
Algorithms

Graphs

Algorithms

Graphs

Definition: A graph is a collection of edges and vertices.

Each edge connects two vertices.

Algorithms 1

Graphs

Vertices: Nodes, points, computers, users, items, . . .

Edges: Arcs, links, lines, cables, . . .

Applications: Communication, Transportation, Databases,

Electronic Circuits, . . .

An alternative definition: A graph is a collection of subsets

of size 2 from the set {1, . . . , n}. A hyper-graph is a

collection of subsets of any size from the set {1, . . . , n}.

Algorithms 2

Drawing Graphs

4 possible drawings illustrating the same graph:

Algorithms 3

Drawing Graphs

2 drawings representing the same graph:

Algorithms 4

Graph Isomorphism

Graph G1 and graph G2 are isomorphic if there is one-one

correspondence between their vertices such that:

number of edges joining any two vertices of G1 is equal to

number of edges joining the corresponding vertices of G2.

A

B

C F

E

D a

b

c

d

e

f

a ↔ A b ↔ B c ↔ C d ↔ D e ↔ E f ↔ F

Algorithms 5

The Bridges of Königsberg

B

A

DC

Is it possible to traverse each of the 7 bridges of this town

exactly once, starting and ending at any point?

Algorithms 6

The Bridges of Königsberg

A

B

C D

Is it possible to traverse each of the edges of this graph exactly

once, starting and ending at any vertex?

Does a graph have an Euler tour?

Algorithms 7

The Four Coloring Problem

B

C

D

E

F

A

Is it possible to color a map with at most 4 colors such that

neighboring countries get different colors?

Algorithms 8

The Four Coloring Problem

F

E

D

C

BA

Is it possible to color the vertices of this graph with at most

4 colors?

Is it possible to color every planar graph with at most 4 colors?

Algorithms 9

The Three Utilities Problem

Telephone C

B

AWater

Electricity

Is it possible to connect the houses {A, B, C} with the utilities

{Water, Electricity,Telephone} such that cables do not cross?

Algorithms 10

The Three Utilities Problem

C

A

Telephone

Electricity

Water

B

Is it possible to draw the vertices and edges of this graph such

that edges do not cross?

Which graphs are planar?

Algorithms 11

The Marriage Problem

Anna loves: Bob and Charlie

Betsy loves: Charlie and David

Claudia loves: David and Edward

Donna loves: Edward and Albert

Elizabeth loves: Albert and Bob

Under what conditions a collection of girls each loves several

boys can be married so that each girl marries a boy she loves?

Algorithms 12

The Marriage Problem

A B C D E

a b c d e

Find in this graph a set of disjoint edges that cover all the

vertices in the top side.

Does a (bipartite) graph have a perfect matching?

Algorithms 13

The Travelling Salesperson Problem

C

B

A

2

3

6

D

6

5
4

4

5

3

E

3

A salesperson wants to sell products in the above 5 cities

{A, B, C, D, E} starting at A and ending at A while travelling

as little as possible.

Algorithms 14

The Travelling Salesperson Problem

C

B

A

2

3

6

D

6

5
4

4

5

3

E

3

Find the shortest path in this graph that visits each vertex at

least once and starts and ends at vertex A.

Find the shortest Hamiltonian cycle in a graph.

Algorithms 15

The Activity Center Problem

A
E

D

C

B

What is the maximal number of activities that can be served

by a single server?

Algorithms 16

The Activity Center Problem

A

B

C

D

E

What is the maximal number of vertices in this graph with no

edge between any two of them?

Find a maximum independent set in a graph.

Algorithms 17

Chemical Molecules

C

H

HH

H

C C C

H H H

H H H

H H

Methane Propane

In the CxHy molecule, y hydrogen atoms are connected to x

carbon atoms. A hydrogen atom can be connected to exactly

one carbon atom. A carbon atom can be connected to four

other atoms either hydrogen or carbon.

Algorithms 18

Chemical Molecules

How many possible structures exist for the molecule C4H10?

How many non-isomorphic connected graphs exist with x

vertices of degree 4 and y vertices of degree 1?

Is there a (connected) graph whose degree sequence is d1 ≥

· · · ≥ dn? How many non-isomorphic such graphs exist?

Algorithms 19

Some Notations

• G = (V, E) - a graph G.

• V = {1, . . . , n} - a set of vertices.

• E ⊆ V × V - a set of edges.

• e = (u, v) ∈ E - an edge.

• |V | = V = n - number of vertices.

• |E| = E = m - number of edges.

Algorithms 20

Directed and Undirected Graphs

In undirected graphs: (u, v) = (v, u).

In directed graphs (D-graphs): (u → v) 6= (v → u).

The underlying undirected graph G′ = (V ′, E′) of a directed

graph G = (V, E):

⋆ Has the same set of vertices: V = V ′.

⋆ Has all the edges of G without their direction.

− (u → v) becomes (u, v).

Algorithms 21

Undirected Edges

⋆ Vertices u and v are the endpoints of the edge (u, v).

⋆ Edge (u, v) is incident with vertices u and v.

⋆ Vertices u and v are neighbors if edge (u, v) exists.

− u is adjacent to v and v is adjacent to u.

⋆ Vertex u has degree d if it has d neighbors.

⋆ Edge (v, v) is a (self) loop edge.

⋆ Edges e1 = (u, v) and e2 = (u, v) are parallel edges.

Algorithms 22

Directed Edges

⋆ Vertex u is the origin (initial) and vertex v is the destination

(terminal) of the directed edge (u → v).

⋆ Vertex v is the neighbor of vertex u if the directed edge

(u → v) exists.

− v is adjacent to u but u is not adjacent to v.

⋆ Vertex u has

− out-degree d if it has d neighbors.

− in-degree d if it is the neighbor of d vertices.

Algorithms 23

Weighted Graphs

In Weighted graphs there exists a weight function:

− w : E → ℜ.

− w : weight, distance, length, time, cost, capacity, ...

− Weights could be negative.

Algorithms 24

The Triangle Inequality

A

B

C

w(AC) ≤ w(AB) + w(BC)

⋆ Sometimes weights obey the triangle inequality

− Distances in the plane.

Algorithms 25

Simple Graphs

⋆ A simple directed or undirected graph is a graph with no

parallel edges and no self loops.

⋆ In a simple directed graph both edges: (u → v) and (v → u)

could exist (they are not parallel edges).

Algorithms 26

Number of Edges in Simple Graphs

⋆ A simple undirected graph has at most m =
(

n
2

)

edges.

⋆ A simple directed graph has at most m = n(n − 1) edges.

⋆ A dense simple (directed or undirected) graph has many

edges: m = Θ(n2).

⋆ A sparse (shallow) simple (directed or undirected) graph

has few edges: m = Θ(n).

Algorithms 27

Labelled and Unlabelled Graphs

In a labelled graph each vertex has a unique label (ID):

− Usually the labels are: 1, . . . , n.

Observation: There are 2(n
2) non-isomorphic labelled graphs

with n vertices.

Proof: Each possible edge exists or does not exist.

Algorithms 28

Labelled Graphs

1 1 1 1

1 1 1 1

2 2 2 2

2222 3 3 3 3

3333

The 8 labelled graphs with n = 3 vertices.

Algorithms 29

Unlabelled Graphs

The 4 unlabelled graph with n = 3 vertices.

Algorithms 30

Paths and Cycles

⋆ An undirected or directed path P = 〈v0, v1, . . . , vk〉 of

length k is an ordered list of vertices such that (vi, vi+1) or

(vi → vi+1) exists for 0 ≤ i ≤ k − 1 and all the edges are

different.

⋆ An undirected or directed cycle C = 〈v0, v1, . . . , vk−1, v0〉 of

length k is an undirected or directed path that starts and

ends with the same vertex.

⋆ In a simple path, directed or undirected, all the vertices are

different.

⋆ In a simple cycle, directed or undirected, all the vertices

except v0 = vk are different.

Algorithms 31

Special Paths and Cycles

⋆ An undirected or directed Euler path (tour):

− a path that traverses all the edges.

⋆ An undirected or directed Euler cycle (circuit):

− a cycle that traverses all the edges.

⋆ An undirected or directed Hamiltonian path (tour):

− a simple path that visits all the vertices.

⋆ An undirected or directed Hamiltonian cycle (circuit):

− a simple cycle that visits all the vertices.

Algorithms 32

Connected Graphs

Connectivity: In connected undirected graphs there exists a

path between any pair of vertices.

Observation: In a simple connected undirected graph there

are at least m = n − 1 edges.

Strong connectivity: In a strongly connected directed graph

there exists a directed path from u to v for any pair of

vertices u and v.

Observation: In a simple strongly connected directed graph

there are at least m = n edges.

Algorithms 33

Weakly Connected Directed Graphs

Definition I: In a weakly connected directed graph there

exists a directed path either from u to v or from v to u for

any pair of vertices u and v.

Definition II: In a weakly connected directed graph there

exists a path between any pair of vertices in the underlying

undirected graph.

Observation: The definitions are not equivalent.

Algorithms 34

Sub-Graphs

A (directed or undirected) Graph G′ = (V ′, E′) is a sub-graph

of a (directed or undirected) graph G = (V, E) if:

− V ′ ⊆ V and E′ ⊆ E.

G G’ G’’ G’’’

G′, G′′, G′′′ are sub-graphs of G

Algorithms 35

Connected Components - Undirected Graphs

⋆ A connected sub-graph G′ is a connected component of an

undirected graph G if there is no connected sub-graph G′′

of G such that G′ is also a subgraph of G′′.

⋆ A connected component G′ is a maximal sub-graph with

the connectivity property.

⋆ A connected graph has exactly one connected component.

Algorithms 36

Connected Components - Directed Graphs

⋆ A strongly connected directed sub-graph G′ is a strongly

connected component of a directed graph G if there is no

strongly connected directed sub-graph G′′ of G such that

G′ is also a subgraph of G′′.

⋆ A strongly connected component G′ is a maximal sub-graph

with the strong connectivity property.

⋆ A strongly connected graph has exactly one strongly

connected component.

Algorithms 37

Counting Edges

Theorem: Let G be a simple undirected graph with n vertices

and k connected components then:

n − k ≤ m ≤
(n − k)(n − k + 1)

2
.

Corollary: A simple undirected graph with n vertices is

connected if it has m edges for:

m >
(n − 1)(n − 2)

2

Algorithms 38

Assumptions

Unless stated otherwise, usually a graph is:

• Simple.

• Undirected.

• Connected.

• Unweighted.

• Unlabelled.

Algorithms 39

Forests and Trees

Forest: A graph with no cycles.

Tree: A connected graph with no cycles.

By definition:

− A tree is a connected forest.

− Each connected component of a forest is a tree.

Algorithms 40

Trees

Theorem: An undirected and simple graph is a tree if:

− It is connected and has no cycles.

− It is connected and has exactly m = n − 1 edges.

− It has no cycles and has exactly m = n − 1 edges.

− It is connected and deleting any edge disconnects it.

− Any 2 vertices are connected by exactly one path.

− It has no cycles and any new edge forms one cycle.

Corollary: The number of edges in a forest with n vertices

and k trees is m = n − k.

Algorithms 41

Rooted and Ordered Trees

Rooted trees:

⋆ One vertex is designated as the root.

⋆ Vertices with degree 1 are called leaves.

⋆ Non-leaves vertices are internal vertices.

⋆ All the edges are directed from the root to the leaves.

Ordered trees:

⋆ Children of an internal parent vertex are ordered.

Algorithms 42

Drawing Rooted Trees

⋆ Parents above children.

⋆ Older children to the left of younger children.

Algorithms 43

Binary Trees

Binary trees: The root has degree either 1 or 2, the leaves

have degree 1, and the degree of non-root internal vertices is

either 2 or 3.

Algorithms 44

Star Trees

Star: A rooted tree with 1 root and n − 1 leaves. The

degree of one vertex (the root) is n− 1 and the degree of any

non-root vertex is 1.

Algorithms 45

Path Trees

Path: A tree with exactly 2 leaves.

Claim I: The degree of a non-leave vertex is exactly 2.

Claim II: The path is the only tree with exactly 2 leaves.

Algorithms 46

Counting Labelled Trees

1 2 3 4

1 1 12 2 23 3 34 4 4

1 1 1 11

1 1 1

1 1 1

2 3 4 2 34 23 4 3 24

4 42 23 3 2 3 4 2 1 3 4

2 13 4 2 4 3 3 2 4 3 2 4

Theorem: There are nn−2 distinct labelled n vertices trees.

Algorithms 47

Null Graphs

⋆ Null graphs are graphs with no edges.

⋆ The null graph with n vertices is denoted by Nn.

⋆ In null graphs m = 0.

Algorithms 48

Complete Graphs

⋆ Complete graphs (cliques) are graphs with all possible edges.

⋆ The complete graph with n vertices is denoted by Kn.

⋆ In complete graphs m =
(

n
2

)

= n(n−1)
2 .

Algorithms 49

Cycles

⋆ Cycles (rings) are connected graphs in which all vertices

have degree 2 (n ≥ 3).

⋆ The cycle with n vertices is denoted by Cn.

⋆ In cycles m = n.

Algorithms 50

Paths

⋆ Paths are cycles with one edge removed.

⋆ The path with n vertices is denoted by Pn.

⋆ In paths m = n − 1.

Algorithms 51

Stars

⋆ Stars are graphs with one root and n − 1 leaves.

⋆ The star with n vertices is denoted by Sn.

⋆ In stars m = n − 1.

Algorithms 52

Wheels

⋆ Wheels are stars in which all the n − 1 leaves form a cycle

Cn−1 (n ≥ 4).

⋆ The wheel with n vertices is denoted by Wn.

⋆ In wheels m = 2n − 2.

Algorithms 53

Bipartite Graphs

A:

B:

Bipartite graphs V = A ∪ B: each edge is incident to one

vertex from A and one vertex from B.

Observation: A graph is bipartite iff each cycle is of even
length.

Algorithms 54

Complete Bipartite Graphs

Complete bipartite graphs Kr,c: All possible r · c edges exist.

Algorithms 55

Cubes

000 100

101001

010 110

111011

⋆ There are n = 2k vertices representing all the binary

sequences of length k.

⋆ Two vertices are connected by an edge if their corresponding

sequences differ by exactly one bit.

Algorithms 56

Cubes

Observation: Cubes are bipartite graphs.

Proof:

⋆ A: The vertices with even number of 1 in their binary

representation.

⋆ B: The vertices with odd number of 1 in their binary

representation.

⋆ Any edge connects 2 vertices one from the set A and one

from the set B.

Algorithms 57

d-regular Graphs

In d-regular graphs, the degree of each vertex is exactly d.

In d-regular graphs, m = d·n
2 .

The Petersen Graph: a 3-regular graph.

Algorithms 58

Planar Graphs

Definition: Planar graphs are graphs that can be drawn on

the plane such that edges do not cross each other.

Theorem: A graph is planar if and only if it does not have

sub-graphs homeomorphic to K5 and K3,3.

Theorem: Every planar graph can be drawn with straight

lines.

Algorithms 59

Non-Planar Graphs

K5: the complete graph with 5 vertices.

K3,3: the complete 〈3, 3〉 bipartite graph.

Algorithms 60

Platonic Graphs

Graphs that are formed from the vertices and edges of the

five regular (Platonic) solids:

• Tetrahedron: 4 vertices 3-regular graph.

• Octahedron: 6 vertices 4-regular graph.

• Cube: 8 vertices 3-regular graph.

• Icosahedron: 12 vertices 5-regular graph.

• Dodecahedron: 20 vertices 3-regular graph.

Observation: The platonic graphs are d-regular planar graphs.

Algorithms 61

The Tetrahedron

4 vertices; 6 edges; 4 faces; degree 3

Algorithms 62

The Octahedron

6 vertices; 12 edges; 8 faces; degree 4

Algorithms 63

The Cube

8 vertices; 12 edges; 6 faces; degree 3

Algorithms 64

The Icosahedron

12 vertices; 30 edges; 20 faces; degree 5

Algorithms 65

The Dodecahedron

20 vertices; 30 edges; 12 faces; degree 3

Algorithms 66

Dual Planar Graphs

In the dual planar graph G∗ of a planar graph G vertices

correspond to faces of G and two vertices in G∗ are joined by

an edge if the corresponding faces in G share an edge.

• The Octahedron is the dual graph of the Cube.

• The Cube is the dual graph of the Octahedron.

• The Icosahedron is the the dual graph of the Dodecahedron.

• The Dodecahedron is the the dual graph of the Icosahedron.

• The Tetrahedron is the dual graph of itself.

Algorithms 67

Duaity of the Cube and the Octahedron

Algorithms 68

Random Graphs

Definition I:

⋆ Each edge exists with probability 0 ≤ p ≤ 1.

⋆ Observation: Expected number of edges is E(m) = p
(

n
2

)

.

Definition II:

⋆ A graph with m edges that is selected randomly with a

uniform distribution over all graphs with m edges.

Algorithms 69

Interval Graphs

⋆ Vertices represent intervals on the x-axis.

⋆ An edge indicates that two intervals intersect.

Algorithms 70

Complement Graphs

⋆ G̃ = (Ṽ , Ẽ) is the complement graph of G = V, E) if:

− V = Ṽ and (x, y) ∈ E ↔ (x, y) 6∈ Ẽ.

⋆ A graph G is self-complementary if it is isomorphic to G̃.

⋆ Lemma: At least one of G and G̃ is connected.

Algorithms 71

Complement Graphs – Observation

Nn = K̃n.

Algorithms 72

Complement Graphs – Observation

K̃r,s = Kr ∪ Ks.

Algorithms 73

Complement Graphs – Observation

C5 = C̃5.

Algorithms 74

Line Graphs

b c

d

a

a

b c

d

In the line graph L(G) = (E, F) of G = (V, E) vertices

correspond to edges of G and two vertices in L(G) are joined

by an edge if the corresponding edges in G share a vertex.

(ei, ej) ∈ F iff ei = (x, y) and ej = (y, z) for x, y, z ∈ V .

Observation: L(L(G)) = G is a wrong statement.

Algorithms 75

Line Graphs – Observation

a
b

c

d

e

f

ba

de

f c

L(Cn) = Cn.

Algorithms 76

Line Graphs – Observation

a b c d a b c d

L(Pn) = Pn−1.

Algorithms 77

Line Graphs – Observation

a c
b

d

a b

cd

L(Sn) = Kn−1.

Algorithms 78

Social Graphs

Definition: The social graph contains all the friendship

relations (edges) among n people (vertices).

I: In any group of n ≥ 2 people, there are 2 people with the

same number of friends in the group.

II: There exists a group of 5 people for which no 3 are mutual

friends and no 3 are mutual strangers.

III: Every group of 6 people contains either three mutual

friends or three mutual strangers.

Algorithms 79

Data structure for Graphs

⋆ Adjacency lists: Θ(m) memory.

⋆ An adjacency Matrix: Θ(n2) memory.

⋆ An incident matrix: Θ(n · m) memory.

Algorithms 80

The Adjacency Lists Representation

⋆ Each vertex is associated with a linked list consisting of all

of its neighbors.

⋆ In a directed graph there are 2 lists:

− an incoming list and an outgoing list.

⋆ In a weighted graph each record in the list has an additional

field for the weight.

Memory: Θ(n + m).

− Undirected graphs:
∑

v Deg(v) = 2m

− Directed graphs:
∑

v OutDeg(v) =
∑

v InDeg(v) = m

Algorithms 81

Example – Adjacency Lists

A

B

EF

C

D

A → (B, C, D)

B → (A, C, E)

C → (A, B, F)

D → (A, E, F)

E → (B, D, F)

F → (C, D, E)

Algorithms 82

The Adjacency Matrix Representation

⋆ A matrix A of size n × n:

− A[u, v] = 1 if (u, v) or (u → v) is an edge.

− A[u, v] = 0 if (u, v) or (u → v) is not an edge.

⋆ In simple graphs: A[u, u] = 0

⋆ In undirected graphs: A[u, v] = A[v, u]

⋆ In weighted graphs: A[u, v] = w(u, v)

Memory: Θ(n2).

− Independent of m that could be much smaller than Θ(n2).

Algorithms 83

Example – Adjacency Matrix

A

B

EF

C

D

A B C D E F

A 0 1 1 1 0 0

B 1 0 1 0 1 0

C 1 1 0 0 0 1

D 1 0 0 0 1 1

E 0 1 0 1 0 1

F 0 0 1 1 1 0

Algorithms 84

The Incident Matrix Representation

⋆ A matrix A of size n × m:

− A[v, e] = 1 if undirected edge e is incident with v.

− A[u, e] = −1 and A[v, e] = 1 for a directed edge u → v.

− Otherwise A[v, e] = 0.

⋆ In simple graphs all the columns are different and each

contains exactly 2 non-zero entries.

⋆ In weighted undirected graphs: A[v, e] = w(e) if edge e is

incident with vertex v.

Memory: Θ(n · m).

Algorithms 85

Example – Incident Matrix

A

B

EF

C

D

(A, B) (A, C) (A, D) (B, C) (B, E) (C, F) (D, E) (D, F) (E, F)

A 1 1 1 0 0 0 0 0 0

B 1 0 0 1 1 0 0 0 0

C 0 1 0 1 0 1 0 0 0

D 0 0 1 0 0 0 1 1 0

E 0 0 0 0 1 0 1 0 1

F 0 0 0 0 0 1 0 1 1

Algorithms 86

Which Data Structure to Choose?

⋆ Adjacency matrices are simpler to implement and maintain.

⋆ Adjacency matrices are better for dense graphs.

⋆ Adjacency lists are better for sparse graphs.

⋆ Adjacency lists are better for algorithms whose complexity

depends on m.

⋆ Incident matrices are usually not efficient for algorithms.

Algorithms 87

Graphic Graphs

⋆ The degree dx of vertex x in graph G is the number of

neighbors of x in G.

⋆ The hand-shaking Lemma:
∑n

i=1 di = 2m.

⋆ Corollary: Number of odd degree vertices is even.

⋆ The degree sequence of G is S = (d1, . . . , dn).

⋆ A sequence S = (d1, . . . , dn) is graphic if there exists a

graph with n vertices whose degree sequence is S.

Algorithms 88

Non-Graphic Graphs

⋆ (3, 3, 3, 3, 3, 3, 3) is not graphic (equivalently, there is no

7-vertex 3-regular graph).

− Since
∑n

i=1 di is odd.

⋆ (5, 5, 4, 4, 0) is not graphic.

− Since there are 5 vertices and therefore the maximum

degree could be at most 4.

⋆ (3, 2, 1, 0) is not graphic.

− Since there are 3 positive degree vertices and only one

vertex with degree 3.

Algorithms 89

Graphic Graphs – Observations

I In a graphic sequence S = (d1 ≥ · · · ≥ dn) d1 ≤ n − 1.

II In a graphic sequence S = (d1 ≥ · · · ≥ dn) dd1+1 > 0.

III The sequence (0, 0, . . . , 0) of length n is graphic. Since it

represents the null graph Nn.

Algorithms 90

Transformation

Let S = (d1 ≥ · · · ≥ dn), then

f(S) = (d2 − 1 ≥ · · · ≥ dd1+1 − 1, dd1+2 ≥ · · · ≥ dn).

Example:

S = (5, 4, 3, 3, 2, 1, 1, 1)

f(S) = (3, 2, 2, 1, 0, 1, 1)

Algorithms 91

Lemma

⋆ S = (d1 ≥ · · · ≥ dn) is graphic iff f(S) is graphic.

⇐ To get a graphic representation for S, add a vertex of

degree d1 to the graphic representation of f(S) and connect

this vertex to all vertices whose degrees in f(S) are smaller

by 1 than those in S.

⇒ To get a graphic representation for f(S), omit a vertex of

degree d1 from the graphic representation of S. Make sure

(how?) that this vertex is connected to the vertices whose

degrees are d2, . . . , dd1+1.

Algorithms 92

Algorithm

Graphic(S = (d1 ≥ · · · ≥ dn ≥ 0))

case d1 ≥ n return FALSE (* Obs. I *)

case dd1+1 = 0 return FALSE (* Obs. II *)

case d1 = 0 return TRUE (* Obs. III *)

otherwise return Graphic(Sort(f(S))) (* Lemma *)

Algorithms 93

Algorithm

⋆ Complexity:

− O(m) for the transformations since
∑n

i=1 di = 2m.

− O(n2) for the sorting (merging n times).

⋆ Constructing the graph for S = (d1 ≥ · · · ≥ dn ≥ 0):

Follow the “⇐” part of the proof of the lemma starting

with the sequence (0, . . . , 0) and ending with S.

Algorithms 94

Example

4 4 3 2 2 2 2 1 I

3 2 1 1 2 2 1

3 2 2 2 1 1 1 II

1 1 1 1 1 1

1 1 1 1 1 1 III

0 1 1 1 1

1 1 1 1 0 IV

0 1 1 0

1 1 0 0 V

0 0 0 VI

III III

1

1

1

1

1

1

1

2

1

1

3

2

2

2

2

2

24 4

3

1

Algorithms 95

