PETTIS INTEGRABILITY OF WEAKLY CONTINUOUS
FUNCTIONS AND BAIRE MEASURES
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ABSTRACT

We analyse the Pettis integrability of weakly continuous bounded functions defined on a completely
regular space S and taking values in a Banach space. We prove that the set of Baire measures with respect
to which such functions are universally Pettis integrable is precisely the space M (S) of Grothendieck
measures introduced by Wheeler. This leads us to prove that M,(S) is a(My(S), Cy(S))-sequentially
complete, and we obtain a characterization in S of the measures in M (S). We also obtain analogous
results for the space of separable measures M, (S).

Let S be a Hausdorff completely regular space and let C,(S) be the space of all
bounded continuous real-valued functions on S. Wheeler [12] introduces the space of
Baire measures M,(S) as the completion of the space L(S) in the Mackey topology
(L(S), Cy(S)), where L(S) is the linear span of all atomic measures & < determined
by S. The characterization problem for M, ,(8) in terms of its measure representation
in the Stone-Cech compactification BS of S was proposed by Wheeler in [12]. A
possible connection between the space M, ¢(S) and the Pettis integral was also suggested
by him [11]. .

The results of this paper show a link between the theories of vector integration
and Baire measures. Let X be a Banach space. We characterize M ,(S) as the space
of Baire measures with respect to which all weakly continuous bounded functions
S — X are universally Pettis integrable. This result is the basis of our proof that M (S)
is a(M,(S), Cy(S))-sequentially complete, and of our characterization of the space
M ,(S) in terms of S, giving an answer to the problem of Wheeler. This has been done
by analysing the Pettis integrability of weakly continuous bounded functions fiS->X
in terms of their natural extensions Jp:BS =X,

Using similar ideas, but dealing with norm-continuous functions, we shall obtain
analogous results about the space of separable measures M «(S), completing previous
results of Haydon [5] and Koumoullis [8].

1. Terminology

Throughout the paper S denotes a Hausdorff completely regular space, and B,(S)
is the Baire g-algebra on S, that is, the g-algebra generated by the family Z(S) of zero
sets of S. We denote by /, the unique continuous extension of e Cy(S) to BS. The
usual spaces of g-additive, r-additive and tight measures on B,(S) are denoted by
M,(S), M.(S) and M(S), respectively. If ue M (S) and he Co(S), we write 1,(h) to
denote [/ du.

Every member u of M,(S) induces a regular Borel measure /i on the Borel subsets

A

By(BS) of BS. This measure 2 is the Borel measure representing the functional
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hg—I,(h). If E is a Baire subset of S, then EN S is a Baire subset of S and
ME) = W(ENS).

Let X be a Banach space with dual X*, and let u be a probability measure in M,(S).
A function f: S — X is weakly measurable if {x*, f is measurable for all x* € X*. Two
weakly measurable functions f, g: S — X are said to be weakly equivalent if and only
if (x*, f> = (x*, g)> almost everywhere for all x* € X*. A weakly measurable function
£ is Pettis integrable if, for each E in B,(S), there is an element xz in X such that
(x*, x> = [g<x*, > du for all x*€X*; in that case we write xg = (g fap. If fis
a bounded weakly measurable function, we denote by (D)-[E fduthe Dunford integral
of f over E, this is, the member x%* of X** defined by {x*, x§*> = [ (x*,f) du.

The space of all X-valued Pettis integrable functions on S is denoted by P(u, X).
The subspace of P(u, X) whose elements are the functions which are weakly equivalent
to Bochner measurable functions is denoted by P*(u, X). The space of Bochner
integrable functions is denoted in the usual way by L'(u, X).

We write C¥(S, X) for the space of bounded weakly continuous X-valued
functions on S and C,(S, X) for the space of norm-continuous X-valued functions
on S. In this paper we characterize these Baire measures u on B,(S) which are such
that C¥(S, X) (or C,(S, X)) is included in P(u, X), P*(u, X) or L'(u, X) for every
Banach space X.

For information about Baire measures we refer to the recent survey of Wheeler
[12]. Basic references for vector integration are [2, 10].

2. Integrability of a bounded weakly continuous function via its
canonical extension to S

The Pettis integrability of a bounded weakly measurable function f:S— X is
analysed in [9] via the Stonian transform f: K — X**, defined on the Stone representa-
tion space K of the measure algebra B,(S)/x~1(0). Given fin C¥(S, X), it seems more
appropriate to consider the canonical extension fj: S — X**, defined in a similar way:

(x*, fp()) = (x*, fop() for all x*eX* and aefS.

This representation of £ will lead us to give /i-characterizations on S of the Baire
measures with respect to which all bounded weakly continuous functions are
universally integrable.

If M = X**, then throughout the paper, co (M) denotes the weak* closed convex
hull of M. Let X be the family of elements x** in X** such that x** is in the weak*
closure of a countable subset of X. The following result of Talagrand will be used
later.

THEOREM 1 [9, p. 482]. Let f:S — X be bounded and weakly measurable. Then f
is Pettis integrable if and only if

co{(1/u(B)) x*:B< A, u(B) > 04 n X # &
for every Baire set A = S with u(A4) > 0.
THEOREM 2. Let u be a probability measure in M ,(S) and suppose that fe C¥(S, X).

The following are equivalent : (2) fe P(u, X); (b) if K is a compact subset of BS and
AMK) > 0 then cof(K) N X # .
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Proof. (a)=>(b) Suppose that fis Pettis integrable and let K be a compact subset
of BS such that 4(K) > 0. There is a decreasing sequence ¥, of cozero sets in S such
that Kn V, # & and (V,) converges to ji(K). Since U, = V, N S are Baire subsets
of S, we can consider the sequence x,, = jU” fdu in X. Then we have

Cax,) = J {(x*,fpdir for each x*e X*.
Va

Since f'is bounded, the sequence x,, is weak* convergent to the element x** e X**
defined by {x*, x**) = [, (x*, > du. As the range of the indefinite Pettis integral of
f is weakly compact, x** is a member of X. Then A(K):x** is an element of
cofy(K)n X.

(b) = (a) Let 4 be a Baire subset of S such that u(4) > 0, and suppose that H = 4
is a zero set with g(H ) > 0. There exists a zero set H < S with Hn S = H.Theregular
measure on H induced by 4 has non-empty support K = H, and 4(K) = A(H) > 0.
If (b) holds, then cofz(K) N X # . By Theorem 1 it will be enough to prove that

JH(K) = M(4) = co{(1/u(B)) x*:B = A, u(B) > 0}.

For aekK and e X5 let t = <x*, p(). The subsets
Z,=Hn {¢e =S| {x*, fp(€)—1t| < (1/n)} are neighbourhoods of a in H; we there-
fore have ,u(Z ) > 0. For the sequence of zero sets Z, = =Z,NnS we have that
wZ,) = (Z,) > 0, and it can be proved easily that

11m

A7y <x*,f> dp=1t.
n

Since Z, = H < A, the sequence x}:* = (1 /,u(Zn))-(D)-j'Zn fdu is in M(A4), and
{x*, x3*) converges to {x*, fg(®)>. Then we have

(x*, fp(0)) < sup {<x*, x**):x** e M(A)}
for each a€ K and x* € X*. Hence f3(K) = M(A); this completes the proof.

THEOREM 3. Let u be a probability measure in M (S) and suppose that fe C¥(S, X).
The following are equivalent : (2) f€ P*(u, X); (b) if K is a compact in BS and i(K) > 0
then f(K) N X # &, (C) f3 is essentially valued in X.

Proof. Let A be the distribution uf* induced on the Baire subsets B,(X) of
(X, weak), and A, the distribution /jif* induced on the Borel subsets B,(X**) of
(X**, weak*). If E is a Baire subset of (X**, weak*), then f;*(E) is a Baire subset
of BS; therefore 1,(E) = A(E N X) = u(S N fg*(E)).

(a) = (b) From [4], A is tight. If ¢ > 0 and H is a weak compact subset of X such
that A(Z) < ¢ for every zero subset Z of X\H, then 1,(Z**) = A(Z**nX) < ¢ for
every zero subset Z** of X**\ H, and so 4,(X**\H) < ¢. If K c fSis a compact subset
and A(K) > 0, then fi(K) is weak* compact in X** and 4,(f(K)) > 0. Since A is
regular for the weak compact subsets of X, we have that fy(K) N X # .

(b) = (c) Let D = {axeBS:fz(®) € X} and let K be a compact subset of SS\D. If (b)
holds, then 4(K) = 0. If 4* and A} are the exterior measures associated with j and
,, respectively, then 4*(D) =1, and thus Af(X) = 1. Since 4, is a regular Borel
measure and X is universally Borel measurable in (X**, weak*) [4, p. 670], there is

16 LM 32
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a Borel subset 4 = X such that ,(4) = Af(X). Therefore fg() € A almost everywhere
with respect to /i, and fp is essentially valued in X.

(c) = (a) If (c) holds, then A¥(X) = 1, and the compact regular Borel measure 4,
induces, on the Borel subsets of (X, weak), a Borel measure v in the natural way. If
E is a Borel subset of (X**, weak*) then v(E N X) = A,(E). Since B,(X) and B,(X**)
are the g-algebras generated by X* [4, p. 668], we have that B,(X) coincides with the
family {E N X: E€ B,(X**)}. Thus v(4) = A(4) for every subset 4 of X. Since X is
universally Borel measurable in (X**, weak*) the measure v is compact regular, and
thus A is a tight Baire measure. Now, an appeal to [4] shows that fis weakly equivalent
to a bounded Bochner measurable function; therefore (a) holds, and the proof is
complete.

3. Universal integrability of bounded weakly continuous functions

Let M(S) and M,(S) be the spaces of separable and Grothendieck measures,
respectively; these were introduced by Dudley [3] and Wheeler [12], respectively. Let
M (S) be the linear subspace of M,(S) of all measures ue M (S) such that for each
continuous pseudometric d on S, there is a d-closed d-separable subset Z of S with
|#1(Z) = | 1| (S). Denoting by & the collection of all equicontinuous, absolutely
convex, compact subsets of C,(S) endowed with the topology ¢, of pointwise
convergence, measures x4 in M (S) can be characterized in functional terms, like
measures x4 in M,(S), such that the restriction of 1, to each He & is continuous in
the topology ¢, [12, p. 120].

Let & be the family of all absolutely convex, ¢,,-compact subsets of C,(S) (then
each He # is uniformly bounded [12]). The subspace M,(S) of M,(S) is formed by
those Baire measures x in M,(S) such that the restriction of 7, to each He # is
continuous in the topology ¢,,. Since & = # we have that M (S) = M (S). Itis also
verified that M (S) = M,(S), and both inclusions can be strict [12].

Throughout, every set He# will be considered as a compact space with the
t,-topology ; C(H) will be the Banach space of 7,-continuous real functions y: H — R
with the supremum norm.

LEMMA 4. If He 3, the function Fy: S — C(H), defined by Fy(s)(h) = h(s) for
he H, is bounded and weakly continuous. If He &, then Fy is norm-continuous.

Proof. Since H is uniformly bounded, it follows that F;; is bounded. Let A be
a regular probability on the Borel subsets of H; then the function g(s) = [ h(s) dA (h)
is the pointwise limit of a net in the convex hull of H, so that g is a member of H.
Therefore, Fy is weakly continuous. If H is equicontinuous it is obvious that Fy is
norm-continuous.

In that what follows we give characterizations of M (S) and M,(S) in terms of
the universal Pettis integrability of bounded norm-continuous and weakly continuous
Banach valued functions. Simultaneously, characterizations of such spaces on SS are
given by our previous results concerning the canonical extension to £S. To accomplish
this, we introduce the following families of compact subsets of fS.

Let A (S), #,(S) be the families of compact subsets K of AS such that there
is a Banach space X and a function fe C,(S, X), C¥(S, X), respectively, with
fHK)NX = &, cofg(K) N X = &, respectively.
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Lemma 4 allows us to give an internal characterization of J ,,(S) in terms of the
family &. If ae S and he C,(S), we write I(h) = hg(o).

PROPOSITION 5. Assume that K is a compact subset of BS. Then Ke A (S) if and
only if there is He & such that the restriction of I, to H is not t,-continuous for each
xe K.

Proof. Let K be a compact subset of BS such that there is a Banach space X and
a function fe Cy(S, X) with fI(K)NX = . Then H = x*, fH:lx*| <1} is a
member of &. For each aeK, fy(®)¢ X. By a well-known result, the linear form
x* = (x*, f)p(®) is not weak* continuous on the unit ball of X*. Therefore, for all
ae K, the restriction of I, to H is not continuous.

Conversely, suppose that H is a member of & such that the condition of the
proposition holds. We consider the Banach space X = C(H) and the continuous
function f = Fy given in Lemma 4. Then H = {{x*, f>:| x*| < 1}, and a standard
argument based in the compactness of H leads us to conclude that the restriction of
I, to H is continuous whenever f4(«) € X. Therefore, fp(a) ¢ X for every ae K, and so
KeA .

The following characterization of the space M (S) completes previous results of
Haydon [5, Proposition 2.1] and Koumoullis [8, p. 473].

THEOREM 6. Let u be a probability in M(S). The following are equivalent :
(@) Cu(S, X) = LY (u, X) for all Banach spaces X ;

(b) Cu(S, X) = P(u, X) for all Banach spaces X,

(©) neMy(S);

(d) (K) = 0 for each Ke A ..

Proof. (a)=>(b) This implication is clear.

(b) = (c) If (b) holds and H € &, then we can consider X = C(H) and Fy as given
by Lemma 4. Since Fj is Pettis integrable, if y = s Fy du and e, e C(H)* is the
evaluation in he H, we have

V) STh L f GRS e fshdu

for all he H. Thus, the restriction of I, to H is in C(H). Therefore u is a member of
M (S).

(¢) = (a) Given fe Cy(S, X), the distribution uf* induced on the Borel sets of
(X, |l Il is supported by a closed separable subspace Y of X. Then S, =f"(Y)isa
Baire subset of S that u(S,) = 1, so that fis Bochner measurable and (a) holds.

(a)<> (d) From Theorem 3, (d) holds if any only if Cy(S, X) = P*(u, X) for all
Banach spaces X. Since (a) is equivalent to (b) and L'(u, X) = P*(u, X) = P(u, X),
we conclude that (a) and (d) are equivalent.

ReMARK. The above theorem allows us to say that all continuous bounded
functions with values in Banach spaces are Bochner integrable with respect to every

o-additive Baire measure, provided that there are no real-valued measurable cardinals
162
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[12, 6.9]. If ¢ is a real-valued measurable cardinal, S = [0, 1] with the discrete topology,
u is a probability on the power set of S which vanishes on all singletons, and
X = ¢?[0, 1], then the function f:S — X defined by f(k) = e, (the k-th unit vector) is
a member of C,(S, X) which is not Bochner integrable, since its range is not essentially
separable.

It can be shown that the family ., agrees with that used by Koumoullis in [8].
Thus, Theorem 6 provides another proof of the Koumoullis characterization of
M (S).

THEOREM 7. Let u be a probability in M,(S). The following are equivalent:
(a) C¥(S, X) = P(u, X) for all Banach spaces X ;

(b) ueM/(S);

() A(K) =0 for each Ke X,.

Proof. (a)=(b) Let H be a member of 5. The function Fy as given by Lemma 4
is bounded and weakly continuous. If y = j s Fy du, we can proceed as in the proof
of Theorem 6 to show that w e C(H) is the restriction of 1, to H. Then (b) holds.

(b) = (a) For each Baire subset B of S, the Baire measure ug(E) = u(E N B) is an
element of M,(S) [12, p. 122]. Since H = {{x*, f>:[| x*|| < 1}isa member of #, the
linear form x%* defined by

o [ rydu= [ Gty dus

is weak* continuous on the unit ball of X*. This implies that x}* is weak* continuous;
then x%* is a member of X. Therefore, (a) holds.

(a) <> (c) This is a consequence of Theorem 2.

COROLLARY 8. Let C = M(S) be a countable subset whose members are positive
measures. If ve M(S) is in the closure of C for a(M,(S), Cy(S)), then ve M ,(S).

Proof. Let X be an arbitrary Banach space and suppose that fe C¥(S, X). If we
can show that fis Pettis v-integrable, an appeal to Theorem 7 will allow us to conclude
that ve M,(S). Let Z be a zero subset of S with v(Z) > 0, and let {y,,} be a sequence
in C,(S) which decreases pointwise to the characteristic function of Z. Let
C = {u;:keN}. By Theorem 7, x,, ; = [s W, fdu is in X for all k and n in N. For
each n, the element of X** defined by x}* = (D)-{s v, fdv is in the weak* closure of
the set {x, ,:keN}. Since the sequence x3* is weak* convergent to the element
x3* = (D)-| zf dv, we see that x}* is in the weak* closure of a countable subset of X.
For each Baire subset 4 = S with v(4) > 0 thereis a zero set Z = A4 such that w(Z) > 0.
Using Theorem 1, we conclude that f'is Pettis v-integrable.

COROLLARY 9. The space M,(S) is sequentially complete for the topology
a(My(S), Cy(S)).

Proof. Suppose that u, is a sequence in My(S) such that j v du, is a convergent
sequence for all y in C,(S). Since M,(S) is sequentially complete for the a(M,(S),
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C,(S)) topology [12, p. 162], there is a measure u in M,(S) such that |  du,, converges
to ja//du for all w € C,(S). Since {u,:ne N} is relatively compact in a(My(S), C,(S)),
it follows that {u;} :ne N} and {u; :ne N} are also relatively compact in this topology
[12, p. 142]. Thus, there are v, and v,, cluster points in the above topology of the
sequences u; and u, respectively, such that u = v; —v,. From Corollary 8, v, and
v, belong to M,(S), and so u is in My(S).

ReMARK. Taking norm-continuous functions in the proof of Corollary 8, the
same arguments provide a new proof of the sequential completeness of M (S)
endowed with the (M (S), C,(S)) topology [12, p. 162].

In the next corollary we denote by B¥(S, X) the family of bounded functions
f:S — X such that there is a sequence f,, in C¥(S, X) for which

{x*, (1)) = lim {x*, f,(¢9)> for all e S and x* e X*. (*)

COROLLARY 10. If p is a probability in M (S), then BY(S, X) = P(u, X) for all
Banach spaces X.

Proof. Given fe B¥(S, X), let f,, be a sequence in C¥(S, X) such that () holds.
For each zero subset Z of S with u(Z) > 0, let y, be a sequence in Cy(S) which
decreases pointwise to the characteristic function of Z. If x,, ; = [s Wy f, du, similar
reasoning to that in the proof of Corollary 8 shows that f'is Pettis integrable.

In [11] Wheeler introduces the Baire measures space Z(S), defined in a similar way
to M,(S), but related to the family 5, of uniformly bounded and ¢,-compact subsets
H < Cy(S), rather than 5. If S is a K, space then M (S) = Z(S) by [12, Theorem
13.10]. In this case Z(S) is sequentially complete for the a(Z(S), Cy(S)) topology.

Now we characterize the subspace M (S) of M,(S) whose positive cone M7 (S)*
is composed of the measures ue M, (S)* such that C¥(S, X) = P*(u, X) for each
Banach space X. It is convenient to introduce the following definition. Given
uEeM,(S)*, we say that H satisfies the condition C,, if there is a Borel set B = S with
A(B) = A(BS) such that G:h — hg| 5 (h€ H) is continuous for the pointwise topologies
in H and G(H).

It is easy to prove that if H satisfies C,, then the restriction of I, to H is continuous
for the pointwise topology. Hence, the set of the measures u such that each He #
satisfies C),, is a vector subspace My (S) of M,(S). The characterization in S of this
new space is obtained by considering the family %" of compact subsets K of 8S for
which there exists a Banach space and a function f'e Cy(S, X) such that fg(K) N X = .
Proceeding as in the proof of Proposition 5, we can give an internal characterization
of 2"} in terms of the family #. The compact set K = fSis in 2¢'; if and only if there
exists H e # such that for each ace K the restriction of I, to H is not continuous.

THEOREM 11. Let u be a probability in M(S). The following are equivalent :
(a) C¥(S, X) = P*(u, X) for all Banach spaces X ;

(b) we M(S);

(c) MK) =0 for each Ke A'}.
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Proof. (a)<>(c) This follows from Theorem 3.

(a)=>(b) Let H be a member of #. If X = C(H) and f = Fj; are as in Lemma 4,
then H = {{x*, f>:|| x* || < 1}. From Theorem 3 there is a Borel subset B of BS such
that 4(B) = 1 and fg(B) c X. If G(h) = hg 5, then G(H) is t,,-compact in Cy(B). If
h; = {x}, f>isanetin H, t,-convergent to h = {x*, >, then G(h) is the only z,,-cluster
point of G(h;); hence G(#;) is t,-convergent to G(k). Therefore, every He # satisfies
C,, and u is in M (S).

(b) = (c) Given Ke X'}, there is He # such that, for every ae K, the restriction
of 1, to H is not continuous. If we suppose that (b) holds, there is a Borel subset B
of BS with f(B) = 1 such that G(h) = hp) g is continuous on H for the ¢,-topology.
Therefore, for each ae B, the restriction of I, to H is continuous. Thus, KN B = ,
so that (K) = 0 and (c) holds.

From Theorem 12 and the characterization of Knowles of M,(S) in terms of BS
[12, p. 124] we see that M (S) = M}(S). If S is not a u-space [12], the above inclusion
is strict. It is enough to note that S = SN M(S) & BS N My (S) [12, p. 123], for
BS N My(S) coincides with S n M} (S) by Theorems 7 and 11 and [9, Theorem 5.9,
p- 494].

PROBLEM. The similarities between the functional characterizations of M (S) and
M,(S), and between the representations on BS of M (S) and My (S), lead us to
pose the following question. Is it possible to distinguish between M,(S) and
M3 (S)?

A natural condition for u € M(S) is that for each H e # there is a Baire set E — S
such that |u|(E) = |4|(S) and H ; = {h)z:he H} is t,-metrizable. The subspace of
measures with this property is denoted by M*(S).

Let u be a Baire positive measure and let / be its completion; y is said to be
completion regular if each Borel set is ji-measurable. If ueM,(S) is completion
regular, and we take a Baire set E contained in the support of u with HU(E) = w(S),
then the metrizability theorem of [6, p. 171] proves that H| is t,-metrizable for each
He #, and so u is in M*(S). A lifting on #*(f) is a multiplicative linear mapping
p:L*(t) > £L(ir) which satisfies (a) p(f) = f almost everywhere, and (b) if 1=
almost everywhere, then p(f) > p(g) at all points of S. The existence of liftings for
all complete positive measures is proved in [7]. The lifting p is said to be almost strong
if there is a Baire set E with u(E) = u(S) such that ¥ |k coincides with p(y), z for each
w € Cp(S). In [1] it is proved that y is r-additive and completion regular when there
is an almost strong lifting p on £ *(&). Such liftings satisfy the following property.

(1) For each He s there is a Baire set E < S such
that u(E) = u(S) and p(y),z = y for each y e H.

THEOREM 12.  Let y1 be a probability in M (S)*. The following are equivalent :
(@) ue M*(S);

(b) C¥(S, X) = LY(u, X) for each Banach space X ;

(c) every lifting p on L*(f1) satisfies (P).
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Proof. (a)=>(b) Let ue M*(S) and fe C¥(S, X). If H = {{x*, fH: | x*|| < 1},
then there is a Baire subset E = S such that u(E) = u(S) and H y is t,-metrizable.
Consequently, the Banach space C(H,p) is separable.

Let F be the set of equivalence classes of E under the following relation: s ~ §’
if and only if A(s) = h(s") for each he H. If we endow F with the initial topology for
its natural injection into C(H, z), then finduces a continuous function f:F - X defined
by J(3) = f(s), where § is the equivalence class of s. Since F is separable, f(E) = f(F)
is separable also, and f'is in L'(u, X).

(b) = (c) Let p be a lifting on #*(j1). For He #, if we consider X = C(H) and
f= Fyasin Lemma 4, then H = {<{x*, f):| x* || < 1}. Since fis Bochner measurable,
ifp(f): S - X**isdefined by <p(f), x*> = p({x*, 1), then[10, Theorem 3.4.4] proves
that modifying p(f) on a null set gives a Bochner measurable function scalarly
equivalent to f. Therefore, f and p(f) coincide almost everywhere. Then there exists
a Baire subset E of S with u(S) = u(E) such that {x*, /> z = p({x*, ), for each
xte x>

(c) = (a) This is a consequence of the metrizability theorem of [6].
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