · dx

Exercise 137
Let f be a positive real function whose derivative is continuous. Calculate:∫

f ′(x) · ef(x) · dx
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Exercise 138
Using ln(x) = 1 · ln(x), use integration by parts to compute

∫
ln(x)dx.

Exercise 139

(1) Differentiate ln(x).

(2) Differentiate ex.

(3) Integrate x 7→ ex.

(4) Differentiate the function x 7→ ln(ln(x)).

(5) Differentiate the function x 7→ ln(xa) (Note that a is not the variable!)

(6) Differentiate the function x 7→ ln(ax).

(7) Differentiate x 7→ ex
2 .

(8) Using the fact that u = eln(u) (if u > 0) differentiate x 7→ ax (for a > 0 and x > 0).

(9) Same idea: Differentiate the function x 7→ xx.

Exercise 140
Differentiate ln(|x|).

This proves the following extension:

Theorem 44
The antiderivative of 1

x is ln(|x|) +K for some constant K .

Mean value of a function

The mean value is unambiguous when we consider n points, where n is a positive integer. We
now show that defining the mean value of a continuous function on [a; b] as

1

b− a

∫ b

a
f(x) · dx

is a natural extension of this concept.
Consider a continuous function f and the interval [a; b]. Context is a, b and f . Let N be

a positive unlimited integer. Let dx = (b − a)/N and xi = a + i · dx, for i = 1, . . . , N . Then
the mean value of the function can be approximated by the mean value of the N points f(xi),
i = 0, . . . , N − 1. But
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N−1∑
i=0

f(xi)

N
=

dx

b− a

N−1∑
i=0

f(xi) =
1

b− a

N−1∑
i=0

f(xi) · dx '
1

b− a

∫ b

a
f(x) · dx,

since f is continuous on [a; b].
The mean is the part of this number which is observable i.e., the integral. We therefore

define:

Definition 22
The mean value of a function f continuous on [a; b] is

1

b− a

∫ b

a
f(x) · dx.

The mean value is a number µ such that the area under the curve is equal to µ · (b− a), i.e.,
the height of a rectangle of basis (b− a) whose (oriented) area is equal to the integral.

Theorem 45
If f is a function continuous on [a; b], then there exists a point c ∈ [a; b] such that f(c) is the
mean value of the function on [a; b].

Note that theorem 46 is a restatement of theorem 21 which is the mean value theorem, for
the antiderivative of f . When we claim that there is a c ∈ [a; b] such that

f(c) =
1

b− a

∫ b

a
f(x) · dx,

we are in fact asserting that there is a c ∈ [a; b] such that

f(c) · (b− a) =

∫ b

a
f(x) · dx = F (b)− F (a),

and as F ′(x) = f(x), we conclude that there is a c ∈ [a; b] such that F ′(c)·(b−a) = F (b)−F (a).

Exercise 141
Calculate the mean value of x 7→ x2 on [−4; 4].

Exercise 142
Calculate the mean value of x 7→ x3 on [−4; 4].

Exercise 143
Let f : x 7→ x2 and the interval [0; t]. Find the value of t such that the mean value of f over

the interval is equal to π.
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Exercise 144
An object falling on earth satisfies the equation d(t) = 1

2gt
2 where g ≈ 9.81[m/s2], t is the

time in seconds and d(t) is the vertical distance.
If an object falls for 10s, what is its average distance from its initial point?

Exercise 145
An object falling on earth satisfies the equation d(t) = 1

2gt
2 where g ≈ 9.81[m/s2], t is the

time in seconds and d(t) is the vertical distance.
If an object falls for 10s, what is its average distance from its initial point?

Solid of Revolution
x

a

y

b

f

xi xi+1

f(xi)

f(xi+1)

Exercise 146
An area is calculated by approximating the surface by ultrasmall rectangles. To find the

formula for the volume of a solid of revolution, proceed in the same manner: consider that the
solid is ultraclose to an ultralarge number of ultrathin disks. Find the formula for the volume of
a solid of revolution given by a function f .

Exercise 147
Evaluate the volume of the solid of revolution of y =

1

x
around the x-axis between x = 1

and x = 10.
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Exercise 148
Evaluate the volume of the solid of revolution of y =

1

x
around the x-axis between x = 1

and x = +∞ i.e: take unlimited N then show that the result does not depend on the choice of
N .

Arc length

Exercise 149
Approximating the length of a curve by ultrasmall straight lines leads to the following defi-

nition. Explain why it is a reasonable definition (using the drawing).

Definition 23
Let f : [a; b]→ R be smooth. Then the graph of f has length

L =

∫ b

a

√
1 + f ′(x)2 · dx.

xi xi+1

f(xi)

f(xi+1)

Exercise 150
Find the lengths of the following curves:

(1) y = 2x3/2 0 ≤ x ≤ 1

(2) y =
2

3
(x+ 2)

3
2 0 ≤ x ≤ 3
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Practice exercise 18 Answer page 95
Find the antiderivatives of the following functions:

• fa : x 7→ 5x4 − 2x+ 4

• fb : x 7→ x3 − 5x2 + 3x− 2

• fc : x 7→ 2x− 1

• fd : x 7→ 5

4
x4 − 3

4
x2 +

5

2
x+

3

2

• fe : x 7→ 2x+ 1− 1

x2

• ff : x 7→ 3 +
2

x2
− 5

x3

• fg : x 7→ x3 +
1

x2

• fh : x 7→ 3
√
x+

1
3
√
x

• fi : x 7→ 1√
x

+
√
x

• fj : x 7→ (x+ 1)2

• fk : x 7→ 15(3x− 2)4

• fl : x 7→ (2x+ 1)3

• fm : x 7→ (3− x)11

• fn : x 7→ (3− 4x)4

• fo : x 7→
√

3x− 2

• fp : x 7→ 1√
x− 1

• fq : x 7→ 4x(3− x2)5

• fr : x 7→ (2x− 3)(x2 − 3x+ 1)4

• fs : x 7→ (3x2−4x+1)(x3−2x2+x+3)2

• ft : x 7→ (4x2 − 5x)2(16x− 10)

• fu : x 7→ (3x− 1)(3x2 − 2x+ 5)3

• fv : x 7→ 2x

(x2 + 1)2

• fw : x 7→ 2x+ 1

(x2 + x+ 3)2

• fx : x 7→ x
√
x2 + 1

• fy : x 7→ 3x2√
9 + x3

• fz : x 7→ (3x2 + 1)
√
x3 + x+ 2

• fA : x 7→ e2x

• fB : x 7→ 1

e3x

• fC : x 7→ xe−x
2

• fD : x 7→ 2−x

• fE : x 7→ e2x
√

1 + e2x

• fF : x 7→ x2ex

• fG : x 7→ ex sin(x)

• fH : x 7→ ex

1 + e2x

• fI : x 7→ 1

2x+ 3

• fJ : x 7→ 2x

x− 1

• fK : x 7→ x− 1

x+ 1

• fL : x 7→ (ln(x))2

• fM : x 7→ cos(x)

1 + sin(x)

• fN : x 7→ ln(x)

• fO : x 7→ x

x+ 1

• fP : x 7→ 1

x ln(x)
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limits

A function f is defined on the left of a (resp. on the right) if f(x) is defined for all x ' a with
x < a (resp. x > a). It is clear that f is defined around a if and only if f is defined on the right
and on the left of a.
Definition 24 (One sided Continuity)
Let f be a real function and a ∈ R.

(1) Suppose that f is defined on the left of a. Then f is continuous on the left at a if x < a
and x ' a =⇒ f(x) ' f(a).

(2) Suppose that f is defined on the right of a. Then f is continuous on the right at a if
x > a and x ' a =⇒ f(x) ' f(a).

It is immediate that f is continuous at a if and only if it is continuous on the right and on
the left at a.

We now extend the concept of continuity at a point to continuity on an interval.
Exercise 151

Prove directly that x 7→
√
x is continuous on its domain i.e, for any value x = a in the

domain.
Hint: start by the definition, then multiply and divide by (

√
a+ dx+

√
a.

If we want to study the behaviour of f in the neighbourhood of a, the function f must be
defined around a, but not necessarily at a. If the function is defined in a neighbourhood of a, by
closure, it is possible to use a neighbourhood defined by observable bounds. Hence f(x) must
exist for x ' a but f(a) does not necessarily exist. Context is f and a.

Definition 25
A deleted interval of a is an interval around a not containing a.

The limit of f at a is the value that f should take in order to be continuous at a.

Definition 26
Let f be a real function defined on a deleted interval of a. Context is f and a. We say that f
has a limit at a if there exists an observable number L such that if we had f(a) = L then f
would be continuous at a,
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In other terms, if there is an observable number L such that

x ' a =⇒ f(x) ' L.

Of course, by this definition, if f is continuous at a, then the limit of f at a is f(a).

The limit of f at a is the observable value of f(x) when x ' a

The definition of limit can also be interpreted in the following way:

If f has a limit at a then it is the observable neighbour of f(a+ dx).
If L is the limit of f at a we write

f(a+ dx) ' L

or
lim
x→a

f(x) = L,

or
lim
h→0

f(a+ h) = L.

Exercise 152
Calculate

lim
x→3

2x2 − 7x+ 3

x− 3
.

Show that it is equal to

lim
h→0

2(3 + h)2 − 7(3 + h) + 3

(3 + h)− 3
.

Exercise 153
Consider the signum function sgn, defined by

sgn : x 7→


−1 if x < 0,

0 if x = 0,

+1 if x > 0.

Check that sgn is defined around 0. Does it have a limit at 0?
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One Sided Limits
A function is defined on the left (respectively on the right) of a, if f(x) exists for x ' a, x < a
(respectively x ' a, x > a).

Definition 27
Let f be a real function defined on the left of a. The function f has a limit on the left of a if
there is an obervable number L such that

x ' a and x < a =⇒ f(x) ' L.

If the limit on the left exists it is unique (it is the observable neighbour of f(x)). We write:

lim
x→a−

f(x) = L, or x ' a− ⇒ f(x) = L.

The symbol a− indicates that we choose numbers less than a.
Similarly we define the limit on the right of a and write:

lim
x→a+

f(x) = L, or x ' a+ ⇒ f(x) = L.

The symbol a+ indicates that we choose numbers greater than a.

Exercise 154
Consider f defined by

f : x 7→ sin(1/x), for x > 0.

Check that f is defined on the right of 0.
Does it have a limit on the right of zero?

Using limits, the derivative may be re-defined in the following way:

Let f be a real function defined on an interval containing a. The derivative of f at a is the
limit

lim
h→0

f(a+ h)− f(a)

h

if the limit exists. If it exists, it is noted f ′(a). It is the derivative of f at a and f is said to be
differentiable at a.

The limit is only a rewriting. The "equal" sign used is there to say that the
limit is the value that the function can be ultraclose to.
When a limit appears in a problem, the first thing to do is to rewrite it in
terms of ultracloseness.

We extend the definition of limit to the cases where the function reaches ultralarge values.

4! Introducing a new symbol: if relative to a context, we consider ultralarge values of x
or ultralarge values of f(x), the infinity symbol "∞" is used. But no value can ever be equal
to ∞.
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4! The ∞ symbol cannot be used in operations, because it is not a number.

Definition 28
Let f be a real function defined on a deleted interval of a. The context is f and a. We say
that f tends to plus infinity (+∞) (resp. minus infinity (−∞)) at a if f(x) is positive ultralarge
(resp. negative ultralarge) whenever x ' a x 6= a
written

lim
x→a

f(x) =∞

The definition for one-sided limits is similar.

Similarly
lim
x→∞

f(x) = L

stands for: there is an observable L such that f(x) ' L whenever x is ultralarge.

Theorem 46 (Rule of de l’Hospital for 0/0 )
Let f and g be differentiable functions at a. Suppose that f(a) = g(a) = 0, but that g′(a) 6= 0.
Then

f(a+ dx)

g(a+ dx)
' f ′(a)

g′(a)

(provided f ′(a) and g′(a) exist).

Exercise 155
Prove theorem 40.

The rule of de l’Hospital also holds for the case where a is ultralarge. And more generally

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)

if limx→ag
′(x) 6= 0.

Exercise 156
Evaluate using de L’Hospital’s rule.

x− 1√
x2 − 1

for x ' 1.

Exercise 157
Evaluate using de L’Hospital’s rule.

(1) 1/t− 1

t2 − 2t+ 1
for t ' 1 (with (t > 1)).

(2)
√
x− 1

3
√
x− 1

for x ' 1.

(3) x2√
2x+ 1− 1

for x ' 0.
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(4) 2 + 1/t

3− 2/t
for t ' 0.

(5) x+ 5− 2x−1 − x−3

3x+ 12− x−2
for ultralarge x

(6)
(
t+

1

t

)
((4− t)3/2 − 8) for t ' 0.

(7) u+ u−1

1 +
√

1− u
for ultralarge u.

Practice exercise 19 Answer page 95
Calculate the following limits. The answer should be a number, +∞, −∞ or "does not exist"

(1) lim
x→∞

6x− 4

2x+ 5

(2) lim
x→∞

x3 − 10x2 − 6x− 2

(3) lim
x→∞

x2 − x+ 4

3x2 + 2x− 3

(4) lim
x→∞

√
x+ 2√
3x+ 1

(5) lim
x→∞

x−
√
x

(6) lim
x→∞

3
√
x+ 2

(7) lim
x→0−

1 +
1

x

(8) lim
x→0

1

x2
− 1

x

(9) lim
x→0

1 + 2x−1

7 + x−1 − 5x−2

(10) lim
x→2

1− x
2− x

(11) lim
x→3+

x+ 1

(x− 2)(x− 3)

(12) lim
x→3

x+ 1

(x− 2)(x− 3)

(13) lim
x→1

3x2 + 4

x2 + x− 2

(14) lim
x→2+

x2 + 4

x2 − 4

(15) lim
x→∞

√
x2 + 1− x

(16) lim
x→−∞

√
x2 + 1− x

(17) lim
x→∞

√
x2 − 3x+ 2−

√
x2 + 1

(18) lim
x→∞

3
√
x+ 4− 3

√
x

Practice exercise 20 Answer page 95
Evaluate using de L’Hospital’s rule.

(1) lim
x→0

√
9 + x− 3

x

(2) lim
x→2

2−
√
x+ 2

4− x2

(3) lim
u→∞

√
u+ 1 +

√
u− 1

u

(4) lim
x→0

(1− x)1/4 − 1

x

(5) lim
t→0+

(
1

t
+

1√
t

)
(
√
t+ 1− 1)

(6) lim
u→1

(u− 1)3

u−1 − u2 + 3u− 3

(7) lim
u→0+

1 + 5/
√
u

2 + 1/
√
u

(8) lim
x→∞

x+ x1/2 + x1/3

x2/3 + x1/4

(9) lim
t→∞

1− t/(t− 1)

1−
√
t/(t− 1)
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Asymptotes

Exercise 158
Consider the function f : x 7→ 1

x .

x

y

(1) What is the domain of this function? Specify the context.

(2) What happens to the curve close to the vertical axis i.e., for values of x close to 0? Consider
ultrasmall values of x.

(3) What happens to the curve close to the horizontal axis? i.e., for very large values of x?
Consider ultralarge values of x (positive or negative).

(4) Draw this function for a horizontal range of [−100; 100] and a vertical range of [−100; 100].

(5) Does f have a limit at 0?

Informally: For a given function f , a straight line is an asymptote of the function f if it is
ultraclose to the function when either

• x tends to ±∞ (horizontal or oblique asymptote).

• y (or f(x)) tends to ±∞ (vertical asymptote).
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Definition 29
A real function f has a vertical asymptote at x = a if f(x) is positive or negative ultralarge
for x ' a, x being less than a or x being greater than a.
If it is the case for x greater than a, we write

x ' a+ ⇒ f(x) is ultralarge

or
lim
x→a+

f(x) = ±∞

If it is the case for x less than a, we write

x ' a− ⇒ f(x) is ultralarge

or
lim
x→a−

f(x) = ±∞

Example: The function f : x 7→ 1/x has a vertical asymptote at 0. The only parameter of the
function is 1, always observable. If dx is a positive ultrasmall number then f(dx) is positive
ultralarge. Hence

1

dx
is ultralarge

We also extend properties of limits to cases where x is positive ultralarge or negative ul-
tralarge, written x→ +∞ or x→ −∞

Definition 30
A real function f defined on an interval of the form [b,+∞[ or ]−∞, b] has a horizontal asymptote
at +∞ (resp. −∞) if there is an observable number L such that

x→∞⇒ f(x) ' L.

(the same holds for −∞)

A context is f and b, but it is always possible to consider an observable b relative to f hence
a context is given by f , and x is ultralarge relative to that context. When this situation occurs,
we say that L is the limit of f at plus infinity (resp. minus infinity), or that the limit of f is L
when x tends to infinity.

We write that f has a horizontal asymptote y = L at plus infinity if

lim
x→+∞

f(x) = L.

(Similarly for negative infinity.)

Example: Consider the limit

lim
x→+∞

x2 − 3x+ 1

x2 + 1
.

This means: consider the fraction for an ultralarge value of x.

86



CHAPTER 9. ASYMPTOTES

The function f : x 7→ x2 − 3x+ 1

x2 + 1
is defined on R. 1, 2 and 3 are always observable. Let x

be ultralarge. Then

f(x) =
2x2 − 3x+ 1

x2 + 1
=
x2(2− 3

x + 1
x2

)

x2(1 + 1
x2

)
=

2−

'0︷︸︸︷
3

x
+

'0︷︸︸︷
1

x2

1 +
1

x2︸︷︷︸
'0

' 2

1
= 2,

hence f has a horizontal asymptote y = 2 at ±∞.

We now define the oblique asymptote

Definition 31
A real function f has an oblique asymptote at +∞ (resp. −∞) if there exist observable numbers
a, b (context is f ) such that

x→ +∞⇒ [f(x)− (ax+ b)] ' 0 (resp. x→ −∞⇒ [f(x)− (ax+ b)] ' 0).

The line y = ax+ b is the oblique asymptote of f (at ±∞).

The existence of an oblique asymptote is a property of f hence the context is f .

This is equivalent to saying that f(x) ' ax+ b whenever x is ultralarge.

Example: Consider

f : x 7→ x3 + 2x2 + x− 1

x2 + 1

defined on R. Using long division we have

f(x) = x+ 2− 3

x2 + 1
.

Let x be ultralarge. We have

f(x)− (x+ 2) =
−3

x2 + 1
' 0,

because x2 + 1 is ultralarge. Hence f has an oblique asymptote at y = x + 2 (at ±∞), i.e.,
a = 1 and b = 2.

Exercise 159
Find the asymptotes (if any) of

(1) f : x 7→ x

2x2 + 1

(2) g : x 7→ 2x2 + 1

x

(3) h : x 7→ x3 + 2

2x2 − 1

(4) i : x 7→ x2 + 2x+ 1

x+ 1

(5) j : x 7→ 3x3 + 2x2 − x+ 12

x2 + 8
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For functions which are not rational functions, where the polynomial long division does not
apply, we have the following:

Theorem 47
Let f be a real function and let a and b be observable (context is f ). Then f has an oblique
asymptote at y = ax+ b at +∞ (resp. −∞) if and only if

lim
x→+∞

f(x)

x
= a and lim

x→+∞
[f(x)− ax] = b.

(resp. lim
x→−∞

f(x)

x
= a and lim

x→−∞
[f(x)− ax] = b.)

Remark: If a = 0 the line y = ax+ b becomes y = b i.e., a horizontal asymptote.

Exercise 160
Use the definition of limit to rewrite the previous theorem without any reference to limits.

Exercise 161
Prove the previous theorem.

Example: Consider f : x 7→
√
x2 + 1 defined on R. Let x be positive ultralarge. Then

f(x)

x
=

√
x2 + 1

x
=

√
x2(1 + 1/x2)

x
=
|x|

'1︷ ︸︸ ︷√
1 + 1/x2

x
'

{
1 it x > 0

−1 if x < 0
.

Moreover:

f(x)− x =
√
x2 + 1− x =

(
√
x2 + 1− x) · (

√
x2 + 1 + x)√

x2 + 1 + x
=

1√
x2 + 1 + x

' 0.

Hence f has an oblique asymptote at y = x at +∞.
At −∞ the function has an oblique asymptote at y = −x.

Exercise 162
Find the asymptotes at infinity (if any) of

(1) f : x 7→ sin(x)

x

(2) g : x 7→ x2 + sin(x)

x

(3) h : x 7→ x2 + sin(x)√
x

(4) i : x 7→ x
3
2
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Exercise 163
Consider a rational function

f(x) =
p(x)

q(x)

where p and q are polynomials. Reminder: the order (or degree) of a polynomial function is the
value of the highest exponent of the variable.

(1) In which cases will there be a vertical asymptote?

(2) In which cases will be there be a horizontal asymptote?

(3) In which cases will there be a horizontal asymptote at y = 0?

(4) In which cases will there be an oblique asymptote?

Practice exercise 21 Answer page 96
Find all asymptots of the following functions.

(1) f1 : x 7→ x2 − x
x− 1

(2) f2 : x 7→ 4x3 + 2x2 − 5

3x3 − 4x2

(3) f3 : x 7→
√
x2 + x

(4) f4 : x 7→
√
x5 + x√
3x5 − x

(5) f5 : x 7→ x2 + 2x

sin(x)

(6) f6 : x 7→ sin(x)

x2 − x

(7) f7 : x 7→ 10x

10x + 1
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10
Bending

Definition 32
Let f be differentiable on an interval I . The curve of f is bending upwards on I if for every
x, u ∈ I , f(u) is above the line tangent to f at (x, f(x)), i.e.,

f(u) ≥ f ′(x)(u− x) + f(x).

The curve of f is bending downwards on I if (−f) is bending upwards.

f(x)

x u

f(u)

t(u)

For ultrasmall (u− x) this can be rephrased in the following manner:

Definition 33
A differentiable function f is bending upwards at a if

f(a+ dx) ≥ f(a) + f ′(a) · dx.

Theorem 48 (Bending and Second Derivative)
Let f be twice differentiable on an interval I . Then

(1) If f ′′(x) ≥ 0 whenever x ∈ I then f is bending upwards on I .

(2) If f ′′(x) ≤ 0 whenever x ∈ I then f is bending downwards on I .

Exercise 164
Use the mean value theorem to prove theorem 48.
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11
Curve Sketching

Curve sketching needs the following steps:

• Find the domain.

• Find the roots and the intercept (if any).

• Find the asymptotes (if any).

• Find the derivative (if any).

• Find the roots of the derivative (if any).

• Find the second derivative (if any).

• Find the roots of the second derivative (if any).

• Determine the maximums and minimums and bending direction.

• Put all these values in a table.

• Draw arrows which indicate the general direction of the function:

• Use this information to choose a convenient scale.

• Sketch the function.

Practice exercise 22 Answer page 97
Sketch the following:

(1) f1 : x 7→ x2

x+ 2

(2) f2 : x 7→ x− 1 +
9

x+ 1

(3) f3 : x 7→ −x
2 − 2x− 1

x+ 3

(4) f4 : x 7→ x+ 3 +
1

2x+ 1

(5) f5 : x 7→ x2 − 4x+ 6

(x− 2)2

(6) f6 : x 7→ 2x2 − 3

x2 − 1

(7) f7 : x 7→ x2 + 3x− 4

x2 − x− 2

(8) f8 : x 7→ x3 + 2

2x

(9) f9 : x 7→ x3 − 1

x2

(10) f10 : x 7→ 2x− 1√
x2 + 2
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(11) f11 : x 7→
√
x2 + 1

x+ 1
(12) f12 : x 7→

√
x2 − 4x+ 3

x+ 1

Practice exercise 23 Answer page 98
Sketch the following

• g1 : x 7→ x ln(x)

• g2 : x 7→ x

ln(x)

• g3 : x 7→ ex

ln(x)

• g4 : x 7→ sin(
√
x)

ex

• g5 : x 7→ sin(cos(x))

• g6 : x 7→ cos(sin(x))

• g7 : x 7→ ex

1 + ex

• g8 : x 7→ 1

1 + ex

• g9 : x 7→ ln(x2 + 1)

• g10 : x 7→ ex

x− 2

• g11 : x 7→ e−x
2

• g12 : x 7→ x · ex

ln(x)
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Answers to practice exercises

Answers to practice exercice 18, page 73

(1) 3

(2) ∞

(3) 1/3

(4) 1/
√

3

(5) ∞

(6) ∞

(7) −∞

(8) ∞

(9) 0

(10) does not exist

(11) ∞

(12) does not exist

(13) does not exist

(14) ∞

(15) 0

(16) ∞

(17) 0

(18) −3/2

Answers to practice exercice 19, page 73

(1) 1/6

(2) 1/16

(3) 0

(4) −1/4

(5) 1/2

(6) −1

(7) 5

(8) ∞

(9) 2

Answers to practice exercice 20, page 83
(Integration constant to be added)

• Fa : x 7→ x5 − x2 + 4x

• Fb : x 7→ 1

4
x4 − 5

3
x3 +

3

2
x2 − 2x

• Fc : x 7→ x2 − x

• Fd : x 7→ 1

4
x5 − 1

4
x3 +

5

4
x2 +

3

2
x

• Fe : x 7→ x2 + x+
1

x

• Ff : x 7→ 3x− 2

x
+

5

2x2

• Fg : x 7→ x4

4
− 1

x

• Fh : x 7→ 3

4

3
√
x4 +

3

2

3
√
x2

• Fi : x 7→ 2
√
x+

2

3

√
x3

• Fj : x 7→ 1

3
(x+ 1)3

• Fk : x 7→ (3x− 2)5

• Fl : x 7→ 1

8
(2x+ 1)4

• Fm : x 7→ − 1

12
(3− x)12

• Fn : x 7→ − 1

20
(3− 4x)5

• Fo : x 7→ 2

9

√
(3x− 2)3

• Fp : x 7→ 2
√
x− 1

• Fq : x 7→ −1

3
(3− x2)6

• Fr : x 7→ 1

5
(x2 − 3x+ 1)5

• Fs : x 7→ 1

3
(x3 − 2x2 + x− 3)3

• Ft : x 7→ 2

3
(4x2 − 5x)3
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• Fu : x 7→ 1

8
(3x2 − 2x+ 5)4

• Fv : x 7→ − 1

x2 + 1

• Fw : x 7→ − 1

x2 + x+ 3

• Fx : x 7→ 1

3

√
(x2 + 1)3

• Fy : x 7→ 2
√

9 + x3

• Fz : x 7→ 2

3
(x3 + x+ 2)

√
x3 + x+ 2

• FA : x 7→ e2x

2

• FB : x 7→ − 1

3e3x

• FC : x 7→ −e
−x2

2

• FD : x 7→ − 1

ln(2)
2−x

• FE : x 7→ 1

3
(e2x + 1)

3
2

• FF : x 7→ ex(x2 − 2x+ 2)

• FG : x 7→ ex

2
(sin(x)− cos(x))

• FH : x 7→ arctan(ex)− π

2

• FI : x 7→
ln(x+ 3

2)

2

• FJ : x 7→ 2x+ 2 ln(x− 1)

• FK : x 7→ x− 2 ln(x+ 1)

• FL : x 7→ 2x

(
ln(x)2

2
− ln(x) + 1

)
• FM : x 7→ ln(sin(x) + 1)

• FN : x 7→ x ln(x)− x

• FO : x 7→ x− ln(x+ 1)

• FP : x 7→ ln(ln(x))

Answers to practice exercice 21, page 89

Vertical asymptote of the form x = c, horizontal asymptote of the form y = b, oblique
asymptote of the form y = ax+ b.

(1) y = x

(2) y = 1, x = 0, x = 4/3

(3)
{
y = x if x > 0

y = −x if x < 0

(4) y =
√

1/3, x = 4
√

1/3

(5) x = k · π k ∈ Z

(6) y = 0, x = 2

(7)
{
y = 0 if x < 0

y = 1 if x > 0
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Answers to practice exercice 22, page 93

(f1)

x

y

(f2)

x

y

(f3)

x

y

(f4)

x

y

(f5)

x

y

(f6)

x

y

(f7)

x

y

(f8)

x

y

(f9)

x

y

(f10)

x

y

(f11)

x

y

(f12)

x

y
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Answers to practice exercice 23, page 94

(g1)

x

y

(g2)
x

y

(g3)
x

y

(g4)

x

y

(g5)

x

y
(g6)

x

y

(g7)

x

y

(g8)

x

y

(g9)
x

y

(g10) x

y
(g11)

x

y

(g12)
x

y
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