La densidad natural y el grupo de Lévy

(resultados recopilados por G. Vera)

El grupo de Lévy \mathcal{G} es un grupo de permutaciones de \mathbb{N} estrechamente relacionado con la noción de densidad natural (o asintótica), y con las medias que extienden esta densidad. Ha sido estudiado en [17], [18], [5], [4],[16],[19], [26] Aquí se recogen y comentan resultados obtenidos en estos artículos. Con ellos queda establecido que $[\mathcal{G}] = J_d = J_C$ donde $[\mathcal{G}]$ es el conjunto de las medias \mathcal{G} -invariantes y J_d (resp. J_C) el conjunto de las medias que extienden la densidad natural (resp. la sumabilidad Cesàro). Consecuencia de la igualdad $J_d = J_C$ es que las sucesiones acotadas sumables Cesàro y su C-limite, $(\sigma_1 \cap l_\infty, C$ -lím) se pueden recuperar desde su restricción a las funciones características χ_E . Es decir la densidad natural (\mathcal{D}, d) determina el espacio $(\sigma_1 \cap l_\infty, C$ -lím).

La última sección recoge resultados de [15] y [3] relativos a la existencia de medias, con propiedades especiales, que extienden la densidad natural.

1. La densidad natural y d-medias

Continuamos con la notación terminología introducida en [29] y [30]. Sea ω el conjunto de las sucesiones de números reales y $C = (c_{nk})$ la matriz de Cesàro donde $c_{nk} = 1/n$ si $1 \le k \le n$ y $c_{nk} = 0$ si k > n. Una sucesión $\mathbf{x} \in \omega$ se dice que es C-sumable, o sumable Cesàro, hacia x cuando existe el límite lím $_n C(\mathbf{x})_n = x$, es decir

$$\lim_{n} \frac{x_1 + x_2 + \dots + x_n}{n} = x$$

El espacio vectorial de las sucesiones sumables Cesàro es costumbre designarlo por $\sigma_1 \subset \omega$. Utilizaremos la notación \mathcal{D} para la familia de los conjuntos $E \subset \mathbb{N}$ tales que χ_E es sumable Cesàro. En este caso la densidad ordinaria (también llamada densidad natural o asintótica) de $E \in \mathcal{D}$ es el valor del límite $d(E) = \lim_{n \to \infty} C(\chi_E) = \lim_{n \to \infty} f_n(E)$, donde

$$f_n(E) = \frac{E(n)}{n} \text{ con } E(n) = |E \cap [1, 2, \dots n]|$$

Para todo $E \subset \mathbb{N}$, están definidas la densidad inferior y la densidad superior

$$d^-(E) = \underline{\lim} \ C(\chi_E) = \underline{\lim}_n f_n(E), \quad d^+(E) = \overline{\lim} \ C(\chi_E) = \overline{\lim}_n f_n(E)$$

Así se tiene que $\mathcal{D} = \{E \subset \mathbb{N} : d^-(E) = d^+(E)\}$. Se sabe que \mathcal{D} no es un álgebra de conjuntos (véase [6], pág. 571, donde se muestran conjuntos $A, B \in \mathcal{D}$ con $A \cap B \notin \mathcal{D}$).

La densidad d tiene la propiedad de los valores intermedios: Si $A \in \mathcal{D}$, para cada $0 \le t \le d(A)$ existe $B \subset A$ con d(B) = t (prop.1.3 en [17] y corol. 1.12 en [28]).

Es fácil comprobar que $\mathcal{F}_d := \{E \in \mathcal{D} : d(E) = 1\}$ es un filtro. La convergencia de sucesiones según este filtro es la llamada convergencia estadística que ha sido objeto de estudio exhaustivo en múltiples artículos. Una sucesión $\mathbf{x} = (x_n)$ converge hacia x según \mathcal{F}_d cuando, para cada $\epsilon > 0$, el conjunto $\{n : |x_n - x| < \epsilon\}$ pertenece al filtro \mathcal{F}_d , y en este caso escribiremos \mathcal{F}_d -lím $_n x_n = x$. Se sabe que esta noción de convergencia equivale a la de convergencia a través de conjuntos del filtro: Existe $V \in \mathcal{F}_d$ tal que la subsucesión $(x_n)_{n \in V}$ converge hacia x (véase [23], [8], [7]).

En [6] ya se menciona que la densidad d se puede extender a una medida finitamente aditiva sobre $\mathcal{P}(\mathbb{N})$. Estas medidas finitamente aditivas que extienden la densidad usual han sido consideradas en [1], [6], [14], [15], [28], [3] y [26]. En este último articulo se les llama medidas de densidad. En [14] y [3] se les llama densidades.

En lo que sigue $\mathcal{M} = \{\mu \in (l_{\infty})^* : \mu \geq 0, \ \mu(\mathbf{1}) = 1\}$ es el conjunto de las medias sobre \mathbb{N} que se supone identificado en la forma habitual con el conjunto de las medidas finitamente aditivas $\mu : \mathcal{P}(\mathbb{N}) \to [0,1]$ y usaremos la misma notación para una media μ y su restricción a funciones características $\mu(E) = \mu(\chi_E)$. Asumiendo esta identificación, a las medidas finitamente aditivas que extienden la densidad usual d las llamaremos d-medias. (una terminología más precisa que especifica la densidad involucrada). Análogamente se definen las δ -medias para una densidad general δ .

Usaremos la notación J_d (resp. J_C) para el conjunto de las d-medias (resp. el conjunto de las medias que extienden la sumabilidad Cesàro). Se sabe que J_C es una clase especial de límites de Banach y es obvio que $J_C \subset J_d$ (Véase [29]).

Sea \mathcal{F} el filtro de Frechet (el de los conjuntos cofinitos $F \subset \mathbb{N}$), \mathcal{F}^{\bullet} el conjunto de las medias que extienden el límite ordinario (las que verifican $\mu(F) = 1$ para cada $F \in \mathcal{F}$) y $\mathcal{F}^{\circ} \subset \mathcal{F}^{\bullet}$ el subconjunto formado por las medias que, consideradas como medidas finitamente aditivas, son $\{0,1\}$ -valuadas. Estas medias se identifican con ultrafiltros en la forma natural. Así \mathcal{F}° queda identificado con $\beta \mathbb{N} \setminus \mathbb{N}$ y podemos considerar que \mathcal{F}^{\bullet} contiene a los ultrafiltros más finos que \mathcal{F} . Se obtiene una d-media $\mu \in J_C$ definiendo $\mu = C \circ \nu = C^*(\nu)$ con $\nu \in \mathcal{F}^{\bullet}$, luego $C^*(\mathcal{F}^{\bullet}) \subset J_C$. En particular, si \mathcal{U} es un ultrafiltro más fino que \mathcal{F} entonces $\mu(\mathbf{x}) = \mathcal{U}$ - lím $C(\mathbf{x})$, con $\mathbf{x} \in I_{\infty}$, define una d-media.

Buck [6] ya consideró las densidades minimal y maximal

$$d_*(E) = \sup\{d(A) : E \supset A \in \mathcal{D}\}, \quad d^*(E) = \inf\{d(A) : E \subset A \in \mathcal{D}\}$$

para las que Pólya [20] había obtenido las fórmulas:

$$d_*(E) = \lim_{\theta \to 1-} \liminf_n \frac{E(n) - E(\theta n)}{(1 - \theta)n}, \quad d^*(E) = \lim_{\theta \to 1-} \limsup_n \frac{E(n) - E(\theta n)}{(1 - \theta)n}$$

y en [27] se demuestra que para todo $E \subset \mathbb{N}$ se verifica

$$d_*(E) = \inf\{\mu(E) : \mu \in J_d\}, \quad d^*(E) = \sup\{\mu(E) : \mu \in J_d\}$$

Se cumple que $d_*(E) \leq d^-(E) \leq d^+(E) \leq d^*(E)$ y en [6] hay ejemplos donde todas las desigualdades son estrictas. En [11] se plantea el problema de caracterizar los conjuntos

 $E \subset \mathbb{N}$ para los que $d_*(E) = d^-(E)$ y $d^+(E) = d^*(E)$.

Si $g: \mathbb{N} \to \mathbb{N}$ es una permutación, una media $\mu \in \mathcal{M}$ se dice que es g-invariante cuando $\mu(\mathbf{x} \circ g) = \mu(\mathbf{x})$ para todo $\mathbf{x} \in l_{\infty}$ lo que, en términos de la correspondiente medida f.a, equivale a que para todo $E \subset \mathbb{N}$ se verifique $\mu(E) = \mu(g^{-1}(E))$.

Si \mathbb{G} es un grupo (o semigrupo) de permutaciones de \mathbb{N} , una media μ se dice que es \mathbb{G} -invariante cuando es g-invariante para todo $g \in \mathbb{G}$. Con el símbolo $[\mathbb{G}]$ designaremos el conjunto (posiblemente vacío) de todas las medias \mathbb{G} -invariantes. Cuando \mathbb{G} es un grupo la condición $\mu \in [\mathbb{G}]$ significa que $\mu(E) = \mu(g(E))$ para todo $g \in \mathbb{G}$ y todo $E \subset \mathbb{N}$.

En [28]) (teor. 1.12) van Douwen caracterizó las d-medias mediante su invariancia respecto al grupo \mathcal{G}_1 de las permutaciones $g: \mathbb{N} \to \mathbb{N}$ que verifican $\lim_n g(n)/n = 1$. Más concretamente

Teorema 1.1 Las siguientes propiedades de una media $\mu \in \mathcal{M}$ son equivalentes

- i) μ es una d-media.
- ii) Existe $r \in (0,1)$ tal que si $E \in \mathcal{D}$ y $\mu(E) = r$ entonces $\mu(E) = r$.
- iii) Existe $m \in \mathbb{N} \setminus \{1\}$ tal que si $E \in \mathcal{D}$ y $\mu(E) = 1/m$ entonces $\mu(E) = 1/m$.
- iv) μ es \mathcal{G}_1 -invariante.

Con las notaciones anteriores, el resultado de van Douwen asegura que $J_d = [\mathcal{G}_1]$ y en particular que $[\mathcal{G}_1] \neq \emptyset$. Entre otras cosas van Douwen también demostró que el grupo \mathcal{G}_1 no es amenable (lo que significa que no hay medias invariantes sobre $l_{\infty}(\mathcal{G}_1)$) y que cada d-media es σ -invariante, es decir es un límite de Banach.

2. El grupo de Lévy

En [13] Lévy introdujo el grupo \mathcal{G} formado por las permutaciones g de \mathbb{N} que cumplen

$$\lim_{n} \frac{|\{1 \le k \le n : g(k) > n\}|}{n} = 0$$

En [19] se demuestra que $\mathcal{G}_1 \subset \mathcal{G}$ y que $\mathcal{G} \setminus \mathcal{G}_1$ tiene el cardinal del continuo. Los siguientes ejemplos muestran permutaciones en el grupo de Lévy ([18] y [17]):

- a) Si $n_0 < n_1 < n_2 < \cdots < n_k < \cdots$ es una sucesión en \mathbb{N} y lím $_k n_k / n_{k-1} = 1$ entonces cada permutación que deja invariantes todos los intervalos $(n_{k-1}, n_k]$ pertenece a \mathcal{G} .
- b) Las permutaciones g cuyo soporte $sop(g) := \{n : g(n) \neq n\}$ tiene densidad nula: $(sop(g) \in \mathcal{D} \ y \ d(sop(g)) = 0)$ forman un subgrupo propio $\mathcal{G}_0 \subsetneq \mathcal{G}$.
- d) Sean $A = \{a_1 < a_2 < \cdots\} \in \mathcal{D}, B = \{b_1 < b_2 \cdots\} \in \mathcal{D} \text{ conjuntos infinitos}$ con complemento infinito $A^c = \{a'_1 < a'_2 < \cdots\}, B^c = \{b'_1 < b'_2 \cdots\}$ tales que d(A) = d(B). Si para cada $n \in \mathbb{N}$ se define $g(a_n) = b_n$, $g(a'_n) = b'_n$, se obtiene una permutación g del grupo \mathcal{G} .

d) Si 0 < d(A) = d(B) < 1, existe $g \in \mathcal{G}$ con g(A) = B. (Este resultado se mejoró en [4] demostrando que si $A, B \subset \mathbb{N}$ son infinitos con complemento infinito, existe $g \in \mathcal{G}$ con g(A) = B si y sólo si lím $C(\chi_A - \chi_B) = 0$).

Obata [18] demostró que la densidad superior d^+ , y la inferior d^- son invariantes por el grupo de Lévy \mathcal{G} . Esta propiedad lo caracteriza como muestra la proposición 2.1 que recoge resultados de Obata [18], Blümlinger [4] Sleziak-Ziman [26] y Lauwers [12].

Proposición 2.1 Para una permutación $g: \mathbb{N} \to \mathbb{N}$ son equivalentes:

- $a) g \in \mathcal{G}$
- b) $d^+(g(E)) = d^+(E)$ para cada $E \subset \mathbb{N}$.
- c) $d^{-}(g(E)) = d^{-}(E)$ para cada $E \subset \mathbb{N}$.
- d) $\overline{\lim} C(\mathbf{x} \circ g) = \overline{\lim} C(\mathbf{x}) \text{ para cada } \mathbf{x} \in l_{\infty}.$
- e) $\lim C(\mathbf{x} \circ g) = \lim C(\mathbf{x}) \text{ para } cada \ \mathbf{x} \in l_{\infty}.$
- f) lím $C(\mathbf{x} \mathbf{x} \circ g) = 0$ para cada $\mathbf{x} \in l_{\infty}$.
- g) $\lim C(\chi_A \chi_{g(A)}) = 0$ para cada $A \subset \mathbb{N}$.
- h) \mathcal{F}_d -lím_n $\frac{g(n)}{n} = 0$.
- i) Cada $\mu \in J_d$ es g-invariante.
- j) Cada $\mu \in C^*(\mathcal{F}^{\bullet})$ es g-invariante

Dem:

- $(a) \Leftrightarrow (b) \Leftrightarrow (c) \Leftrightarrow (d) \Leftrightarrow (e) \Leftrightarrow (e) \Leftrightarrow (f)$: Véanse los teoremas 1, 2 y el lema 2.4 de [18],
- $f) \Rightarrow g$) es trivial, y en el lema 2 de [4] se demuestra que $g \Rightarrow a$).
- $(a) \Leftrightarrow (b)$ es el teorema 2.2 de [26] cuya prueba utiliza $(a) \Rightarrow (b)$.
- $a) \Rightarrow i$) es la proposición 2.5 de [26]. Su prueba (que usa a) $\Rightarrow g$)) se basa en la inclusión $J_d \subset [\mathcal{G}_1]$ (parte del resultado de van Douwen).
- $(i) \Rightarrow a$) es la proposición 3.1 de [26] cuya prueba usa $(g) \Rightarrow a$).
- $i) \Rightarrow j$) es inmediato ya que $C^*(\mathcal{F}^{\bullet}) \subset J_d$.
- $a) \Leftrightarrow j$) es el resultado establecido en el lema 4 de [12] donde Lauwers llama acotadas a las permutaciones que cumplen j) (también demuestra la inclusión $\mathcal{G}_1 \subset \mathcal{G}$).

Una consecuencia directa de a) \Leftrightarrow i) \Leftrightarrow j) en la proposición 2.1 son las inclusiones $J_d \subset [\mathcal{G}], C^*(\mathcal{F}^{\bullet}) \subset [\mathcal{G}]$. Por otra parte, como $[\mathcal{G}] \subset [\mathcal{G}_1] = J_d$ (prop. 2.4 de [26]) resulta la igualdad $[\mathcal{G}] = J_d$, es decir

Teorema 2.2 [26] Una media es $\mathcal G$ invariante si y sólo si es una d-media.

Por otra parte, Blümlinger y Obata habían demostrado que $[\mathcal{G}] \subset J_C$ por lo que, según el teorema anterior $[\mathcal{G}] = J_C$. Antes de haberse establecido este resultado en [21] se había demostrado que $C^*(\mathcal{F}^{\bullet}) \subsetneq J_C$ y en [4] que $C^*(\mathcal{F}^{\bullet}) \subsetneq [\mathcal{G}]$. En definitiva

$$C^*(\mathcal{F}^{\bullet}) \subsetneq J_C = [\mathcal{G}] = J_d$$

El teorema 2 de [4], interpretado en términos de medias, afirma que $C^*(\mathcal{F}^{\bullet})$ es un subconjunto propio w^* -denso del subconjunto w^* -cerrado [\mathcal{G}] y que el anulador de [\mathcal{G}] en l_{∞} es $\{\mathbf{x} \in l_{\infty} : \text{lím } C(\mathbf{x}) = 0\}$. (Con la terminología introducida en [30] esto significa que [\mathcal{G}] es la la envoltura saturada de $C^*(\mathcal{F}^{\bullet})$, es decir [\mathcal{G}] = J_C .)

Blümlinger y Obata [5] demostraron que \mathcal{G} no es amenable (véase también el cor. 3 de [4]) aunque existen medias \mathcal{G} -invariantes sobre l_{∞} es decir $[\mathcal{G}] \neq \emptyset$. Esto lo hicieron viendo que \mathbb{N} no admite particiones \mathcal{G} -paradójicas y acudiendo a un teorema clásico de Tarski. Una partición $\mathbb{N} = \bigcup_{i=1}^n A_i \cup \bigcup_{j=1}^m B_j$ es \mathcal{G} -paradójica si en \mathcal{G} existen g_i , $1 \leq i \leq n$, f_j , $1 \leq j \leq m$, tales que $\mathbb{N} = \bigcup_{i=1}^n g_i(A_i) = \bigcup_{j=1}^m f_j(B_j)$. También se puede demostrar que $[\mathcal{G}] \neq \emptyset$ acudiendo a alguna de las inclusiones $J_d \subset [\mathcal{G}]$, $C^*(\mathcal{F}^{\bullet}) \subset [\mathcal{G}]$ que son consecuencia de la proposición 2.1.

Obata [17] obtuvo que el grupo de Lévy es el grupo de permutaciones maximal que deja invariantes los funcionales $\overline{\text{lim}} C(\mathbf{x})$, $\text{lim} C(\mathbf{x})$ y que cada $g \in \mathcal{G}$ conserva las sucesiones uniformemente distribuidas en [0,1): Si (x_n) es uniformemente distribuida, también lo es la reordenación $(x_{g(n)})$. También mostró que el grupo de Lévy permite caracterizar la densidad usual, mediante los dos teoremas que siguen

Teorema 2.3 Sea $\gamma: \mathcal{D} \to [0,1]$ una función de conjunto que cumple:

- i) $\gamma(A \cup B) = \gamma(A) + \gamma(B)$ si $A, B \in \mathcal{D}$ y $A \cap B = \emptyset$.
- ii) $\gamma(A) = \gamma(g(A))$ para cada $a \in \mathcal{D}$ y cada $g \in \mathcal{G}$.
- iii) $\gamma(\mathbb{N}) = 0$. Entonces γ es la densidad usual, $\gamma = d$.

Teorema 2.4 Sea $a(\mathcal{D}) \subset \mathcal{P}(\mathbb{N})$ el álgebra generada por \mathcal{D} y $\gamma : \mathcal{D} \to [0,1]$ una función de conjunto, con $\gamma(\mathbb{N}) = 1$, que admite una extensión a una medida finitamente aditiva de variación acotada \mathcal{G} -invariante. $\hat{\gamma} : a(\mathcal{D}) \to \mathbb{R}$. Entonces γ es la densidad usual, $\gamma = d$.

Obata [17] también demostró que la densidad ordinaria es ergódica bajo la acción del grupo de Lêvy: Si $E \in \mathcal{D}$ y $d(E\Delta g(E)) = 0$ para cada $g \in \mathcal{G}$ entonces $d(E) \in \{0,1\}$ (en [19] hay un resultado análogo con $g \in \mathcal{G}_1$).

En [18] y [17] Obata consideró otros grupos de permutaciones $g : \mathbb{N} \to \mathbb{N}$ relacionados con la densidad natural $d : \mathcal{D} \to [0, 1]$:

i) El grupo \mathcal{G}_d de las permutaciones g que dejan invariante la densidad natural:

$$A \in \mathcal{D} \Leftrightarrow g(A) \in \mathcal{D}, \ \ y \ \ d(A) = d(g(A))$$

ii) El grupo $\mathcal{G}(C)$ de las permutaciones g que conservan la sumabilidad Cesàro de sucesiones acotadas:

$$\mathbf{x} \in l_{\infty} \cap \sigma_1 \Leftrightarrow \mathbf{x} \circ g \in l_{\infty} \cap \sigma_1, \ y \ \text{lim} \ C(\mathbf{x} \circ g) = \text{lim} \ C(\mathbf{x})$$

y estableció las inclusiones $\mathcal{G} \subsetneq \mathcal{G}(C) \subset \mathcal{G}_d$. Poco después Blümlinger y Obata [5] demostraron que $\mathcal{G}(C) = \mathcal{G}_d$. También demostraron que, dado $\alpha \in (0,1)$, el grupo \mathcal{G}_d coincide con el de las permutaciones g tales que g y g^{-1} transforman conjuntos con densidad α en conjuntos con la misma densidad α y caracterizaron \mathcal{G}_d usando distribución uniforme: Dado un espacio métrico compacto K con una medida de Radon μ , se verifica que $g \in \mathcal{G}_d$ si y sólo si g y g^{-1} transforman sucesiones μ -uniformemente distribuidas en sucesiones μ -uniformemente distribuidas. (Omitiendo las referencias a g^{-1} , resulta un semigrupo $\mathcal{S}_d \supseteq \mathcal{G}_d$ para el que obtuvieron caracterizaciones análogas).

En [16] se caracteriza \mathcal{G}_d como el grupo de las permutaciones g que dejan invariante \mathcal{D} , es decir, $A \in \mathcal{D} \Leftrightarrow g(A) \in \mathcal{D}$ (sin exigir d(A) = d(g(A))). También se demuestra que si $f: \mathbb{N} \to \mathbb{N}$ es inyectiva y $A \in \mathcal{D} \Rightarrow f(A) \in \mathcal{D}$ entonces, para todo $A \in \mathcal{D}$ se verifica $d(f(A)) = \lambda d(A)$, con $\lambda = d(f(\mathbb{N}))$. Por otra parte, Blümlinger [4] demostró que no existen medias \mathcal{G}_d -invariantes sobre l_{∞} , es decir $[\mathcal{G}_d] = \emptyset$.

Otros resultados

1. Sea $[C] = \{ \mu \in \mathcal{F}^{\bullet} : C^{*}(\mu) = \mu \}$ el conjunto de \mathcal{F}^{\bullet} formado por las medias C-invariantes. Es claro que $[C] \subset C^{*}(\mathcal{F}^{\bullet}) \subset [\mathcal{G}]$. Para cada $p, q \in \mathcal{F}^{\circ}$ las medias

$$\mu_{pq}(\mathbf{x}) = p - \lim_{n} q\left(\frac{1}{n}\sum_{k=1}^{n} C^{k}(\mathbf{x})\right)$$

son [C]-invariantes y $H = \{\mu_{pq} : p, q \in \mathcal{F}^{\circ}\}$ es un subconjunto w^* -denso de [C].

- 2. Sea $T_n = \frac{1}{n} \sum_{k=0}^n C^k$, donde C es el operador de Cesàro, $L \subset l_{\infty}$ el subespacio formado por los $\mathbf{x} \in l_{\infty}$ que verifican $\lim_{n} (\alpha \circ T_n)(\mathbf{x}) = 0$ para todo $\alpha \in \mathcal{F}^{\circ}$ y $L_0 = \{\mathbf{x} \in l_{\infty} : \lim_{n \to \infty} C(\mathbf{x}) = 0\}$. Es fácil ver que L es un subespacio cerrado (propio) de l_{∞} . Como $\mathbf{x} \in L_0 \Rightarrow C(\mathbf{x}) \in L_0$ se sigue que $L_0 \subset L$. En [4] se demuestra que $[\mathcal{G}]^{\perp} = C^*(\mathcal{F}^{\bullet})^{\perp} = \sigma_0$ (espacio de las sucesiones acotadas sumables Cesàro hacia 0) y que $[C]^{\perp} = L$.
- 3. En [26] se muestra que para la d-media $\mu \in [\mathcal{G}] \setminus C^*(\mathcal{F}^{\bullet})$ considerada en [4] hay un conjunto $A \subset \mathbb{N}$ con $1/2 = d^+(A) < \mu(A) = 1$, lo que proporciona una respuesta negativa a una conjetura de van Douwen en [28].
- 4. Para $A \subset \mathbb{N}$ y $n \in \mathbb{N}$ sea $A(n) = |A \cap [1, n]|$. En [26], se menciona que cada d-media $\mu \in C^*(\mathcal{F}^{\bullet})$ tiene las propiedades:
 - i) Si $A, B \subset \mathbb{N}$ y $A(n) \leq B(n)$ para todo $n \in \mathbb{N}$ entonces $\mu(A) \leq \mu(B)$.
 - ii) Si $A, B \subset \mathbb{N}, t \in \mathbb{R}$ y $\lim_n A(n)/B(tn) = 1$ entonces $\mu(A) = t\mu(B)$.

En [24] se había conjeturado la existencia de d-medias sin estas propiedades y en [26] se confirmó la validez de la conjetura.

3. Las propiedades (AP), (APO) y (APN)

Definición 3.1 Se dice que una media $\mu \in \mathcal{F}^{\bullet}$ tiene la propiedad (AP) (resp. (APO)) cuando para cada sucesión de conjuntos disjuntos (resp. disjuntos y μ -nulos) $A_n \subset \mathbb{N}$ existe $A \subset \mathbb{N}$ tal que cada $A_n \setminus A$ es finito y $\mu(A) = \sum_n \mu(A_n)$ (resp $\mu(A) = 0$).

La propiedad (AP) se puede formular de modo equivalente así: $Para\ cada\ sucesión\ creciente de conjuntos\ B_n \subset \mathbb{N}\ existe\ B \subset \mathbb{N}\ tal\ que\ cada\ B_n \setminus B\ es\ finito\ y\ \mu(B) = \lim_n \mu(B_n).$

Una medida finitamente aditiva $\{0, 1\}$ -valuada $\nu \in \mathcal{F}^{\circ}$ tiene la propiedad (AP) si y sólo sí el correspondiente ultrafiltro \mathcal{U} es un p-punto en $\beta \mathbb{N}$ (esto significa que para cada sucesión $A_n \in \mathcal{U}$ existe $A \in \mathcal{U}$ casi contenido en cada A_n). La noción de p-punto fue introducida y estudiada por Rudin [22], en el contexto de $\beta \mathbb{N} \setminus \mathbb{N}$. Se sabe que bajo CH (y más generalmente MA) existen p-puntos. Por otra parte, según [25] es consistente (asumiendo la consistencia de ZFC) la no existencia de p-puntos.

En [15], donde se estudia cuando una d-media de la forma $\mu = \nu \circ C = C^*(\nu)$ tiene alguna de las propiedades (AP), (APO), aparecen los siguientes resultados

Lema 3.2 [15] Si $\nu \in \mathcal{F}^{\bullet}$ tiene la propiedad (AP) (resp. (APO)) entonces $\mu = \nu \circ C = C^*(\nu)$ también la tiene

Entonces si existe $\nu \in \mathcal{F}^{\bullet}$ con la propiedad (AP) (resp. (APO)) también existe una dmedia $\mu = \nu \circ C$ con la misma propiedad. En particular, si un ultrafiltro $\mathcal{U} \subset \mathcal{P}(\mathbb{N})$ es un p-punto y $\nu \in \mathcal{F}^{\circ}$ es la medida f.a. asociada entonces $\mu = C \circ \nu$ tiene la propiedad (AP)(otra demostración más sencilla de este resultado se puede ver en [3]). En [15] se plantea
la validez del recíproco, es decir si la existencia una media $\mu \in \mathcal{F}^{\bullet}$ con la propiedad (AP)implica la existencia de un p-punto, y se demuestra:

Teorema 3.3 [15]

a) Si $\nu \in \mathcal{F}^{\circ}$ y $\mu = \nu \circ C = C^{*}(\nu)$ tiene la propiedad (APO) entonces existe un p-punto. b) Si ZF es consistente, entonces es consistente con ZFC que ninguna $\nu \in \mathcal{F}^{\bullet}$ tiene la propiedad (AP)

Existe un modelo de teoría de conjuntos en el cual $\beta \mathbb{N} \setminus \mathbb{N}$ no contiene P-sets con la propiedad c.c.c. Este resultado mejora b) pues si $\hat{\mu}$ es la medida de Radon que ν induce en $\beta \mathbb{N}$, su soporte S satisface c.c.c. y es un P-set cuando ν tiene la propiedad (AP).

Definición 3.4 Una medida finitamente aditiva $\nu: \Sigma \to [0,1]$ definida sobre una σ -álgebra Σ se dice que tiene la propiedad (APN) si para cada sucesión creciente $A_n \in \Sigma$ existe $A \in \Sigma$ tal que $\nu(A_n \setminus A) = 0$ para cada $n, y \nu(A) = \lim_n \nu(A_n)$.

Con la propiedad (APN) se caracterizan las medidas finitamente aditivas para las que $L_1(\nu)$ es completo [2], [9], [10].

Es claro que cada $\nu \in \mathcal{F}^{\bullet}$ con la propiedad (AP) tiene la propiedad (APN), porque los conjuntos finitos son ν -nulos. En [3] se estudia cuando $\mu = \nu \circ C = C^*(\nu)$ tiene la propiedad (APN).

Teorema 3.5 [3] $Si \ \nu \in \mathcal{F}^{\circ} \ y \ \nu(E) = 1$ para algún conjunto delgado $E \subset \mathbb{N}$ entonces $\mu = \nu \circ C$ tiene la propiedad (APN), y tiene la propiedad (AP) si y sólo si el ultrafiltro asociado a ν es un p-punto.

 $E = \{n_1 < n_2 < \cdots n_k < \cdots\} \subset \mathbb{N}$ se dice que es delgado (thin) cuando $\lim_k n_k/n_{k+1} = 0$. Según [3] dado un conjunto delgado $E \subset \mathbb{N}$ existe un ultrafiltro que contiene a E y no es un p-punto (y bajo el axioma de Martin hay un ultrafiltro que no contiene conjuntos delgados y es un p-punto).

Para el siguiente corolario hay una dem. directa en la pág. 3318 de [3].

Corolario 3.6 [3] Existe $\nu \in \mathcal{F}^{\circ}$ tal que $\mu = C^{*}(\nu)$ tiene (APN), pero no tiene (AP).

Teorema 3.7 [3]

- a) Si existe un ultrafiltro que es un p-punto, entonces existe otro ultrafiltro ν que no es p-punto, tal que $\mu = C^*(\nu)$ tiene la propiedad (AP).
- b) Existe un ultrafiltro ν que no contiene conjuntos delgados tal que $\mu = C^*(\nu)$ tiene la propiedad (APN) pero no tiene la propiedad (AP).

En relación con la pregunta de si existe un ultrafiltro ν tal que $\mu = C^*(\nu)$ no tiene la propiedad (APN), Fremlin obtuvo el siguiente resultado que figura en [3]:

```
Teorema 3.8 Sea \nu_0 \subset \mathcal{P}(\mathbb{N}) un ultrafiltro que verifica 
(*) Si \nu_0(A) = 1 existe k > 0 con \nu_0(A + k) = 1.
Sea g(n) = 2^n y \nu = \nu_0 g^{-1}. Entonces \mu = C^*(\nu_0) no tiene la propiedad (APN).
```

En [3] hay una sencilla demostración de la existencia de un ultrafiltro que cumple la condición (*) del teorema 3.8: Para la aplicación $\phi: \beta \mathbb{N} \setminus \mathbb{N} \to \beta \mathbb{N} \setminus \mathbb{N}$ definida por $\phi(\mathcal{U}) = \{U: U+1 \in \mathcal{U}\}$ existe un conjunto cerrado no vacío $S \subset \beta \mathbb{N} \setminus \mathbb{N}$ minimal ψ -invariante. Entonces cada $\nu_0 \in S$ tiene la propiedad (*).

4. Problemas

- a) Encontrar una vía alternativa más sencilla para establecer la igualdad $J_d = J_C$.
- b) Estudiar la validez de resultados análogos para una matriz regular no negativa A y la densidad asociada δ . Sea J_{δ} la familia de las medias que extienden δ , y J_A la de las que extienden la A-sumabilidad de sucesiones acotadas. ¿Se cumple la igualdad $J_{\delta} = J_A$?. ¿Existe un grupo \mathcal{G}_A de permutaciones de \mathbb{N} , análogo al grupo de Lévy para el que se cumpla alguna, o las dos, igualdades $J_A = [\mathcal{G}_A]$, $J_{\delta} = [\mathcal{G}_A]$?
- c) Estudiar la validez de resultados similares para otros métodos de sumabilidad y las correspondientes densidades.
- d) Sea $J \subset \mathcal{M}$ una familia no vacía de medias y d_J la densidad asociada con dominio $\mathcal{D}_J = \{E \subset \mathbb{N} : \mu(E) = d_J(E) \text{ para todo } \mu \in J\}$, Estudiar, en términos de J, la validez de la propiedad de los valores intermedios: Si $A \in \mathcal{D}_J$, y $0 < t < d_J(A)$, ¿existe $B \subset A$ con $d_J(B) = t$?.

Referencias

- [1] R. P. Agnew and A. P. Morse, Extensions of linear functionals, with applications to limits, integrals, measures, and densities, Ann. of Math. (2) **39** (1938), no. 1, 20–30. MR 1503385
- [2] K. P. S. Bhaskara Rao and M. Bhaskara Rao, Theory of charges, Pure and Applied Mathematics, vol. 109, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1983, A study of finitely additive measures, With a foreword by D. M. Stone. MR MR751777 (86f:28006)
- [3] A. Blass, R. Frankiewicz, G. Plebanek, and C. Ryll-Nardzewski, A note on extensions of asymptotic density, Proc. Amer. Math. Soc. 129 (2001), no. 11, 3313–3320 (electronic). MR MR1845008 (2002i:28002)
- [4] M. Blümlinger, Lévy group action and invariant measures on $\beta \mathbf{N}$, Trans. Amer. Math. Soc. **348** (1996), no. 12, 5087–5111. MR MR1390970 (97d:54063)
- [5] M. Blümlinger and N. Obata, Permutations preserving Cesàro mean, densities of natural numbers and uniform distribution of sequences, Ann. Inst. Fourier (Grenoble) 41 (1991), no. 3, 665–678. MR MR1136599 (92j:43002)
- [6] R. C. Buck, The measure theoretic approach to density, Amer. J. Math. 68 (1946), 560–580. MR MR0018196 (8,255f)
- [7] J. Connor, R-type summability methods, Cauchy criteria, P-sets and statistical convergence, Proc. Amer. Math. Soc. 115 (1992), no. 2, 319–327. MR MR1095221 (92i:40005)
- [8] J. A. Fridy, On statistical convergence, Analysis 5 (1985), no. 4, 301–313. MR MR816582 (87b:40001)
- [9] S. Gangopadhyay, On the completeness of L_p -spaces over a charge, Colloq. Math. **58** (1990), no. 2, 291–300. MR MR1060180 (91h:46049)
- [10] S. Gangopadhyay and B. V. Rao, Completeness of L_1 spaces over finitely additive probabilities, Colloq. Math. 80 (1999), no. 1, 83–95. MR MR1684572 (2000f:28006)
- [11] Rita Giuliano, Georges Grekos, and Ladislav Mišík, *Open problems on densities II*, Diophantine analysis and related fields 2010, AIP Conf. Proc., vol. 1264, Amer. Inst. Phys., Melville, NY, 2010, pp. 114–128. MR 2731819 (2011k:11010)
- [12] L. Lauwers, Intertemporal objective functions: strong Pareto versus anonymity, Math. Social Sci. **35** (1998), no. 1, 37–55. MR 1609016 (98j:90012)
- [13] P. Lévy, Problèmes concrets d'analyse fonctionnelle. Avec un complément sur les fonctionnelles analytiques par F. Pellegrino, Gauthier-Villars, Paris, 1951, 2d ed. MR MR0041346 (12,834a)

- [14] D. Maharam, Finitely additive measures on the integers, Sankhya Ser. A **38** (1976), 44–59.
- [15] A. H. Mekler, Finitely additive measures on N and the additive property, Proc. Amer. Math. Soc. 92 (1984), no. 3, 439–444. MR MR759670 (86j:28003)
- [16] Melvyn B. Nathanson and Rohit Parikh, Density of sets of natural numbers and the Lévy group, J. Number Theory 124 (2007), no. 1, 151–158. MR 2320996 (2008b:11013)
- [17] N. Obata, *Density of natural numbers and the Lévy group*, J. Number Theory **30** (1988), no. 3, 288–297. MR MR966093 (90e:11027)
- [18] _____, A note on certain permutation groups in the infinite-dimensional rotation group, Nagoya Math. J. **109** (1988), 91–107. MR MR931953 (89c:11020)
- [19] Milan Paštéka, *Note on a subgroup of Levy's group*, Math. Slovaca **58** (2008), no. 5, 535–540. MR 2434676 (2009m:11010)
- [20] G. Pólya, Untersuchungen über Lücken und Singularitäten von Potenzreihen, Math.
 Z. 29 (1929), no. 1, 549–640. MR 1545027
- [21] R. A. Raimi, Factotrization of summability preserving generalized limits, J. London Math. Soc. 22 (1980), 398–402.
- [22] W. Rudin, Homogeneity problems in the theory of Cech compactifications (and note of correction in p.633), Duke Math. J. 23 (1956), 409–419.
- [23] T. Salát, On statistically convergent sequences of reals numbers (en ruso), Math. Slovaca 30 (1980), 139–150.
- [24] T. Šalát and R. Tijdeman, Asymptotic densities of sets of positive integers, Math. Slovaca 33 (1983), no. 2, 199–207. MR MR699090 (85b:11010)
- [25] S. Shelah, *Proper forcing*, Lecture Notes in Math, no. 940, Springer-Verlag, 1982.
- [26] Martin Sleziak and Miloš Ziman, *Lévy group and density measures*, J. Number Theory **128** (2008), no. 12, 3005–3012. MR 2464850 (2009j:11019)
- [27] _____, Range of density measures, Acta Math. Univ. Ostrav. 17 (2009), no. 1, 33–50. MR 2582958 (2011b:28003)
- [28] E. K. van Douwen, *Finitely additive measures on* **N**, Topology Appl. **47** (1992), no. 3, 223–268. MR MR1192311 (94c:28004)
- [29] G. Vera, Límites generalizados de Banach, http://webs.um.es/gvb (2012).
- [30] _____, Sumabilidad, densidades y filtros, http://webs.um.es/gvb (2012).