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Abstract. Let X be a Banach space, B ⊂ BX∗ a norming set and T(X, B)

the topology on X of pointwise convergence on B. In this paper we study
the following question: given two (non negative, countably additive and finite)

measures µ1 and µ2 on Baire(X, w) which coincide on Baire(X, T(X, B)), does

it follow that µ1 = µ2? It turns out that this is not true in general, although
the answer is affirmative provided that both µ1 and µ2 are convexly τ -additive

(e.g. when X has the Pettis Integral Property). For a Banach space Y not

containing isomorphic copies of `1, we show that Y ∗ has the Pettis Integral
Property if and only if every measure on Baire(Y ∗, w∗) admits a unique ex-

tension to Baire(Y ∗, w). We also discuss the coincidence of the two σ-algebras
involved in such results. Some other applications are given.

1. Introduction

All the measures considered in this paper are non negative, countably additive
and finite. One basic question in measure theory is the following: Given two σ-
algebras Σ′ ⊂ Σ on a set Ω and two measures µ1 and µ2 on Σ such that µ1|Σ′ =
µ2|Σ′ , when does it follow that µ1 = µ2? The purpose of this paper is to discuss
this problem in the setting of Baire σ-algebras of weak topologies in Banach spaces.
More precisely, we are concerned with

Σ′ = Baire(X, T(X, B)) ⊂ Σ = Baire(X, w),

where X is a Banach space, B ⊂ BX∗ is a norming set and T(X, B) is the topology
on X of pointwise convergence on B, which is weaker than the weak topology
w = T(X, BX∗) (for all unexplained notation and terminology, we refer the reader
to the end of this section). We emphasize that the Baire σ-algebra of a locally
convex space endowed with its weak topology is exactly the σ-algebra generated by
all the elements of the topological dual, [7]. In particular, Baire(X, T(X, B)) is the
σ-algebra on X generated by B.

We next summarize the content of this paper. Section 2 plays an auxiliary role
and is devoted to provide, in a general measure theoretic setting, a criterion for the
uniqueness of measure extensions (Theorem 2.7) which can be applied succesfully
in Section 3 within the framework of weak Baire measures in Banach spaces. Our
approach relies on Edgar’s work [9] (going back to [17]) about the continuity of the
integral over a uniformly integrable set of functions endowed with the pointwise
convergence topology.
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In Section 3 our main results are proved. It turns out that there is a close
relationship between the theory of the Pettis integral and the problems considered
in this work. Following [22], we say that a measure µ on Baire(X, w) is convexly
τ -additive if for each decreasing net (Cα) of convex closed elements of Baire(X, w)
with

⋂
α Cα = ∅, we have limα µ(Cα) = 0. It is well known that a scalarly bounded

function f defined on a measure space (Λ,S, ν) with values in X is Pettis integrable
if and only if the image measure νf−1 on Baire(X, w) is convexly τ -additive, [26,
5-2-4]. Thus, X has the Pettis Integral Property (PIP) if and only if every measure
on Baire(X, w) is convexly τ -additive (Remark 3.3). As an immediate application
of the results proved in Section 2, we show that the question raised in the first
paragraph has affirmative answer for Σ′ = Baire(X, T(X, B)) ⊂ Σ = Baire(X, w)
provided that both µ1 and µ2 are convexly τ -additive (Theorem 3.2).

Of course, the previous result is not of interest when

Baire(X, T(X, B)) = Baire(X, w).

Remember that this equality holds, for instance, whenever (BX∗ ,weak∗) is angelic.
In Subsection 3.1 we study the coincidence of both σ-algebras, including some ex-
amples of Banach spaces with the PIP for which Baire(X, T(X, B)) 6= Baire(X, w).
Our attention is mainly focused on the case in which X = Y ∗ and B = BY , where
Y is a Banach space. (Note that w∗ = T(Y ∗, B) is just the weak∗ topology on Y ∗.)
We prove that Baire(Y ∗, w∗) = Baire(Y ∗, w) if and only if Y is sequentially dense
in (Y ∗∗,weak∗) (Proposition 3.9) and that these conditions are satisfied whenever
Y ∗ has the property (C) (Corollary 3.10).

The uniqueness of measure extensions in the setting of dual Banach spaces is
analyzed in Subsection 3.2. We consider the following class of spaces.

Definition 1.1. Let Y be a Banach space. We say that Y ∗ has the property (U)
if for every pair of measures µ1 and µ2 on Baire(Y ∗, w) we have

µ1|Baire(Y ∗,w∗) = µ2|Baire(Y ∗,w∗) =⇒ µ1 = µ2.

In view of the comments above, every dual Banach space Y ∗ with the PIP
has the property (U). Furthermore, our Theorem 3.17 states that the converse
holds when Y does not contain subspaces isomorphic to `1. We also show that in
general every dual Banach space having the property (U) is realcompact for its
weak topology (Proposition 3.18). The converse is not true in general, since `∞
fails the property (U) (Example 3.19).

Notation and terminology. For all unexplained terminology and notation we
refer the reader to our standard references [11] (Banach spaces), [13] (topological
measure theory) and [26] (Pettis integral).

Given a set Ω, we write Tp(Ω) (or simply Tp) to denote the topology on RΩ of
pointwise convergence on Ω. We denote by σ(F) the σ-algebra on Ω generated by
a family F ⊂ RΩ (i.e. the smallest one for which each element of F is measurable).
As usual, co(F) (resp. aco(F)) stands for the convex (resp. absolutely convex) hull
of F in RΩ.

Let (T,T) be a completely regular Hausdorff topological space. We denote by
Baire(T,T) (resp. Borel(T,T)) the σ-algebra on T generated by the family of all
the real-valued continuous functions on T (resp. closed subsets of T ). We write
Mσ(T,T) to denote the family of all the measures on Baire(T,T). We say that
µ ∈ Mσ(T,T) is tight if µ(T ) = sup{µ∗(K) : K ⊂ T, K is compact}, where
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µ∗ stands for the outer measure induced by µ. A measure ν on Borel(T,T) is
called a Radon measure if ν(E) = sup{ν(K) : K ⊂ E, K is compact} for every
E ∈ Borel(T,T). It is well known that every tight measure on Baire(T,T) can be
extended (in a unique way) to a Radon measure on Borel(T,T). The σ-algebra made
up of all the universally measurable subsets of T (i.e. those which are measurable
with respect to each Radon measure on Borel(T,T)) will be denoted by Univ(T,T).
Recall that (T,T) is called angelic if each relatively countably compact set A ⊂ T
is relatively compact and for every t ∈ A there is a sequence in A converging to t.

All our Banach spaces Z are assumed to be real. We write BZ to denote the
closed unit ball of Z. As usual, Z∗ stands for the topological dual of Z. Given
z ∈ Z and z∗ ∈ Z∗, we sometimes write 〈z∗, z〉 instead of z∗(z). We identify Z as
a closed subspace of Z∗∗ by means of the canonical isometry. A set B ⊂ BZ∗ is
said to be norming if ‖z‖ = sup{|z∗(z)| : z∗ ∈ BZ∗} for every z ∈ Z. The topology
T(Z,B) is the coarsest one for which each element of B is continuous. We write
Z 6⊃ `1 if Z does not contain subspaces isomorphic to `1. Recall that Z has the
property (C) (introduced by Corson [3]) if every family of closed convex subsets of Z
with empty intersection contains a countable subfamily with empty intersection.

Given a measure space (Ω,Σ, µ), we write L1(µ) to denote the space of all the
Σ-measurable and µ-integrable real-valued functions defined on Ω and L1(µ) for
the corresponding Banach space of equivalence classes with its usual norm ‖ · ‖1.
A set H ⊂ L1(µ) is uniformly integrable if and only if it is ‖ · ‖1-bounded and for
each ε > 0 there is δ > 0 such that suph∈H

∫
E
|h| dµ ≤ ε whenever µ(E) ≤ δ. A

function f : Ω −→ Z is said to be

(i) scalarly measurable if the composition 〈z∗, f〉 is Σ-measurable for every
z∗ ∈ Z∗;

(ii) scalarly bounded if it is scalarly measurable and there is M > 0 such that
for every z∗ ∈ BZ∗ we have |〈z∗, f〉| ≤ M µ-a.e.;

(iii) Pettis integrable if 〈z∗, f〉 ∈ L1(µ) for every z∗ ∈ Z∗ and for each E ∈ Σ
there is zE ∈ Z such that

∫
E
〈z∗, f〉 dµ = z∗(zE) for every z∗ ∈ Z∗.

We say that Z has the µ-PIP if each scalarly bounded function from Ω to Z is
Pettis integrable. The space Z has the Pettis Integral Property if it has the µ-PIP
for every measure space (Ω,Σ, µ). It is known that

(BZ∗ ,weak∗) angelic ⇒ Z has the property (C) ⇒ Z has the PIP,

and none of the reverse implications holds in general, see [8, 23, 26].

2. A criterion for the uniqueness of measure extensions

In order to deal with Theorem 2.7 we need some preliminary work which we have
divided into a sequence of lemmas for the convenience of the reader.

Definition 2.1. Let Σ′ ⊂ Σ be two σ-algebras on a set Ω.

(1) Let M be a family of measures on Σ. We say that Σ′ has the uniqueness
property with respect to M if for every pair µ1, µ2 ∈M we have

µ1|Σ′ = µ2|Σ′ =⇒ µ1 = µ2.

(2) We say that a measure µ on Σ is approximated by Σ′ if for every E ∈ Σ
there is B ∈ Σ′ such that µ(E4B) = 0.
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Lemma 2.2. Let Σ′ ⊂ Σ be two σ-algebras on a set Ω and M a family of measures
on Σ such that µ1 + µ2 ∈ M for every µ1, µ2 ∈ M. Suppose that every element
of M is approximated by Σ′. Then Σ′ has the uniqueness property with respect
to M.

Proof. Fix µ1, µ2 ∈ M such that µ1|Σ′ = µ2|Σ′ . Since µ := µ1 + µ2 belongs to M,
for each E ∈ Σ there is B ∈ Σ′ such that µ(E4B) = 0, hence µ1(E4B) =
µ2(E4B) = 0 and therefore µ1(E) = µ1(B) = µ2(B) = µ2(E). �

It is worth it to point out that the converse of Lemma 2.2 holds true under certain
additional assumption on the family of measures, as we show in Corollary 2.3 below.
Given two σ-algebras Σ′ ⊂ Σ on a set Ω and a measure µ′ on Σ′, we write ca(µ′,Σ)
to denote the convex set of all the measures µ on Σ such that µ|Σ′ = µ′. A well
known result of R. G. Douglas, see [4, 21], states that a measure µ ∈ ca(µ′,Σ) is
an extreme point of ca(µ′,Σ) if and only if µ is approximated by Σ′.

Corollary 2.3. Let Σ′ ⊂ Σ be two σ-algebras on a set Ω and M a family of
measures on Σ with the following properties:

• µ1 + µ2 ∈M for every µ1, µ2 ∈M;
• if ν ∈M and µ is a measure on Σ such that µ ≤ ν, then µ ∈M.

Then Σ′ has the uniqueness property with respect to M if and only if every element
of M is approximated by Σ′

Proof. It only remains to show the only if part. So assume that Σ′ has the unique-
ness property with respect to M and fix µ ∈ M. We claim that µ is an extreme
point of ca(µ|Σ′ ,Σ). Indeed, write µ = (µ1 + µ2)/2, where µ1, µ2 ∈ ca(µ|Σ′ ,Σ).
Since µi ≤ µ1 + µ2 = µ + µ ∈ M for i = 1, 2, we infer that µ1, µ2 ∈ M and there-
fore µ1 = µ2. This proves the claim. An appeal to the aforementioned Douglas’
result now ensures that µ is approximated by Σ′. �

The following lemma provides a useful sufficient condition to establish that a
measure is approximated by a sub-σ-algebra.

Lemma 2.4. Let Ω be a set, F ′ ⊂ F ⊂ RΩ two families and µ a measure on σ(F).
Suppose that for each f ∈ F there is a sequence (fn) in F ′ that converges to f
µ-a.e. Then µ is approximated by σ(F ′)

Proof. It is easy to check that the family

A = {E ∈ σ(F) : there is B ∈ σ(F ′) such that µ(E4B) = 0}

is a σ-algebra on Ω contained in σ(F). Therefore, in order to show that A = σ(F)
it suffices to prove that each f ∈ F is A-measurable. To this end, fix f ∈ F , t ∈ R
and define H := {ω ∈ Ω : f(ω) > t}. By the assumption, there is a sequence
(fn) in F ′ that converges to f µ-a.e. Fix F ∈ Σ such that µ(Ω \ F ) = 0 and
limn fn(ω) = f(ω) for every ω ∈ F . The set

B :=
∞⋃

n=1

∞⋃
m=1

⋂
k≥m

{
ω ∈ Ω : fk(ω) > t +

1
n

}
belongs to σ(F ′) and satisfies B ∩ F = H ∩ F , hence µ(H4B) = 0 and therefore
H ∈ A. As t ∈ R is arbitrary, f is A-measurable. The proof is finished. �
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The notion of F-smooth measure defined below includes as particular cases the
convexly τ -additive weak Baire measures on Banach spaces (see Lemma 3.1 in
Section 3), as well as the τ -additive Baire measures on completely regular Hausdorff
topological spaces.

Definition 2.5. Let (Ω,Σ) be a measurable space and F ⊂ RΩ a family of Σ-
measurable functions. Let us denote by ZF the collection of all the finite intersec-
tions of sets of the form {ω ∈ Ω : f(ω) ≤ g(ω) + t}, where f, g ∈ F and t ∈ R. A
measure µ on Σ is said to be F-smooth if for each decreasing net (Zα) of elements
of ZF with

⋂
α Zα = ∅, we have limα µ(Zα) = 0.

Our interest in considering F-smooth measures is motivated by the “separation
property” isolated in Lemma 2.6, which will allow us to use a result of Edgar [9]
regarding the continuity of the “identity” mapping

I : (F ,Tp) −→ (L1(µ),weak)

(that sends each function to its equivalence class) when F is a Tp-countably com-
pact, convex and uniformly integrable subset of L1(µ).

Lemma 2.6. Let (Ω,Σ) be a measurable space, F ⊂ RΩ a family of measurable
functions and µ a F-smooth measure on Σ. Define S :=

⋂
{Z ∈ ZF : µ(Ω\Z) = 0}.

Then for every pair f, g ∈ F we have:

f |S = g|S ⇐⇒ f = g µ−a.e.

Proof. Notice that the family C := {Z ∈ ZF : µ(Ω \ Z) = 0} is not empty and
closed under finite intersections. Fix f, g ∈ F . If f = g µ-a.e., then Z := {ω ∈ Ω :
f(ω) = g(ω)} ∈ C, so S ⊂ Z and therefore f |S = g|S . Conversely, suppose that
f |S = g|S and fix n ∈ N. Define

Cn :=
{

ω ∈ Ω : f(ω) ≥ g(ω) +
1
n

}
∈ ZF .

Since the family Cn := {Z ∩ Cn : Z ∈ C} ⊂ ZF is closed under finite intersections
and ∩Cn = S ∩ Cn = ∅, we can apply the F-smoothness of µ to deduce that
µ(Cn) = inf{µ(Z ∩Cn) : Z ∈ C} = 0. As n ∈ N is arbitrary, f ≤ g µ-a.e. A similar
argument yields f ≥ g µ-a.e. and the proof is over. �

Given a measure space (Ω,Σ, µ) and A ∈ Σ, we write µA to denote the measure
on Σ defined by µA(E) := µ(E ∩A).

Theorem 2.7. Let Ω be a set and F ′ ⊂ F ⊂ RΩ two families of functions such
that

• F is convex and Tp-countably compact;
• F ′ is Tp-dense in F .

Then σ(F ′) has the uniqueness property with respect to the family made up of all
the F-smooth measures on σ(F).

Proof. Since the sum of any two F-smooth measures on σ(F) is again F-smooth,
Lemmas 2.2 and 2.4 say that in order to prove the result it suffices to check that
each F-smooth measure µ on σ(F) satisfies the following condition: for every f ∈ F
there is a sequence (fn) in F ′ that converges to f µ-a.e.. We divide the proof into
two steps.
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Step 1.- Suppose that F is a uniformly integrable subset of L1(µ). Since µ is
F-smooth, Lemma 2.6 ensures us that there is a set S ⊂ Ω such that for every
f, g ∈ F we have

f |S = g|S ⇐⇒ f = g µ−a.e.

By the assumption, F is convex and Tp-countably compact, so we can apply [9,
Proposition 3] to deduce that the “identity” mapping

I : (F ,Tp) −→ (L1(µ),weak)

(that sends each function to its equivalence class) is continuous. Since F is convex,
F ′ ⊂ co(F ′) ⊂ F and we can suppose without loss of generality that F ′ is convex
too. Bearing in mind that F ′ is Tp-dense in F , the continuity of I yields

I(F) ⊂ I(F ′)
weak

= I(F ′)
‖·‖1

.

It follows that for each f ∈ F there is a sequence (fn) in F ′ with limn ‖fn−f‖1 = 0
and, thus, we can find a subsequence (fnk

) converging to f µ-a.e.
Step 2.- Since F is a pointwise bounded (because it is Tp-countably compact)

family of σ(F)-measurable functions, there is a non negative σ(F)-measurable func-
tion h ∈ RΩ such that for each f ∈ F we have |f | ≤ h µ-a.e., see e.g. [10, 4.1.1].
Therefore, we can find a sequence (Ak)∞k=1 in σ(F) such that for every k ∈ N

• F is a uniformly integrable subset of L1(µAk
);

• µ(Ω \Ak) ≤ 1/2k.
Given k ∈ N, in view of Step 1 (notice that µAk

is F-smooth) there is a sequence
(fk

n)∞n=1 in F ′ converging to f µAk
-a.e. By Egorov’s theorem, there exist Ek ∈ σ(F)

with µAk
(Ω \Ek) ≤ 1/2k and n(k) ∈ N such that supω∈Ek

|fk
n(k)(ω)− f(ω)| ≤ 1/k.

Fix s ∈ N. We have

Ns :=
∞⋂

l=1

∞⋃
k=l

{
ω ∈ Ω : |fk

n(k)(ω)− f(ω)| > 1
s

}
⊂

∞⋂
l=s

∞⋃
k=l

(Ω \ Ek),

hence Ns ∈ σ(F) satisfies

µ(Ns) ≤
∞∑

k=l

µ(Ω \ Ek) ≤
∞∑

k=l

µAk
(Ω \ Ek) +

∞∑
k=l

µ(Ω \Ak) ≤
∞∑

k=l

1
2k−1

= 2−l+2

for every l ≥ s and therefore µ(Ns) = 0. Finally, notice that (fk
n(k))

∞
k=1 converges

to f pointwise on Ω \
⋃∞

s=1 Ns, and so µ-a.e. The proof is complete. �

We mention that some other known facts concerning the continuity of the “iden-
tity” mapping J : (F ,Tp) −→ (L1(µ), ‖ · ‖1) (see [9] and the survey paper [28] for a
thorough study on this subject) could be applied in a similar way to deduce results
along the line of Theorem 2.7 without the assumption of convexity on F .

3. Uniqueness of extensions in Banach spaces

Theorem 3.2 below is now an easy consequence of Theorem 2.7. We first need
to recall the following well known fact which we do not find in print.

Lemma 3.1. Let X be a Banach space and µ ∈ Mσ(X, w). Then µ is convexly
τ -additive if and only if it is BX∗-smooth (in the sense of Definition 2.5).
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Proof. Since ZBX∗ is made up of closed convex elements of Baire(X, w), we only
have to check the if part. To this end, we begin with the following claim.

Claim.- Let C ⊂ X be closed and convex. Then there is DC ⊂ ZBX∗ such
that C = ∩DC . Indeed, let us consider the family DC made up of all the ele-
ments of ZBX∗ of the form {x ∈ X : x∗(x) ≤ sup(x∗(C))}, where x∗ ∈ BX∗ and
sup(x∗(C)) < ∞. The Hahn-Banach separation theorem ensures that C = ∩DC

and the claim is proved.
Assume now that µ is BX∗ -smooth and fix a decreasing net (Cα) of convex closed

elements of Baire(X, w) with
⋂

α Cα = ∅. By the claim above, for each α we can find
Dα ⊂ ZBX∗ such that Cα = ∩Dα. Consider now the family Z ⊂ ZBX∗ of all the
finite intersections of elements of

⋃
αDα. Since Z is closed under finite intersections

and ∩Z =
⋂

α(∩Dα) =
⋂

α Cα = ∅, we can apply the fact that µ is BX∗ -smooth to
deduce that inf{µ(Z) : Z ∈ Z} = 0. In order to finish the proof notice that, given
Z ∈ Z, there exist α1, . . . , αn and Di ∈ Dαi

such that Z =
⋂n

i=1 Di ⊃
⋂n

i=1 Cαi
.

Since (Cα) is decreasing, there is some α such that Cα ⊂
⋂n

i=1 Cαi
⊂ Z. It follows

that limα µ(Cα) = 0 and the proof is over. �

Theorem 3.2. Let X be a Banach space and B ⊂ BX∗ a norming set. Then
Baire(X, T(X, B)) has the uniqueness property with respect to the family of all the
convexly τ -additive measures on Baire(X, w).

Proof. Since B is norming, the Hahn-Banach separation theorem ensures us that
aco(B) is weak∗-dense in BX∗ , that is, aco(B) is a Tp(X)-dense subset of the
family BX∗ ⊂ RX . Bearing in mind that BX∗ is convex and Tp(X)-compact (by
Alaouglu’s theorem), we can apply Theorem 2.7 to conclude that σ(aco(B)) =
Baire(X, T(X, B)) has the uniqueness property with respect to the family of all the
BX∗ -smooth measures on σ(BX∗) = Baire(X, w). �

Remark 3.3. A Banach space X has the PIP if and only if every measure on
Baire(X, w) is convexly τ -additive. Indeed, this is a consequence of the fact that a
scalarly bounded X-valued function f is Pettis integrable if and only if the image
measure induced by f on Baire(X, w) is convexly τ -additive, see [26, 5-2-4]. Notice
that, given a measure µ on Baire(X, w), there is a non decreasing sequence (An)
in Baire(X, w) with union X such that the identity function I : X −→ X is scalarly
bounded with respect to each µAn

(see the proof of Step 2 in Theorem 2.7). Thus µ
is convexly τ -additive if and only if I is Pettis integrable with respect to each µAn

.

The previous remark and Theorem 3.2 allow us to deduce the following

Corollary 3.4. Let X be a Banach space with the PIP and B ⊂ BX∗ a norming
set. Then Baire(X, T(X, B)) has the uniqueness property with respect to Mσ(X, w).

3.1. Coincidence of Baire(X, T(X, B)) and Baire(X, w). It is clear that, for a
Banach space X such that (BX∗ ,weak∗) is angelic, the equality

Baire(X, T(X, B)) = Baire(X, w)

holds for any norming set B ⊂ BX∗ (since BX∗ = aco(B)
weak∗

). In fact, the same
conclusion can be obtained if we only assume that B separates the points of X,
see [15]. In particular, for this class of Banach spaces (that contains all the weakly
compactly generated and, more generally, all the weakly Lindelöf determined spaces,
see e.g. [11, Chapters 7 and 8]) the result isolated in Corollary 3.4 is futile.
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The aim of this subsection is to discuss the coincidence of Baire(X, T(X, B)) and
Baire(X, w) in some particular cases of special interest. We will need the following
lemma, which might be folklore and is included here for the convenience of the
reader.

Lemma 3.5. Let X be a Banach space and F a subset of X∗. If x∗ ∈ X∗ is
σ(F )-measurable, then there is a countable set C ⊂ F such that

x∗ ∈ span(C)
weak∗

.

Proof. Since x∗ is σ(F )-measurable, there is a countable set C ⊂ F such that x∗ is
σ(C)-measurable. Let Σ be the family of all the elements A ∈ σ(C) such that⋂

y∗∈C

ker y∗ ⊂ A if 0 ∈ A or
⋂

y∗∈C

ker y∗ ⊂ X \A if 0 6∈ A.

It is easy to check that Σ is a σ-algebra on X for which each y∗ ∈ C is Σ-measurable,
hence Σ = σ(C). It follows that ker x∗ ∈ Σ and therefore

⋂
y∗∈C ker y∗ ⊂ ker x∗.

From the last inclusion and the Hahn-Banach separation theorem we infer that x∗

belongs to the weak∗-closure of span(C). The proof is over. �

Given a compact Hausdorff topological space K, we write C(K) to denote the
Banach space of all the real-valued continuous functions on K endowed with the
supremum norm. Note that the set B = {δt : t ∈ K} ⊂ BC(K)∗ of “point masses”
(i.e. δt(h) := h(t)) is norming and that T(C(K), B) = Tp(K). We next study
the Baire(C(K),Tp(K))-measurability of the “integral” functional ι(µ) ∈ C(K)∗,
ι(µ)(f) :=

∫
K

f dµ, associated to a Radon measure µ on K.

Proposition 3.6. Let K be a compact Hausdorff topological space and µ a Radon
measure on K. If ι(µ) is Baire(C(K),Tp(K))-measurable, then there is a closed
separable set F ⊂ K such that µ(K \ F ) = 0.

Proof. In view of Lemma 3.5, there is a countable set D ⊂ K such that

ι(µ) ∈ span{δt : t ∈ D}
weak∗

.

Define F := D and fix t ∈ K \ F . By Urysohn’s lemma, there is a continuous
function f : K −→ [0, 1] such that f(t) = 1 and f(s) = 0 for every s ∈ F . Given
ε > 0, there exist t1, . . . , tn ∈ D and a1, . . . , an ∈ R such that∫

K

f dµ =
∣∣∣∫

K

f dµ−
n∑

i=1

aif(ti)
∣∣∣ =

∣∣∣〈ι(µ), f〉 − 〈
n∑

i=1

aiδti
, f〉

∣∣∣ ≤ ε.

As ε > 0 is arbitrary, the open set Gt := {s ∈ K : f(s) > 0} satisfies µ(Gt) = 0.
Since K \ F =

⋃
{Gt : t ∈ K \ F} and µ is is a Radon measure, we conclude that

µ(K \ F ) = 0. This completes the proof. �

Corollary 3.7. Let K be a compact Hausdorff topological space such that

Baire(C(K),Tp(K)) = Baire(C(K), w).

Then for each Radon measure µ on K there is a closed separable set F ⊂ K such
that µ(K \ F ) = 0.
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Example 3.8. Under the continuum hypothesis, there exists a compact Hausdorff
topological space K (the so-called Kunen-Haydon-Talagrand space) with the fol-
lowing properties (see [19, §5]): (i) K is first-countable; (ii) K is not separable;
(iii) there is a Radon measure µ on K such that µ(G) > 0 for every non empty
open set G ⊂ K. On the one hand, (i) implies that C(K) has the PIP, see [22,
Theorem 3]. On the other hand, in view of (ii) and (iii), an appeal to Corollary 3.7
establishes that Baire(C(K),Tp(K)) 6= Baire(C(K), w).

A well known theorem due to Odell and Rosenthal [20] (cf. [5, Theorem 4.1])
states that a separable Banach space Y is weak∗-sequentially dense in Y ∗∗ if and
only if Y 6⊃ `1. In Proposition 3.9 below we apply this result to analyze the
coincidence of Baire(Y ∗, w∗) and Baire(Y ∗, w) for a non necessarily separable Ba-
nach space Y . Recall first (Haydon [16], cf. [5, Theorem 6.8]) that Y 6⊃ `1 if
and only if each y∗∗ ∈ Y ∗∗ is Univ(Y ∗, w∗)-measurable, that is, if and only if
Baire(Y ∗, w) ⊂ Univ(Y ∗, w∗).

Proposition 3.9. Let Y be a Banach space. The following conditions are equiva-
lent:

(i) Y is weak∗-sequentially dense in Y ∗∗;
(ii) Baire(Y ∗, w∗) = Baire(Y ∗, w);
(iii) Y 6⊃ `1 and for each y∗∗ ∈ Y ∗∗ there is a countable set D ⊂ Y such that

y∗∗ ∈ D
weak∗

.

Proof. (i)⇒(ii) is obvious. Let us turn to the proof of (ii)⇒(iii). Since

Baire(Y ∗, w) = Baire(Y ∗, w∗) ⊂ Borel(Y ∗, w∗) ⊂ Univ(Y ∗, w∗),

the aforementioned Haydon’s result ensures that Y 6⊃ `1. On the other hand,
given y∗∗ ∈ Y ∗∗, Lemma 3.5 can be applied to find a countable set C ⊂ Y such

that y∗∗ ∈ span(C)
weak∗

. Clearly, the set D ⊂ Y of all the linear combinations
of elements of C with rational coefficients is countable and y∗∗ ∈ D

weak∗

. This
establishes (ii)⇒(iii).

The proof of (iii)⇒(i) is as follows. Fix y∗∗ ∈ Y ∗∗. Take a countable set D ⊂ Y

such that y∗∗ ∈ D
weak∗

and define Z := span(D)
‖·‖

⊂ Y . Since

{y∗ ∈ Y ∗ : y∗(z) = 0 for every z ∈ Z} =
⋂

y∈D

ker y ⊂ ker y∗∗,

there exists z∗∗ ∈ Z∗∗ such that y∗∗ = z∗∗ ◦ r, where r : Y ∗ −→ Z∗ is the “re-
striction” operator. Notice that Z is separable and Z 6⊃ `1, so the Odell-Rosenthal
theorem allows us to obtain a sequence (zn) in Z ⊂ Y that converges to z∗∗ in
(Z∗∗,weak∗). Clearly, (zn) converges to y∗∗ in (Y ∗∗,weak∗). The proof is com-
plete. �

The previous proposition can be applied to the class of dual Banach spaces with
the property (C). To this end, we use the following characterization due to Pol [23]:
a Banach space X has the property (C) if and only if for every A ⊂ BX∗ and every

x∗ ∈ A
weak∗

there is a countable set E ⊂ A such that x∗ ∈ co(E)
weak∗

.

Corollary 3.10. Let Y be a Banach space such that Y ∗ has the property (C). Then

Baire(Y ∗, w∗) = Baire(Y ∗, w).
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Proof. We will check that Y fulfills the requirements in Proposition 3.9 (iii). On the
one hand, since `∞ fails the property (C) and this property is clearly inherited by
quotients, we infer that Y 6⊃ `1. On the other hand, given y∗∗ ∈ BY ∗∗ = BY

weak∗

,
the previous result of Pol says that there is a countable set E ⊂ BY such that

y∗∗ ∈ co(E)
weak∗

, and so the set D of all the convex combinations of elements of E

with rational coefficients is countable and y∗∗ ∈ D
weak∗

. �

Remark 3.11. The converse of the previous corollary holds true for a separa-
ble Y . Indeed, if Baire(Y ∗, w∗) = Baire(Y ∗, w), then Y is weak∗-sequentially
dense in Y ∗∗. Thus (BY ∗∗ ,weak∗) can be thought as a subspace of the space
(B1(BY ∗ , w∗),Tp(BY ∗)) of all the real-valued Baire-1 functions on (BY ∗ , w∗), which
is angelic since (BY ∗ , w∗) is a Polish space (Bourgain, Fremlin and Talagrand [2],
cf. [5, Theorem 4.1]). Hence (BY ∗∗ ,weak∗) is angelic too and so Y ∗ has the prop-
erty (C).

Recall that a cardinal κ is of measure zero (or measure-free) if there is no prob-
ability measure µ on the power set of κ such that µ({α}) = 0 for every α < κ. A
well known theorem of Ulam (see e.g. [13, 438C]) asserts that the first uncountable
ordinal, denoted by ω1, is of measure zero. We stress that it is consistent with ZFC
to assume that every cardinal is of measure zero. For a detailed account on this
subject we refer the reader to [13, §438] and the references therein.

Example 3.12. The space `1(ω1) = c0(ω1)∗ has the PIP and

Baire(`1(ω1), w∗) 6= Baire(`1(ω1), w).

Proof. `1(ω1) has the PIP because ω1 is of measure zero, see [8, Theorem 5.10].
On the other hand, since c0(ω1) is not weak∗-sequentially dense in its bidual
c0(ω1)∗∗ = `∞(ω1), we can apply Proposition 3.9 to conclude that Baire(`1(ω1), w∗)
and Baire(`1(ω1), w) are different. �

In fact, we have Baire(`1(ω1), w) = Borel(`1(ω1), ‖ · ‖), see [12].

Example 3.13. The space C[0, 1]∗ satisfies

Baire(C[0, 1]∗, w∗) 6= Baire(C[0, 1]∗, w)

and has the PIP if and only if the cardinal of the continuum is of measure zero.

Proof. The last assertion was proved in [8]. On the other hand, since `1 embeds in
C[0, 1], we have Baire(C[0, 1]∗, w∗) 6= Baire(C[0, 1]∗, w), by Proposition 3.9. �

3.2. Uniqueness of extensions in dual Banach spaces. In this subsection we
pay attention to the class of dual Banach spaces Y ∗ having the property (U) (in the
sense of Definition 1.1), that is, those for which Baire(Y ∗, w∗) has the uniqueness
property with respect toMσ(Y ∗, w). As an immediate consequence of Corollary 3.4
we get the following result.

Corollary 3.14. Let Y be a Banach space. If Y ∗ has the PIP, then Y ∗ has the
property (U).

It turns out that the converse of the previous corollary holds whenever Y 6⊃ `1

(Theorem 3.17 below). Recall first that, for a Banach space Y such that Y 6⊃ `1,
we have

Baire(Y ∗, w) ⊂ Univ(Y ∗, w∗),
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so the completion ν̃ of each Radon measure ν on Borel(Y ∗, w∗) can be restricted
to Baire(Y ∗, w). We will use the notation ν0 = ν̃|Baire(Y ∗,w).

Proposition 3.15. Let Y be a Banach space such that Y 6⊃ `1 and µ ∈Mσ(Y ∗, w).
The following conditions are equivalent:

(i) there is a Radon measure ν on Borel(X∗, w∗) such that ν0 = µ;
(ii) µ is convexly τ -additive.

Proof. (i)⇒(ii) Fix n ∈ N and consider the restriction νn of ν to

Borel(nBY ∗ , w∗) = {B ∩ nBY ∗ : B ∈ Borel(Y ∗, w∗)}.
Since Y 6⊃ `1, a result of Haydon [16] (cf. [5, Theorem 6.8]) ensures that the identity
mapping In : nBY ∗ −→ Y ∗ is Pettis integrable with respect to the completion ν̃n

of νn. Therefore, its image measure µn := ν̃nI−1
n ∈ Mσ(Y ∗, w) is convexly τ -

additive.
To prove that µ is convexly τ -additive, let us consider a decreasing net (Cα) of

convex closed elements of Baire(Y ∗, w) with ∩C = ∅. Fix ε > 0 and take n ∈ N
large enough such that ν(Y ∗ \ nBY ∗) ≤ ε/2. Since µn is convexly τ -additive, we
can find an α such that ν̃n(Cα ∩ nBY ∗) = µn(Cα) ≤ ε/2, hence

µ(Cα) = ν0(Cα) = ν̃(Cα ∩ nBY ∗) + ν̃(Cα \ nBY ∗)

= ν̃n(Cα ∩ nBY ∗) + ν̃(Cα \ nBY ∗) ≤ ε.

As ε > 0 is arbitrary, limα µ(Cα) = 0. This proves that µ is convexly τ -additive.
Let us turn to the proof of (ii)⇒(i). Since (Y ∗, w∗) is σ-compact (i.e. Y ∗ can

be expressed as a union of countably many w∗-compact subsets), the restriction
µ|Baire(X∗,w∗) is tight and therefore it can be extended to a unique Radon mea-
sure ν on Borel(X∗, w∗). Then both µ and ν0 are convexly τ -additive (bear in
mind the implication (i)⇒(ii)) and µ|Baire(X∗,w∗) = ν0|Baire(X∗,w∗). An appeal to
Theorem 3.2 now establishes that µ = ν0 and the proof is complete. �

The arguments of the proof of (ii)⇒(i) in Proposition 3.15 also allow us to deduce
the following corollary.

Corollary 3.16. Let Y be a Banach space such that Y 6⊃ `1. Then every mea-
sure on Baire(Y ∗, w∗) can be extended in a unique way to a convexly τ -additive
measure on Baire(Y ∗, w). If, in addition, Y ∗ has the PIP, then every measure on
Baire(Y ∗, w∗) can be extended in a unique way to a measure on Baire(Y ∗, w)

Theorem 3.17. Let Y be a Banach space such that Y 6⊃ `1. Then Y ∗ has the PIP
if and only if it has the property (U).

Proof. It only remains to prove the if part. To this end, we will show that each
µ ∈ Mσ(Y ∗, w) is convexly τ -additive. Indeed, as in the proof of the implication
(ii)⇒(i) in Proposition 3.15, we can find a Radon measure ν on Borel(Y ∗, w∗) such
that µ|Baire(Y ∗,w∗) = ν0|Baire(Y ∗,w∗). Since Y ∗ has the property (U), we get µ = ν0

and an appeal to Proposition 3.15 establishes that µ is convexly τ -additive, as
required. �

A completely regular Hausdorff topological space (T,T) is said to be realcompact
if it is homeomorphic to a closed subset of RI for some set I. A well known result
of Hewitt and Shirota (see e.g. [27, Theorem 5, p. 218]) states that (T,T) is
realcompact if and only if for each {0, 1}-valued measure µ on Baire(T,T) there
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exists t ∈ T such that µ(A) = 1 if t ∈ A, µ(A) = 0 if t 6∈ A. This characterization
was used in [8] (see [6] for a corrected proof) to show that every Banach space
X with the PIP is realcompact for its weak topology. We next obtain the same
conclusion for any dual Banach space with the property (U).

Proposition 3.18. Let Y be a Banach space. If Y ∗ has the property (U), then
(Y ∗, w) is realcompact.

Proof. Fix any µ ∈Mσ(Y ∗, w) with µ(Baire(Y ∗, w)) = {0, 1}. Since µ|Baire(Y ∗,w∗)

is tight and takes only the values 0 and 1, it is not difficult to see that there exists
y∗0 ∈ Y ∗ such that for every B ∈ Baire(Y ∗, w∗) we have µ(B) = 1 if y∗0 ∈ B and
µ(B) = 0 if y∗0 6∈ B. Define µ′ ∈Mσ(Y ∗, w) by

µ′(A) =

{
1 if y∗0 ∈ A

0 if y∗0 6∈ A
for every A ∈ Baire(Y ∗, w).

Since µ|Baire(Y ∗,w∗) = µ′|Baire(Y ∗,w∗) and Y ∗ has the property (U), we conclude that
µ = µ′. An appeal to the aforementioned characterization of Hewitt and Shirota
establishes that (Y ∗, w) is realcompact. �

The converse of the previous proposition does not hold in general. Indeed, the
space `∞ = (`1)∗ is weakly realcompact, [3, Example 1], whereas it fails the prop-
erty (U), as we show in Example 3.19 below. This example was pointed out to us
by D. H. Fremlin, who has kindly given his permission for its inclusion here.

We first need to introduce the so-called Talagrand’s measure [25] (see e.g. [26,
Chapter 13] or [13, §464]). We will identify {0, 1}N with P(N) by means of the
bijection ζ : {0, 1}N −→ P(N) defined by ζ((an)) := {n ∈ N : an = 1}. Let us
denote by ({0, 1}N,Σ, λ) the complete probability space obtained after completing
the usual product probability measure on {0, 1}N. Recall that Talagrand’s measure,
which we denote by λ1, is a complete extension of λ to a larger σ-algebra on {0, 1}N,
say Σ1 ⊃ Σ, such that for every free ultrafilter U ⊂ P(N) we have ζ−1(U) ∈ Σ1 and
λ1(ζ−1(U)) = 1.

Example 3.19. `∞ does not have the property (U).

Proof. Fremlin and Talagrand [14] (cf. [26, 13-3-3]) showed that the identity
mapping f : {0, 1}N −→ `∞ is scalarly measurable with respect to λ1. In fact,
they proved that for every y∗∗ ∈ `∗∞ there exist y ∈ `1 and α ∈ R such that
〈y∗∗, f〉 = 〈f, y〉+ α λ1-a.e. Therefore, we can consider the induced image measure
µ1 := λ1f

−1 ∈Mσ(`∞, w).
Now let φ : {0, 1}N −→ {0, 1}N be the bijection given by φ(a) := ζ−1(N \ ζ(a)).

Then for every B ∈ Σ we have φ(B) ∈ Σ and λ(φ(B)) = λ(B). Moreover, it was
shown in [25] that Σ1 = {φ(B) : B ∈ Σ1}. Clearly, the function λ2 : Σ1 −→ [0, 1]
given by λ2(A) := λ1(φ(A)) is a complete measure extending λ.

We claim that f is scalarly measurable with respect to λ2. Indeed, given y∗∗ ∈ `∗∞,
we already know that there exist y ∈ `1, α ∈ R and B ∈ Σ1 with λ1(B) = 1 such
that 〈y∗∗, f(b)〉 = 〈y, f(b)〉+ α for every b ∈ B. A simple computation yields

〈y∗∗, f(a)〉 = 〈y∗∗,1〉 − 〈y,1〉+ 〈y, f(a)〉 − α for every a ∈ φ(B),

where 1 = (1, 1, . . . ) ∈ `∞. Since λ2(φ(B)) = 1 and 〈y, f〉 is Σ-measurable (notice
that f is w∗-continuous), we infer that 〈y∗∗, f〉 is measurable with respect to λ2,
as claimed. So we can take the induced image measure µ2 := λ2f

−1 ∈Mσ(`∞, w).
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On the one hand, since f−1(B) ∈ Σ for every B ∈ Baire(`∞, w∗) and λ1|Σ =
λ = λ2|Σ, we conclude that µ1|Baire(`∞,w∗) = µ2|Baire(`∞,w∗).

On the other hand, fix a free ultrafilter U ⊂ P(N) and consider its associated
functional x∗∗U ∈ `∗∞ given by x∗∗U ((an)) = limn→U an. It is clear that

H := {a ∈ `∞ : x∗∗U (a) = 1} ∈ Baire(`∞, w)

satisfies f−1(H) = ζ−1(U), so µ1(H) = λ1(ζ−1(U)) = 1, whereas

µ2(H) = λ2(ζ−1(U))

= λ1({a ∈ {0, 1}N : φ(a) ∈ ζ−1(U)}) = λ1({0, 1}N \ ζ−1(U)) = 0.

Therefore, µ1 6= µ2. It follows that `∞ does not have the property (U). �

We finish the paper with some further comments about the PIP and the prop-
erty (U) in a dual Banach space Y ∗.

Bator asked in [1] whether a scalarly bounded function f defined on a measure
space (Λ,S, ν) with values in Y ∗ is Pettis integrable provided that the following
condition (necessary for Pettis integrability) holds

(**) for each y∗∗ ∈ Y ∗∗ there exists a bounded sequence (yn) in Y such that
limn〈yn, f〉 = 〈y∗∗, f〉 ν-a.e.

Musial and Plebanek [18] (assuming the existence of a two-valued measurable cardi-
nal) and Stefansson [24] (without additional set-theoretic assumptions) gave exam-
ples showing that the answer to Bator’s question is negative in general. However,
Y ∗ has the ν-PIP if and only if every scalarly bounded function f : Λ −→ Y ∗

satisfies (**), see [18].
We next translate these facts into the language of measures on Baire(Y ∗, w). Ob-

serve first that condition (**) above is equivalent to saying that the image measure
νf−1 on Baire(Y ∗, w) has the following property:

Definition 3.20. Let Y be a Banach space and µ ∈ Mσ(Y ∗, w). We say that µ
has the Bator property if for each y∗∗ ∈ Y ∗∗ there exists a bounded sequence (yn)
in Y converging to y∗∗ µ-a.e.

Every convexly τ -additive measure on Baire(Y ∗, w) has the Bator property (see
the proof of Theorem 2.7), but the converse does not hold in general (consider the
image measures of the functions constructed in [18] and [24]). According to the
results above, we can now state that Y ∗ has the PIP if and only if every measure
on Baire(Y ∗, w) has the Bator property.

Note that every measure on Baire(Y ∗, w) with the Bator property is approxi-
mated by Baire(Y ∗, w∗) (apply Lemma 2.4). Bearing this in mind, the previous
characterization of the PIP should now be compared with the following straight-
forward consequence of Corollary 2.3

Corollary 3.21. Let Y be a Banach space. Then Y ∗ has the property (U) if and
only if every measure on Baire(Y ∗, w) is approximated by Baire(Y ∗, w∗).

One question still unanswered is whether the PIP and the property (U) are
equivalent for arbitrary dual Banach spaces.
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