21st Century Mathematics in the Classroom Analysis using ultrasmall numbers

Richard O'Donovan

Collège et École de Commerce André-Chavanne Geneva

February 202014

The Dawn of Analysis

$$
f: x \mapsto x^{2}
$$

Seventeenth century:

$$
f^{\prime}(2)=\frac{(2+h)^{2}-2^{2}}{h}=\frac{4 h+h^{2}}{h}
$$

The Dawn of Analysis

$$
f: x \mapsto x^{2}
$$

Seventeenth century:

$$
f^{\prime}(2)=\frac{(2+h)^{2}-2^{2}}{h}=\frac{4 h+h^{2}}{h}
$$

The Dawn of Analysis

$$
f: x \mapsto x^{2}
$$

Seventeenth century:

$$
f^{\prime}(2)=\frac{(2+h)^{2}-2^{2}}{h}=\frac{4 h+h^{2}}{h}
$$

(so division is possible)

The Dawn of Analysis

$$
f: x \mapsto x^{2}
$$

Seventeenth century:

$$
\begin{aligned}
f^{\prime}(2)= & \frac{(2+h)^{2}-2^{2}}{h}=\frac{4 h+h^{2}}{h} \\
& \text { (so division is possible) }
\end{aligned}
$$

The Dawn of Analysis

$$
f: x \mapsto x^{2}
$$

Seventeenth century:

$$
\begin{aligned}
f^{\prime}(2)= & \frac{(2+h)^{2}-2^{2}}{h}=\frac{4 h+h^{2}}{h}=4+h \\
& \text { (so division is possible) }
\end{aligned}
$$

The Dawn of Analysis

$$
f: x \mapsto x^{2}
$$

Seventeenth century:

$$
\begin{aligned}
& f^{\prime}(2)= \frac{(2+h)^{2}-2^{2}}{h}=\frac{4 h+h^{2}}{h}=4+h \\
& \text { (so division is possible) } \quad \text { then } \\
& h=0
\end{aligned}
$$

The Dawn of Analysis

$$
f: x \mapsto x^{2}
$$

Seventeenth century:

$$
\begin{aligned}
f^{\prime}(2)= & \frac{(2+h)^{2}-2^{2}}{h}=\frac{4 h+h^{2}}{h}=4+h=4 \\
& \text { (so division is possible) } \quad h=0
\end{aligned}
$$

The Critic

Bishop Berkeley (1734)
" And what are these evanescent Increments? They are neither finite Quantities nor Quantities infinitely small, nor yet nothing. May we not call them the Ghosts of departed Quantities?"
¿Y qué son estos incrementos evanescentes? No son ni cantidades finitas ni cantidades infinitamente pequeñas, ni tampoco son nada. ¿No podríamos acaso llamarlos fantasmas de cantidades difuntas?

The Remedy

Need for foundations

The Remedy

Need for foundations

- Weierstrass and Cauchy ε, δ method

The Remedy

Need for foundations

- Weierstrass and Cauchy ε, δ method Advantages
- no infinities (neither large nor small) are used
- the method is sound

The Remedy

Need for foundations

- Weierstrass and Cauchy ε, δ method Advantages
- no infinities (neither large nor small) are used
- the method is sound

Disadvantages

- technically complicated mastering of order of quantifiers
- "reverse" method: error on output determines input

Infinitesimals are now banished form the mainstream mathematical discourse.

From these earlier times, we still have powerful metaphors:

Infinitesimals are now banished form the mainstream mathematical discourse.

From these earlier times, we still have powerful metaphors:

- Leibniz' concept of x being "infinitely close" to a.

Infinitesimals are now banished form the mainstream mathematical discourse.

From these earlier times, we still have powerful metaphors:

- Leibniz' concept of x being "infinitely close" to a.
- Newton's concept of x "moving" towards a.
"arbitrarily close to"
manipulation of adverbs

The Nonstandard answers

The Compactness Theorem

"A set of first-order sentences has a model if and only if every finite subset of it has a model. '

Gödel (1930) Maltsev (1936)

The Compactness Theorem

"A set of first-order sentences has a model if and only if every finite subset of it has a model. "

Gödel (1930) Maltsev (1936)
Consequence

The Compactness Theorem

"A set of first-order sentences has a model if and only if every finite subset of it has a model. "

Gödel (1930) Maltsev (1936)
Consequence
Let \mathcal{S}_{n} be the sentence (for $n \in \mathbb{N}$)

$$
(\exists x)\left(0<x<\frac{1}{n}\right)
$$

and $A=\left\{\mathcal{S}_{n} \mid n \in \mathbb{N}\right\}$

The Compactness Theorem

"A set of first-order sentences has a model if and only if every finite subset of it has a model. "

Gödel (1930) Maltsev (1936)
Consequence
Let \mathcal{S}_{n} be the sentence (for $n \in \mathbb{N}$)

$$
(\exists x)\left(0<x<\frac{1}{n}\right)
$$

and $A=\left\{\mathcal{S}_{n} \mid n \in \mathbb{N}\right\}$ then

There is a model in which

$$
(\exists x)(\forall n \in \mathbb{N})\left(0<x<\frac{1}{n}\right)
$$

Robinson (1960) and Luxemburg

The hyperreals:

Robinson (1960) and Luxemburg

The hyperreals: an extension containing

- hyperfinite integers

$$
\mathbb{Z} \subset{ }^{*} \mathbb{Z}
$$

Robinson (1960) and Luxemburg

The hyperreals: an extension containing

- hyperfinite integers

$$
\mathbb{Z} \subset{ }^{*} \mathbb{Z}
$$

- infinitely large and infinitely small rationals and reals

$$
\begin{aligned}
& \mathbb{Q} \subset{ }^{*} \mathbb{Q} \\
& \mathbb{R} \subset^{*} \mathbb{R}
\end{aligned}
$$

Robinson (1960) and Luxemburg

The hyperreals: an extension containing

- hyperfinite integers

$$
\mathbb{Z} \subset{ }^{*} \mathbb{Z}
$$

- infinitely large and infinitely small rationals and reals

$$
\begin{aligned}
& \mathbb{Q} \subset{ }^{*} \mathbb{Q} \\
& \mathbb{R} \subset^{*} \mathbb{R}
\end{aligned}
$$

- Every function $f: \mathbb{R} \rightarrow \mathbb{R}$ has a unique extension

$$
{ }^{*} f:{ }^{*} \mathbb{R} \rightarrow{ }^{*} \mathbb{R}
$$

Standard Part

Every hyppereal which is not infinitely large is infinitely close to a real number: its standard part, written $\operatorname{st}(x)$

Standard Part

Every hyppereal which is not infinitely large is infinitely close to a real number: its standard part, written $\operatorname{st}(x)$

If h is infinitesimal,

$$
\operatorname{st}(4+h)=4
$$

Standard Part

Every hyppereal which is not infinitely large is infinitely close to a real number: its standard part, written $\operatorname{st}(x)$

If h is infinitesimal,

$$
\operatorname{st}(4+h)=4
$$

for standard x the derivative of $f: x \mapsto x^{2}$ at $x=2$ is defined by

$$
s t\left(\frac{(2+h)^{2}-2^{2}}{h}\right)=s t(4+h)=4
$$

if this does not depend on infinitesimal h.

Standard Part

Every hyppereal which is not infinitely large is infinitely close to a real number: its standard part, written $\operatorname{st}(x)$

If h is infinitesimal,

$$
\operatorname{st}(4+h)=4
$$

for standard x the derivative of $f: x \mapsto x^{2}$ at $x=2$ is defined by

$$
s t\left(\frac{(2+h)^{2}-2^{2}}{h}\right)=s t(4+h)=4
$$

if this does not depend on infinitesimal h.
Problem solved?

Difficulty 1

Difficulty 1

The existence of external functions.

Difficulty 1

The existence of external functions.
The "updown" external function

$$
f: x \mapsto 2 \cdot s t(x)-x
$$

Difficulty 1

The existence of external functions.
The "updown" external function

$$
f: x \mapsto 2 \cdot s t(x)-x
$$

Difficulty 1

The existence of external functions.
The "updown" external function

$$
f: x \mapsto 2 \cdot s t(x)-x
$$

Difficulty 1

The existence of external functions.
The "updown" external function

$$
f: x \mapsto 2 \cdot s t(x)-x
$$

very nasty...

Difficulty 2

Difficulty 2

The nonstandard definition of the derivative is for standard (real) points only.

Difficulty 2

The nonstandard definition of the derivative is for standard (real) points only. $f^{\prime}(2+\varepsilon)$ is not easily determined.

Difficulty 2

The nonstandard definition of the derivative is for standard (real) points only. $f^{\prime}(2+\varepsilon)$ is not easily determined.

Do we really need $f^{\prime}(2+\varepsilon)$?

Difficulty 2

The nonstandard definition of the derivative is for standard (real) points only. $f^{\prime}(2+\varepsilon)$ is not easily determined.

Do we really need $f^{\prime}(2+\varepsilon)$?
Yes, if we want $f^{\prime}(x)$ to be a function with same kind of domain as f.

Difficulty 2

The nonstandard definition of the derivative is for standard (real) points only. $f^{\prime}(2+\varepsilon)$ is not easily determined.

Do we really need $f^{\prime}(2+\varepsilon)$?
Yes, if we want $f^{\prime}(x)$ to be a function with same kind of domain as f.

Yes, if we want a solution to a differential equation to be infinitely many infinitely small steps following the slope.

Difficulty 2

The nonstandard definition of the derivative is for standard (real) points only. $f^{\prime}(2+\varepsilon)$ is not easily determined.

Do we really need $f^{\prime}(2+\varepsilon)$?
Yes, if we want $f^{\prime}(x)$ to be a function with same kind of domain as f.

Yes, if we want a solution to a differential equation to be infinitely many infinitely small steps following the slope.

Yes, if we want the integral to be the sum of infinitely many infinitely thin slices.

Internal view

Vopěnka (1976)
Nelson (1977)
Infinitesimals are singled out from among the familiar mathematical objects by a new property.

Internal view

Vopěnka (1976)
Nelson (1977)
Infinitesimals are singled out from among the familiar mathematical objects by a new property.
This distinction
standard - nonstandard
is made within the real numbers

Internal view

Vopěnka (1976)
Nelson (1977)
Infinitesimals are singled out from among the familiar mathematical objects by a new property.
This distinction
standard - nonstandard
is made within the real numbers
Difficulties 1 and 2 remain.

Many levels

Wallet and Péraire (1989)

Many levels

Wallet and Péraire (1989)
Péraire (1992)
RIST
Extra axioms are added to ZFC.

Many levels

Wallet and Péraire (1989)
Péraire (1992)
RIST
Extra axioms are added to ZFC.
Hrbacek (2004)
FRIST
Simplifies and extends the power of Péraire's approach.

Introductory Analysis

Hrbacek Lessmann O'Donovan
Adaptation of FRIST to high school teaching.

Introductory Analysis

Hrbacek Lessmann O'Donovan
Adaptation of FRIST to high school teaching.
Since 2006: used in at least two Geneva Colleges by up to 10 teachers.

ANALYSIS WITH ULTRASMALL NUMBERS

Properties of Observability

Let x, y and z be real numbers.
(1) x is as observable as x.

Properties of Observability

Let x, y and z be real numbers.
(1) x is as observable as x.
(2) If y is not observable when x is observable, then x is observable when y is observable..

Properties of Observability

Let x, y and z be real numbers.
(1) x is as observable as x.
(2) If y is not observable when x is observable, then x is observable when y is observable..
(3) If y is observable when x is observable and if z is observable when y is observable, then z is observable when x is observable.

Properties of Observability

Let x, y and z be real numbers.
(1) x is as observable as x.
(2) If y is not observable when x is observable, then x is observable when y is observable..
(3) If y is observable when x is observable and if z is observable when y is observable, then z is observable when x is observable.

The context of a property, function or set is the list of parameters used in its definition.
When observability is mentioned in some property, it is relative to its context.

Closure Principle

Numbers, sets or functions, defined without reference to observability are always observable.
If a number, set or function, satisfies a given property, then there is an observable number satisfying that property.

Closure Principle

Numbers, sets or functions, defined without reference to observability are always observable.
If a number, set or function, satisfies a given property, then there is an observable number satisfying that property.
$f(a)$ is as observable as f and a

Principle of ultrasmallness

A real number is ultrasmall if it is nonzero and smaller in absolute value than any strictly positive observable number

Principle of ultrasmallness

A real number is ultrasmall if it is nonzero and smaller in absolute value than any strictly positive observable number

This definition makes an implicit reference to a context. Note that 0 is not ultrasmall.

Principle of ultrasmallness

A real number is ultrasmall if it is nonzero and smaller in absolute value than any strictly positive observable number

This definition makes an implicit reference to a context. Note that 0 is not ultrasmall.

Relative to any number, there exist ultrasmall real numbers.

A real number is ultralarge if it is larger in absolute value than any strictly positive observable number
Let a, b be real numbers. We say that a is ultraclose to b, written

$$
a \simeq b
$$

if $b-a$ is ultrasmall or if $a=b$.

With respect to a given number ultrasmall numbers are somewhere here

With respect to a given number ultralarge numbers are somewhere over there

Principle of the observable neighbour

Relative to a context, any real number x which is not ultralarge can be written in the form $a+h \quad$ where a is observable and $h \simeq 0$.

Contextual Notation

The only accepted properties are those that do not refer to observability or those that use the symbol " \simeq ", understood as relative to the context of the property in question.

Contextual Notation

The only accepted properties are those that do not refer to observability or those that use the symbol " \simeq ", understood as relative to the context of the property in question.

These properties are internal. Both difficulties are solved here.

A context is extended if parameters are added to the list.
A property is not changed if the context is extended.

Essential properties

Relative to a context containing $a \neq 0$ and let ε and δ be ultrasmall, then
(1) $a \cdot \varepsilon$ is ultrasmall.
(3) $\varepsilon \cdot \delta$ is ultrasmall
(2) $\varepsilon+\delta \simeq 0$
(9) $\frac{a}{\varepsilon}$ is ultralarge

Essential properties

Relative to a context containing $a \neq 0$ and let ε and δ be ultrasmall, then
(1) $a \cdot \varepsilon$ is ultrasmall.
(3) $\varepsilon \cdot \delta$ is ultrasmall
(2) $\varepsilon+\delta \simeq 0$
(3) $\frac{a}{\varepsilon}$ is ultralarge

Proof that $a \cdot \varepsilon \simeq 0$: wlog $a>0$ and $\varepsilon>0$

By contradiction: assume there is an observable $b>0$ such that $a \cdot \varepsilon>b>0$.

Essential properties

Relative to a context containing $a \neq 0$ and let ε and δ be ultrasmall, then
(1) $a \cdot \varepsilon$ is ultrasmall.
(3) $\varepsilon \cdot \delta$ is ultrasmall
(2) $\varepsilon+\delta \simeq 0$
(3) $\frac{a}{\varepsilon}$ is ultralarge

Proof that $a \cdot \varepsilon \simeq 0$: wlog $a>0$ and $\varepsilon>0$

By contradiction: assume there is an observable $b>0$ such that $a \cdot \varepsilon>b>0$.
Then $\varepsilon>\frac{b}{a}>0$

Essential properties

Relative to a context containing $a \neq 0$ and let ε and δ be ultrasmall, then
(1) $a \cdot \varepsilon$ is ultrasmall.
(3) $\varepsilon \cdot \delta$ is ultrasmall
(2) $\varepsilon+\delta \simeq 0$
(3) $\frac{a}{\varepsilon}$ is ultralarge

Proof that $a \cdot \varepsilon \simeq 0$: wlog $a>0$ and $\varepsilon>0$

By contradiction: assume there is an observable $b>0$ such that $a \cdot \varepsilon>b>0$.
Then $\varepsilon>\frac{b}{a}>0$
By closure

Essential properties

Relative to a context containing $a \neq 0$ and let ε and δ be ultrasmall, then
(1) $a \cdot \varepsilon$ is ultrasmall.
(3) $\varepsilon \cdot \delta$ is ultrasmall
(2) $\varepsilon+\delta \simeq 0$
(3) $\frac{a}{\varepsilon}$ is ultralarge

Proof that $a \cdot \varepsilon \simeq 0$: wlog $a>0$ and $\varepsilon>0$

By contradiction: assume there is an observable $b>0$ such that $a \cdot \varepsilon>b>0$.
Then $\varepsilon>\frac{b}{a}>0$
By closure $\frac{b}{a}$ is observable

Essential properties

Relative to a context containing $a \neq 0$ and let ε and δ be ultrasmall, then
(1) $a \cdot \varepsilon$ is ultrasmall.
(3) $\varepsilon \cdot \delta$ is ultrasmall
(2) $\varepsilon+\delta \simeq 0$
(3) $\frac{a}{\varepsilon}$ is ultralarge

Proof that $a \cdot \varepsilon \simeq 0$: wlog $a>0$ and $\varepsilon>0$

By contradiction: assume there is an observable $b>0$ such that $a \cdot \varepsilon>b>0$.
Then $\varepsilon>\frac{b}{a}>0$
By closure $\frac{b}{a}$ is observable hence $\varepsilon \nsucceq 0$.

Immediate consequence:

Relative to a context containing a and b with $a \simeq x$ and $b \simeq y$, then
(1) $a+b \simeq x+y$
(3) $a \cdot b \simeq x \cdot y$
(2) $a-b \simeq x-y$
(4) If also $b \neq 0, \frac{1}{b} \simeq \frac{1}{y}$.

Derivative

A real function f defined on an interval containing a is differentiable at a if there is an observable value D such that, for any $d x$

$$
\frac{f(a+d x)-f(a)}{d x} \simeq D
$$

Then $D=f^{\prime}(a)$ is the derivative of f at a.
$d x \simeq 0$ and $d x \neq 0$ by definition of $d x$, but it can be positive or negative.

Student's presentation

Student's presentation

$$
\begin{array}{r}
\frac{\Delta f(x)}{d x}=\frac{f(x+d x)-f(x)}{d x} \simeq f^{\prime}(x) \\
\text { Eontext } \\
\text { neighbou }
\end{array}
$$

Student's presentation

$$
\begin{array}{r}
\frac{\Delta f(x)}{d x}=\frac{f(x+d x)-f(x)}{d x} \simeq f^{\prime}(x) \\
\text { Eontext } \\
\text { neighbou }
\end{array}
$$

Example $x^{2}+1$

$$
\begin{aligned}
& \Delta f(x)=(x+d x)^{2}+1-\left(x^{2}+1\right) \\
&=x \not+2 x d x+d x^{2}+\nmid-\not k^{2} \nmid 1 \\
& \frac{\Delta f(x)}{d x}=2 x[\pm d x] \\
& \simeq 0 \\
& f^{\prime}(x)=2 x
\end{aligned}
$$

chain rule: student's presentation

$$
\begin{aligned}
& (f \circ g)^{\prime} \\
& \frac{\Delta f(g(a))}{d x}=\frac{f(g(a+d x))-f(g(a))}{d x} \\
& =\frac{f(g(a)+\Delta g(a))-f(g(a))}{d x}
\end{aligned}
$$

chain rule: student's presentation

$$
\left.\begin{array}{l}
(f \circ g)^{\prime} \\
\frac{\Delta f(g(a))}{d x}=\frac{f(g(a+d x))-f(g(a))}{d x}\left(\begin{array}{l}
g(a)=x \\
f(g(a))=f(x) \\
f^{\prime}(y) \simeq \frac{\Delta f(y)}{d y} \\
\frac{\Delta f(y)}{d y}=f^{\prime}(y)+\varepsilon \\
\Delta f(y)=(a)+\Delta g(a))-f(g(a)) \\
\Delta x
\end{array} f^{\prime}(y) d y+\varepsilon d y\right.
\end{array}\right)
$$

chain rule: student's presentation

$$
\begin{aligned}
& (f \circ g)^{\prime} \\
& \frac{\Delta f(g(a))}{d x}=\frac{f(g(a+d x))-f(g(a))}{d x} \\
& =\frac{f(g(a)+\Delta g(a))-f(g(a))}{d x} \\
& g(a)=x \\
& f(g(a))=f(x) \\
& f^{\prime}(y) \simeq \frac{\Delta f(y)}{d y} \\
& \frac{\Delta f(y)}{d y}=f^{\prime}(y)+\varepsilon \\
& \Delta f(y)=\mid \underline{f^{\prime}(y) d y+\varepsilon d y} \\
& =\frac{f^{\prime}(y) d y+\varepsilon d y}{d x}=\frac{f^{\prime}(g(a)) \operatorname{sg}(a)}{d x}+\underbrace{\frac{\varepsilon_{\Delta 0} d g(a)}{d x}}_{\sim g^{\prime}(a)} \\
& \approx f^{\prime}(g(a)) \cdot g^{\prime}(a)=(f \circ g)^{\prime}(a)
\end{aligned}
$$

Continuity

Let f be a real function defined around a. We say that f is continuous at a if (for any x)

$$
x \simeq a \Rightarrow f(x) \simeq f(a)
$$

Also written

$$
f(a+d x) \simeq f(a)
$$

Continuity of sine and cosine

Student's proof

Area under a curve: student's presentation

Area under a curve: student's presentation

Area under a curve: student's presentation

$\Delta A(x)$ is the variation of the area.

$$
\begin{aligned}
& f(m) \approx f(x) \\
& f(H) \approx f(x)
\end{aligned}
$$

$$
\begin{aligned}
& f(m) d x \leq \Delta A(x) \leq f(H) d x \\
& f(m) \leq \frac{\Delta A(x)}{d x} \leqslant f(H) \simeq f(x) \\
& A^{\prime}(x)=f(x)
\end{aligned}
$$

Observations

Observations

we do not define the derivative as the slope of the tangent at x_{0},

Observations

we do not define the derivative as the slope of the tangent at x_{0},

- the tangent is the line which has same value and same slope at x_{0}

Observations

we do not define the derivative as the slope of the tangent at x_{0},

- the tangent is the line which has same value and same slope at x_{0}
we do not define the derivative as the slope of a secant when the secant disappears

Observations

we do not define the derivative as the slope of the tangent at x_{0},

- the tangent is the line which has same value and same slope at x_{0}
we do not define the derivative as the slope of a secant when the secant disappears
- the derivative is the observable part of the slope of an ultrasmall segment

Observations

we do not define the derivative as the slope of the tangent at x_{0},

- the tangent is the line which has same value and same slope at x_{0}
we do not define the derivative as the slope of a secant when the secant disappears
- the derivative is the observable part of the slope of an ultrasmall segment
we do not define continuity at x_{0} by the limit

Observations

we do not define the derivative as the slope of the tangent at x_{0},

- the tangent is the line which has same value and same slope at x_{0}
we do not define the derivative as the slope of a secant when the secant disappears
- the derivative is the observable part of the slope of an ultrasmall segment
we do not define continuity at x_{0} by the limit
- the limit of a function at x_{0} is the value that f should take at x_{0} to be continuous

$$
\lim _{x \rightarrow a} f(x)=L
$$

$(\forall \varepsilon>0)(\exists \delta>0)(\forall x) \quad(|x-a| \leq \delta \Rightarrow|f(x)-L| \leq \varepsilon)$

$$
\begin{gathered}
\lim _{x \rightarrow a} f(x)=L \\
(\forall \varepsilon>0)(\exists \delta>0)(\forall x) \quad(|x-a| \leq \delta \Rightarrow|f(x)-L| \leq \varepsilon)
\end{gathered}
$$

the left hand part of the implication has no meaning without the right hand part.

$$
\begin{gathered}
\lim _{x \rightarrow a} f(x)=L \\
(\forall \varepsilon>0)(\exists \delta>0)(\forall x) \quad(|x-a| \leq \delta \Rightarrow|f(x)-L| \leq \varepsilon)
\end{gathered}
$$

the left hand part of the implication has no meaning without the right hand part.

$$
(\forall x) \quad x \simeq a \Rightarrow f(x) \simeq L
$$

$$
\begin{gathered}
\lim _{x \rightarrow a} f(x)=L \\
(\forall \varepsilon>0)(\exists \delta>0)(\forall x) \quad(|x-a| \leq \delta \Rightarrow|f(x)-L| \leq \varepsilon)
\end{gathered}
$$

the left hand part of the implication has no meaning without the right hand part.

$$
(\forall x) \quad x \simeq a \Rightarrow f(x) \simeq L
$$

f and a determine the context.

$$
\begin{gathered}
\lim _{x \rightarrow a} f(x)=L \\
(\forall \varepsilon>0)(\exists \delta>0)(\forall x) \quad(|x-a| \leq \delta \Rightarrow|f(x)-L| \leq \varepsilon)
\end{gathered}
$$

the left hand part of the implication has no meaning without the right hand part.

$$
(\forall x) \quad x \simeq a \Rightarrow f(x) \simeq L
$$

f and a determine the context.
$x \simeq a$ is defined independently.

$$
\begin{gathered}
\lim _{x \rightarrow a} f(x)=L \\
(\forall \varepsilon>0)(\exists \delta>0)(\forall x) \quad(|x-a| \leq \delta \Rightarrow|f(x)-L| \leq \varepsilon)
\end{gathered}
$$

the left hand part of the implication has no meaning without the right hand part.

$$
(\forall x) \quad x \simeq a \Rightarrow f(x) \simeq L
$$

f and a determine the context. $x \simeq a$ is defined independently. then $f(x) \simeq L$ is verified algebraically.
thank you!

