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Graphs

Definition: A graph is a collection of edges and vertices.
Each edge connects two vertices.
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Vertices: Nodes, points, computers, users, items, . . .

Edges: Arcs, links, lines, cables, . . .

Applications: Communication, Transportation, Databases,
Electronic Circuits, . . .

An alternative definition: A graph is a collection of subsets
of size 2 from the set {1,...,n}. A hyper-graph is a
collection of subsets of any size from the set {1,...,n}.
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Drawing Graphs

4 possible drawings illustrating the same graph:

L
:'<>. <§

Algorithms



Drawing Graphs

2 drawings representing the same graph:
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Graph Isomorphism

Graph G1 and graph G5 are isomorphic if there is one-one
correspondence between their vertices such that:
number of edges joining any two vertices of (G; is equal to
number of edges joining the corresponding vertices of Go.

A D a d
B E f b
C F

a—-A b—B c—>Cd—D e—FE fcF
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The Bridges of Konigsberg

Is it possible to traverse each of the 7 bridges of this town
exactly once, starting and ending at any point?
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The Bridges of Konigsberg

Is it possible to traverse each of the edges of this graph exactly
once, starting and ending at any vertex?

Does a graph have an Euler tour?
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The Four Coloring Problem

Is it possible to color a map with at most 4 colors such that
neighboring countries get different colors?
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The Four Coloring Problem

D

Is it possible to color the vertices of this graph with at most

4 colors?

Is it possible to color every planar graph with at most 4 colors?
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The Three Utilities Problem

s it possible to connect the houses { A, B, C'} with the utilities
{Water, Electricity, Telephone} such that cables do not cross?
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The Three Utilities Problem

Water A
Electricity B
Telephone C

Is it possible to draw the vertices and edges of this graph such
that edges do not cross?

Which graphs are planar?
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The Marriage Problem

Anna loves: Bob and Charlie

Betsy loves: Charlie and David
Claudia loves: David and Edward
Donna loves: Edward and Albert

Elizabeth loves: Albert and Bob

Under what conditions a collection of girls each loves several
boys can be married so that each girl marries a boy she loves?
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The Marriage Problem

a b C d e

Find in this graph a set of disjoint edges that cover all the
vertices in the top side.

Does a (bipartite) graph have a perfect matching?
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The Travelling Salesperson Problem

A salesperson wants to sell products in the above 5 cities
{A, B,C, D, E} starting at A and ending at A while travelling
as little as possible.
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The Travelling Salesperson Problem

Find the shortest path in this graph that visits each vertex at
least once and starts and ends at vertex A.

Find the shortest Hamiltonian cycle in a graph.
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The Activity Center Problem

What is the maximal number of activities that can be served
by a single server?
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The Activity Center Problem

C

What is the maximal number of vertices in this graph with no
edge between any two of them?

Find a maximum independent set in a graph.
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Chemical Molecules

H H H H
H c H H— C — ¢ c —H
H H H H
Methane Propane

In the Cy H,, molecule, y hydrogen atoms are connected to x
carbon atoms. A hydrogen atom can be connected to exactly
one carbon atom. A carbon atom can be connected to four

other atoms either hydrogen or carbon.
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Chemical Molecules

How many possible structures exist for the molecule CyH1¢?

How many non-isomorphic connected graphs exist with x
vertices of degree 4 and y vertices of degree 17

Is there a (connected) graph whose degree sequence is d; >
.-+ >d,? How many non-isomorphic such graphs exist?
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Some Notations

e G=(V,F) - agraph G.

e V={1,...,n} - a set of vertices.
o /) CV XV - aset of edges.

e ¢ = (u,v) € E - an edge.

e |V| =V =mn - number of vertices.

e |F/| = E =m - number of edges.
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In undirected graphs: (u,v) = (v, u).
In directed graphs (D-graphs): (u — v) # (v — u).

The underlying undirected graph G’ = (V’/, E’) of a directed
graph G = (V, E):

* Has the same set of vertices: V = V.

* Has all the edges of G without their direction.
— (u — v) becomes (u,v).
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Undirected Edges

x Vertices u and v are the endpoints of the edge (u,v).
x Edge (u,v) is incident with vertices v and v.

x Vertices u and v are neighbors if edge (u,v) exists.
— u Is adjacent to v and v is adjacent to w.

* Vertex u has degree d if it has d neighbors.
x Edge (v,v) is a (self) loop edge.

x Edges e; = (u,v) and e3 = (u,v) are parallel edges.
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Directed Edges

x Vertex u is the origin (initial) and vertex v is the destination
(terminal) of the directed edge (u — v).

* Vertex v is the neighbor of vertex u if the directed edge
(u — v) exists.

— v Is adjacent to u but w is not adjacent to v.

* Vertex u has
— out-degree d if it has d neighbors.
— in-degree d if it is the neighbor of d vertices.
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Weighted Graphs

In Weighted graphs there exists a weight function:
—w: FE— R
— w : weight, distance, length, time, cost, capacity, ...

— Weights could be negative.

Algorithms

24



The Triangle Inequality

w(AC) < w(AB) + w(BC)

* Sometimes weights obey the triangle inequality
— Distances in the plane.
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Simple Graphs

* A simple directed or undirected graph is a graph with no
parallel edges and no self loops.

x In a simple directed graph both edges: (v — v) and (v — u)
could exist (they are not parallel edges).
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Number of Edges in Simple Graphs

* A simple undirected graph has at most m = (g) edges.
x A simple directed graph has at most m = n(n — 1) edges.

x A dense simple (directed or undirected) graph has many
edges: m = O(n?).

x A sparse (shallow) simple (directed or undirected) graph
has few edges: m = ©(n).
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Labelled and Unlabelled Graphs

In a labelled graph each vertex has a unique label (ID):
— Usually the labels are: 1,...,n.

Observation: There are 2(3) non-isomorphic labelled graphs
with n vertices.

Proof: Each possible edge exists or does not exist.
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Labelled Graphs

Qor

VAN
AN L N A

The 8 labelled graphs with n = 3 vertices.
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Unlabelled Graphs
A A VAN

The 4 unlabelled graph with n = 3 vertices.
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‘ Paths and Cycles

= An undirected or directed path P = (vg,v1,...,vg) of
length k is an ordered list of vertices such that (v;, v;11) or
(v; — vi41) exists for 0 <4 < k — 1 and all the edges are
different.

x An undirected or directed cycle C = (vg, vy, ..., Vk_1,vo) of
length k is an undirected or directed path that starts and
ends with the same vertex.

* In a simple path, directed or undirected, all the vertices are
different.

* In a simple cycle, directed or undirected, all the vertices
except vg = vy, are different.
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Special Paths and Cycles

x An undirected or directed Euler path (tour):
— a path that traverses all the edges.

x An undirected or directed Euler cycle (circuit):
— a cycle that traverses all the edges.

x An undirected or directed Hamiltonian path (tour):
— a simple path that visits all the vertices.

x An undirected or directed Hamiltonian cycle (circuit):
— a simple cycle that visits all the vertices.
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Connected Graphs ‘

Connectivity: In connected undirected graphs there exists a
path between any pair of vertices.

Observation: In a simple connected undirected graph there
are at least m = n — 1 edges.

Strong connectivity: In a strongly connected directed graph
there exists a directed path from u to v for any pair of
vertices u and w.

Observation: In a simple strongly connected directed graph
there are at least m = n edges.
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Weakly Connected Directed Graphs

Definition I: In a weakly connected directed graph there
exists a directed path either from u to v or from v to u for
any pair of vertices u and v.

Definition Il: In a weakly connected directed graph there
exists a path between any pair of vertices in the underlying
undirected graph.

Observation: The definitions are not equivalent.
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Sub-Graphs

A (directed or undirected) Graph G’ = (V’, E’) is a sub-graph
of a (directed or undirected) graph G = (V, F) if:

— V' CVand E'CFE.

ﬁ uA./

G”:

G',G",G"" are sub-graphs of GG
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x A connected sub-graph GG’ is a connected component of an
undirected graph G if there is no connected sub-graph G”
of GG such that GG’ is also a subgraph of G”.

x A connected component G’ is a maximal sub-graph with
the connectivity property.

* A connected graph has exactly one connected component.
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Connected Components - Directed Graphs

x A strongly connected directed sub-graph G’ is a strongly
connected component of a directed graph GG if there is no
strongly connected directed sub-graph G of G such that
G’ is also a subgraph of G”.

x A strongly connected component GG’ is a maximal sub-graph
with the strong connectivity property.

* A strongly connected graph has exactly one strongly
connected component.
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Counting Edges

Theorem: Let GG be a simple undirected graph with n vertices
and k£ connected components then:

(n—k)(n—k—l—l).

—k<m<
n <m < >

Corollary: A simple undirected graph with n vertices is
connected if it has m edges for:

(n—1)(n—2)
2

m >
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Unless stated otherwise, usually a graph is:
e Simple.

e Undirected.

e Connected.

e Unweighted.

e Unlabelled.
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Forests and Trees

Forest: A graph with no cycles.
Tree: A connected graph with no cycles.

By definition:
— A tree is a connected forest.
— Each connected component of a forest is a tree.
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Theorem: An undirected and simple graph is a tree if:
— It Is connected and has no cycles.
— It Is connected and has exactly m = n — 1 edges.
— It has no cycles and has exactly m = n — 1 edges.
— It is connected and deleting any edge disconnects it.
— Any 2 vertices are connected by exactly one path.
— It has no cycles and any new edge forms one cycle.

Corollary: The number of edges in a forest with n vertices
and k trees is m =n — k.
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Rooted and Ordered Trees

Rooted trees:
* One vertex is designated as the root.
* Vertices with degree 1 are called leaves.

x Non-leaves vertices are internal vertices.

* All the edges are directed from the root to the leaves.

Ordered trees:

* Children of an internal parent vertex are ordered.
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Drawing Rooted Trees

/N

* Older children to the left of younger children.

x Parents above children.
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Binary T

Binary trees: The root has degree either 1 or 2, the leaves
have degree 1, and the degree of non-root internal vertices is

either 2 or 3.
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Star: A rooted tree with 1 root and n — 1 leaves. The
degree of one vertex (the root) is n — 1 and the degree of any
non-root vertex is 1.
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Path Trees

Path: A tree with exactly 2 leaves.
Claim |: The degree of a non-leave vertex is exactly 2.

Claim II: The path is the only tree with exactly 2 leaves.
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Counting Laboled Trees
1 2 3 4
AN A A A

Theorem: There are n™ 2 distinct labelled n vertices trees.
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Null Graphs

* Null graphs are graphs with no edges.
* The null graph with n vertices is denoted by IV,,.

* In null graphs m = 0.
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Complete Graphs

1 A A @

x Complete graphs (cliques) are graphs with all possible edges.

* The complete graph with n vertices is denoted by K.

n) _ n(n—1) |

* In complete graphs m = (2 2
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Cles

A0 [

x Cycles (rings) are connected graphs in which all vertices
have degree 2 (n > 3).

* The cycle with n vertices is denoted by C),.

* In cycles m = n.
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* Paths are cycles with one edge removed.
* The path with n vertices is denoted by F,,.

* In paths m =n — 1.
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Stars

L X N BK

* Stars are graphs with one root and n — 1 leaves.
* The star with n vertices is denoted by S5,,.

x In stars m=n — 1.

Algorithms

52



Wheels

A K 5 g

* Wheels are stars in which all the n — 1 leaves form a cycle
Cn—l (n 2 4)

* The wheel with n vertices is denoted by W,,.

*x In wheels m = 2n — 2.
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Bipartite Graphs

Bipartite graphs V' = A U B: each edge is incident to one
vertex from A and one vertex from B.

Observation: A graph is bipartite iff each cycle is of even
length.
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Complete Bipartite Graphs

Complete bipartite graphs K, .. All possible 7 - ¢ edges exist.
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Cubes

011

111

o/ 1/

/1 ./101

x There are n = 2F vertices representing all the binary
sequences of length k.

* Two vertices are connected by an edge if their corresponding
sequences differ by exactly one bit.
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Cubes

Observation: Cubes are bipartite graphs.

Proof:

* A: The vertices with even number of 1 in their binary
representation.

* B: The vertices with odd number of 1 in their binary
representation.

* Any edge connects 2 vertices one from the set A and one
from the set B.
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In d-regular graphs, the degree of each vertex is exactly d.

d-n

In d-regular graphs, m = <~

The Petersen Graph: a 3-regular graph.
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Planar Graphs

Definition: Planar graphs are graphs that can be drawn on
the plane such that edges do not cross each other.

Theorem: A graph is planar if and only if it does not have
sub-graphs homeomorphic to K5 and K3 3.

Theorem: Every planar graph can be drawn with straight
lines.
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Non-Planar Graphs

K5: the complete graph with 5 vertices.

K3 3. the complete (3,3) bipartite graph.
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‘ Platonic Graphs

Graphs that are formed from the vertices and edges of the
five regular (Platonic) solids:

e Tetrahedron: 4 vertices 3-regular graph.
e Octahedron: 6 vertices 4-regular graph.

e Cube: 8 vertices 3-regular graph.

e |cosahedron: 12 vertices 5-regular graph.

e Dodecahedron: 20 vertices 3-regular graph.

Observation: The platonic graphs are d-regular planar graphs.
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The Tetrahedron

4 vertices; 6 edges; 4 faces; degree 3
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The Octahedron

6 vertices; 12 edges; 8 faces; degree 4
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The Cube.

8 vertices; 12 edges; 6 faces; degree 3

64



Algorithms

The lcosahedron

12 vertices; 30 edges; 20 faces; degree 5
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The Dodecahedron

_____________

20 vertices; 30 edges; 12 faces; degree 3
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Dual Planar Graphs ‘

In the dual planar graph G* of a planar graph G vertices
correspond to faces of G and two vertices in G* are joined by
an edge if the corresponding faces in G share an edge.

e The Octahedron is the dual graph of the Cube.
e The Cube is the dual graph of the Octahedron.
e The Icosahedron is the the dual graph of the Dodecahedron.
e The Dodecahedron is the the dual graph of the Icosahedron.

e The Tetrahedron is the dual graph of itself.
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Duaity of the Cube and the Octahedron
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Random Graphs

Definition I
* Each edge exists with probability 0 < p < 1.

* Observation: Expected number of edges is E(m) = p(3).

Definition 11

* A graph with m edges that is selected randomly with a
uniform distribution over all graphs with m edges.
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Interval Graphs

* Vertices represent intervals on the x-axis.

* An edge indicates that two intervals intersect.
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Complement Graphs

=

* G = (V,E) is the complement graph of G =V, E) if:
—V=Vand (z,9) € E— (z,y) ¢ E.

~

* A graph G is self-complementary if it is isomorphic to G.
x Lemma: At least one of G and G is connected.
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Complement Graphs — Observation

=
]
>
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Complement Graphs — Observation

K,,=K,UK,.
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Complement Graphs — Observation

>

Cs = Ck.
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Line Graphs ‘

d

In the line graph L(G) = (E,F) of G = (V, FE) vertices
correspond to edges of G and two vertices in L(G) are joined
by an edge if the corresponding edges in G share a vertex.

(es,e5) € Fiff e; = (z,y) and e; = (y, 2) for x,y,z € V.

Observation: L(L(G)) = G is a wrong statement.
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Line Graphs — Observation
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Line Graphs — Observation
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Line Graphs — Observation

® a
b
e—2 o C o
d
® d
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‘ Social Graphs

Definition: The social graph contains all the friendship
relations (edges) among n people (vertices).

I: In any group of n > 2 people, there are 2 people with the
same number of friends in the group.

Il: There exists a group of 5 people for which no 3 are mutual
friends and no 3 are mutual strangers.

Ill: Every group of 6 people contains either three mutual
friends or three mutual strangers.
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Data structure for Graphs

* Adjacency lists: ©(m) memory.
x An adjacency Matrix: ©(n?) memory.

x An incident matrix: ©(n - m) memory.
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The Adjacency Lists Representation

* Each vertex is associated with a linked list consisting of all
of its neighbors.

* In a directed graph there are 2 lists:
— an incoming list and an outgoing list.

* In a weighted graph each record in the list has an additional
field for the weight.

Memory: O(n + m).
— Undirected graphs: > Deg(v) = 2m
— Directed graphs: > OutDeg(v) =), InDeg(v) =m
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Example — Adjacency Lists

F E
C B
A — (B,C,D)
B — (ACE)
C — (A B,F)
D — (A,E,F)
E — (B,D,F)
F — (C,D,E)
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* A matrix A of size n X n:
— Alu,v] = 1if (u,v) or (u — v) is an edge.

— Alu,v] =0 if (u,v) or (u — v) is not an edge.

* In simple graphs: Alu,u] =0
* In undirected graphs: Alu,v| = Alv, u]
* In weighted graphs: Alu,v] = w(u,v)

Memory: ©(n?).

— Independent of m that could be much smaller than ©(n?).
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The Incident Matrix Representation

* A matrix A of size n x m:
— Alv,e] =1 if undirected edge e is incident with v.
— Alu,e] = —1 and Alv,e] =1 for a directed edge u — v.
— Otherwise Alv,e] = 0.

* In simple graphs all the columns are different and each
contains exactly 2 non-zero entries.

* In weighted undirected graphs: Alv,e] = w(e) if edge e is
incident with vertex v.

Memory: ©(n -m).
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Example — Incident Matrix

L [ B [AO [AD [ B0 [ BE [ G ] DE [ DOF [ EF ]

A 1 1 1 0 0 0 0 0 0
B 1 0 0 1 1 0 0 0 0
c 0 1 0 1 0 1 0 0 0
D 0 0 1 0 0 0 1 1 0
E 0 0 0 0 1 0 1 0 1
F 0 0 0 0 0 1 0 1 1
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Which Data Structure to Choose?

* Adjacency matrices are simpler to implement and maintain.
* Adjacency matrices are better for dense graphs.
* Adjacency lists are better for sparse graphs.

* Adjacency lists are better for algorithms whose complexity
depends on m.

* Incident matrices are usually not efficient for algorithms.
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Graphic Graphs

* The degree d, of vertex x in graph G is the number of
neighbors of x in GG.

* The hand-shaking Lemma: " . d; = 2m.
* Corollary: Number of odd degree vertices is even.
x The degree sequence of G is S = (dy,...,d,).

*~ A sequence S = (di,...,dy) is graphic if there exists a
graph with n vertices whose degree sequence is S.
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Non-Graphic Graphs ‘

*x (3,3,3,3,3,3,3) is not graphic (equivalently, there is no
7-vertex 3-regular graph).
— Since Y, d; is odd.

*x (5,5,4,4,0) is not graphic.
— Since there are 5 vertices and therefore the maximum
degree could be at most 4.

*x (3,2,1,0) is not graphic.
— Since there are 3 positive degree vertices and only one
vertex with degree 3.
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Graphic Graphs — Observations

| In a graphic sequence S = (d; > --->d,) dy <n—1.
Il In a graphic sequence S = (dy > --- > d,) dg,+1 > 0.

I11 The sequence (0,0,...,0) of length n is graphic. Since it
represents the null graph V,,.
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Transformation

Let S = (dy > --- > d,), then

FS)=(do—1> - >dg1—1,dg, 10>

Example:
S=(54,3,3,2,1,1,1)
f(S)=1(3,2,2,1,0,1,1)
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xS = (dy >--->d,) is graphic iff f(.S) is graphic.

< To get a graphic representation for S, add a vertex of
degree d; to the graphic representation of f(.S) and connect
this vertex to all vertices whose degrees in f(S) are smaller
by 1 than those in S.

= To get a graphic representation for f(.S), omit a vertex of
degree d; from the graphic representation of S. Make sure
(how?) that this vertex is connected to the vertices whose
degrees are do, ..., dq,+1.
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Algorithm

Graphic(S = (dy > --- > d,, > 0))
case dy > n return FALSE (* Obs. | *)
case dg,+1 = 0 return FALSE (* Obs. Il *)
case dy = 0 return TRUE (* Obs. Il *)

otherwise return Graphic(Sort(f(5))) (* Lemma *)

Algorithms
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g

* Complexity:
— O(m) for the transformations since > " | d; = 2m.
— O(n?) for the sorting (merging n times).

x Constructing the graph for S = (dy > --- > d,, > 0):
Follow the “«<" part of the proof of the lemma starting
with the sequence (0,...,0) and ending with S.
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Example

IV
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