
Simulating Active Membrane Systems
Using GPUs

Miguel A. Mart́ınez–del–Amor1, Ignacio Pérez–Hurtado1,
Mario J. Pérez–Jiménez1, Jose M. Cecilia2, Ginés D. Guerrero2, José M. Garćıa2

1 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
{mdelamor,perezh,marper}@us.es

2 Grupo de Arquitectura y Computación Paralela
Dpto. Ingenieŕıa y Tecnoloǵıa de Computadores
Universidad de Murcia
Campus de Espinardo, 30100 Murcia, Spain

{chema,gines.guerrero,jmgarcia}@ditec.um.es

Summary. Software development for cellular computing is growing up yielding new ap-
plications. In this paper, we describe a simulator for the class of recognizer P systems
with active membranes, which exploits the massively parallel nature of P systems com-
putations by using GPUs (Graphics Processing Units). The newest generation of GPUs
provide a massively parallel framework to compute general purpose computations. We
present GPUs as an alternative to obtain better performance in the simulation of P
systems and we illustrate it by giving a solution to the N-Queens problem as an example.

1 Introduction

Membrane computing (or cellular computing) is an emerging branch within natural
computing that was introduced by Gh. Păun [24]. The main idea is to consider
biochemical processes taking place inside living cells from a computational point
of view, in a way that gives us a new nondeterministic model of computation by
using cellular machines.

Up to now, it has not been possible to have implementations neither in vivo
nor in vitro of P systems, so handling and analysis of these devices are performed
by simulators. Therefore, P systems simulators are tools that help the researchers
to extract results from a model. Since the model was presented, many software
applications have been produced [11]. These simulators have to be as much efficient
as possible when handling large problem sizes. Thus, the massively parallel nature

370 M.A. Mart́ınez–del–Amor et al.

of P systems computations points out to looking for a massively parallel technology
where the simulator can run efficiently.

Parallel computation on clusters is the traditional environment to speed-up par-
allel applications. Particularly, many simulators of P systems have been designed
for clusters of computers [4]. However, this computation is relatively expensive and
it is available for organizations that have enough resources to buy and maintain
those clusters. Nowadays, there are other cheaper solutions in the computer market
that provides parallel environments. Among these solutions, the newest generation
of graphics processor units (GPUs) are massively parallel processors which allow
to develop a wide range of parallel applications. We also recall that other paral-
lel computing platforms are being investigated, such as special hardware circuits
[20][6].

GPUs can support several thousand of concurrent threads providing a mas-
sively parallel environment where parallel applications can obtain huge perfor-
mance [14][17][29]. Current Nvidia’s GPUs, for example, contain up to 240 scalar
processing elements per chip [16], they are programmed using C and CUDA
[32][21], and they have low cost compared with a cluster of computers.

In this paper we present a parallel simulator for the class of recognizer P
systems with active membranes using CUDA. The simulator executes the P system
which is defined by using the P-Lingua [5] programming language. The simulator is
divided in two main stages: The selection stage and execution stage. At this point
of development, the selection stage is executed on the GPU and the execution
stage is executed on the CPU.

The rest of the paper is structured as follows. In Section 2 several definitions
and concepts are given for a correct understanding of the paper. Section 3 intro-
duces the Compute Unified Device Architecture (CUDA) and some concepts of
programming on GPUs are specified. In Section 4 we explain the design of the
simulator. In Section 5 we implement a solution to the N-Queens problem using
the simulator and P-Lingua. Finally, in Section 6 we show some results and com-
pare them with the sequential version of the simulator. The paper ends with some
conclusions and ideas for future work in Section 7.

2 Preliminaries

Polynomial time solutions to NP-complete problems in membrane computing are
achieved by trading time for space. This is inspired by the capability of cells to
produce an exponential number of new membranes in polynomial time. There
are many ways a living cell can produce new membranes: mitosis (cell division),
autopoiesis (membrane creation), gemmation, etc. Following these inspirations a
number of different models of P systems has arisen, and many of them proved to
be computational completeness [5].

In this paper we shall focus on the model of P systems with active membranes.
It is one of the most studied models in Membrane Computing and one of the first

Simulating Active Membrane Systems Using GPUs 371

models presented by Gh. Păun [25]. P systems with active membranes is formed
by a membrane structure, where a label and a polarization is associated to each
membrane. In this model, every elementary membrane is able to divide itself by
reproducing its content into a new membrane.

Here we provide a short recall of its features (see [25] for details). The
model of P system with active membranes is a construct of the form Π =
(O,H, µ, ω1, . . . , ωm, R), where m ≥ 1 is the initial degree of the system; O is
the alphabet of objects, H is a finite set of labels for membranes; µ is a membrane
structure (a rooted tree), consisting of m membranes injectively labelled with el-
ements of H, ω1, . . . , ωm are strings over O, describing the multisets of objects
placed in the m regions of µ; and R is a finite set of rules, where each rule is of
one of the following forms:

(a) [a → v]αh where h ∈ H, α ∈ {+,−, 0} (electrical charges), a ∈ O and v is a
string over O describing a multiset of objects associated with membranes and
depending on the label and the charge of the membranes (evolution rules).

(b) a []αh → [b]βh where h ∈ H, α, β ∈ {+,−, 0}, a, b ∈ O (send-in communication
rules). An object is introduced in the membrane, possibly modified, and the
initial charge α is changed to β.

(c) [a]αh → []βhb where h ∈ H, α, β ∈ {+,−, 0}, a, b ∈ O (send-out communication
rules). An object is sent out of the membrane, possibly modified, and the
initial charge α is changed to β.

(d) [a]αh → b where h ∈ H, α ∈ {+,−, 0}, a, b ∈ O (dissolution rules). A mem-
brane with a specific charge is dissolved in reaction with a (possibly modified)
object.

(e) [a]αh → [b]βh [c]γh where h ∈ H,α, β, γ ∈ {+,−, 0}, a, b, c ∈ O (division rules). A
membrane is divided into two membranes. The objects inside the membrane
are replicated, except for a, that may be modified in each membrane.

Rules are applied according to the following principles:

• All the elements which are not involved in any of the operations to be applied
remain unchanged.

• Rules associated with label h are used for all membranes with this label, no
matter whether the membrane is an initial one or whether it was generated by
division during the computation.

• Rules from (a) to (e) are used as usual in the framework of membrane com-
puting, i.e. in a maximal parallel way. In one step, each object in a membrane
can only be used by at most one rule (non-deterministically chosen), but any
object which can evolve by a rule must do it (with the restrictions indicated
below).

• Rules (b) to (e) cannot be applied simultaneously in a membrane in one com-
putation step.

• An object a in a membrane labelled with h and with charge α can trigger a
division, yielding two membranes with label h, one of them having charge β
and the other one having charge γ. Note that all the contents present before

372 M.A. Mart́ınez–del–Amor et al.

the division, except for object a, can be the subject of rules in parallel with
the division. In this case we consider that in a single step two processes take
place: “first” the contents are affected by the rules applied to them, and “after
that” the results are replicated into the two new membranes.

• If a membrane is dissolved, its content (multiset and interior membranes) be-
comes part of the immediately external one. The skin is never dissolved neither
divided.

Note that P systems with active membranes can be seen as devices with two
levels of parallelism: among membranes (every membrane works independently,
with the exception of when there are communication across them) and among
objects inside a membrane (the rules are applied to the existing multiset of objects
in a maximal parallel way).

Recognizer P systems were introduced in [26], and constitute the natural frame-
work to study the solvability of decision problems. The data representing an in-
stance of the problem has to be provided to the P system to compute the appropri-
ate answer. This is done by codifying each instance as a multiset placed in an input
membrane. The output of the computation, yes or no, is sent to the environment
in every halting configuration.

Furthermore, the act of simulating something generally entails representing
certain key characteristics or behaviours of some physical, or abstract, system.
However, an emulation tool duplicates the functions of one system by using a
different system, so that the second system behaves like (and appears to be) the
first system. With the current technology, we can not emulate the functionality
of a cellular machine by using a conventional computer to solve NP-complete
problems in polynomial time, but we can simulate these cellular machines, not
necessarily in polynomial time, in order to aid researchers. However, depending
on the underlying technology where the simulator is executed, the simulations can
take too much time.

The technology used for this work is called CUDA (Compute Unified Device
Architecture). CUDA is a co-designed hardware and software solution to make
easier developing general-purpose applications on the Graphics Processor Unit
(GPU) [34]. The GPUs, that are one of the main components of traditional com-
puters, originally were specialized for math-intensive, highly parallel computation
which is the nature of graphics applications. These characteristics of the GPU were
very attractive to accelerate scientific applications which have massively parallel
computations. However, the problem was the way to program general purpose ap-
plications on the GPU. This way involved to deal with GPUs designed for video
games, so they have had to tune their applications using programming idioms tied
to computer graphics, programing environment tightly constrained, etc [17] [14].
The CUDA extensions developed by Nvidia provides an easier environment to pro-
gram general-purpose applications onto the GPU, because it is based on ANSI C,
supported by several keywords and constructs. ANSI C is the standard published
by the American National Standards Institute (ANSI) for the C programming
language, which is one of the most used.

Simulating Active Membrane Systems Using GPUs 373

P systems devices are massively parallel, what fits into massively parallel nature
of the GPUs with thousands of threads running in parallel. These threads are units
of execution which execute the same code concurrently on different pieces of data.

3 Graphics Processing Unit

Driven by the video games market, programmable GPUs (Graphics Processing
Units) have evolved into a highly parallel, multithreaded, manycore processor.
They were designed to accelerate graphics applications, which transform three-
dimensional data (coordinates of triangle vertices) into pixels that are displayed on
a screen, using for this task programming interfaces such as OpenGL and DirectX.
The massively parallel nature of graphics applications and its arithmetic intensity
leads the researches to explore mapping more general non-graphics applications
onto the GPU, creating a new programming field called GPGPU (General-Purpose
on GPUs).

GPUs have become an inexpensive and readily available single-chip massively
parallel system. However, GPGPU programmers had to deal with the limitations
and difficulties of constrained graphics primitives to compute their non-graphics
computations. The emergence of Compute Unified Device Architecture (CUDA)
[34] programming model, proposed by Nvidia Corporation in 2007, has helped
to develop highly-parallel applications onto the GPU easier than it was before.
CUDA allows GPGPU programmers to develop their applications in a more famil-
iar environment by using C/C++ programming language, with some extensions
to manipulate special aspects of the GPU. Moreover, Nvidia consolidated this
trend launching a line of GPUs optimized for general purpose computations called
TESLA [16].

In this work we use a Tesla C1060 graphics processor unit (GPU) from Nvidia as
hardware target for its study. This section introduces the Tesla C1060 computing
architecture. In addition, it analyses the threading model of Tesla architectures,
and also the most important issues in the CUDA programming environment.

3.1 Tesla C1060 base microarchitecture

The Tesla C1060 [16] is based on a scalable processor array which has 240
streaming-processor (SP) cores organised as 30 streaming multiprocessor (SM).
The applications start at the host side (the CPU) which communicates with the
device side (the GPU) through a PCI-Express x16 bus (see the top of figure 1).

The SM is the processing unit, and it is unified graphics and computing mul-
tiprocessor. Every SM contains eight SPs arithmetic cores, one double precision
unit, 16-Kbyte read/write shared memory, a set of 16384 registers, and access to
the off-chip memory (global/local memory). The access to shared memory is very
cheap, however, the access to the off-chip memory has low performance because it
is out of the chip, as it is shown on figure 1. In addition, table 1 shows all memories
available on the GPU and also the cost to access them.

374 M.A. Mart́ınez–del–Amor et al.

GPU

host CPU

system memory

host interface

GDDR3 GDDR3 GDDR3 GDDR3 GDDR3 GDDR3 GDDR3 GDDR3

Off-chip Memory

Interconnection Netwrok

Shared Memory
(16 KB)

SM

SP SP SP SP

SPSPSPSP

Fig. 1. Tesla C1060 GPU with 240 SPs: Streamming Processors, organised in 30 SMs:
Streamming Multiprocessors

Table 1. Memory System on the Tesla C1060

Memory Location Size Latency Access

Registers On-Chip 16384 32-bits Registers per SM ' 0 cycles R/W

Shared Memory On-Chip 16 KB per SM ' registers R/W

Constant On-Chip 64 KB ' registers R

Texture On-Chip Up to Global > 100 cycles R

Local Off-Chip 4 GB 400-600 cycles R/W

Global Off-Chip 4 GB 400-600 cycles R/W

3.2 Parallel computing with CUDA

The GPU is seen as a cooprocessor that executes data-parallel kernel functions.
The user creates a program encompassing CPU code (Host code) and GPU code
(Kernel code). They are separated and compiled by nvcc (Nvidia’s compiler for
CUDA code) as shown in figure 2

Firstly, the host code is responsible for transfering data from the main memory
(RAM or host memory) to the GPU memory (device memory), using CUDA in-
structions, such as cudamemcpy. Moreover, the host code has to state the number
of threads executing the kernel function and the organization of them. Threads
execute the kernel code, and they are organized into a three-level hierarchy as it
is shown in figure 3. At the highest level, each kernel creates a single grid that
consists of many thread blocks. Each thread block can contain up to 512 threads,

Simulating Active Membrane Systems Using GPUs 375

C/C++ with CUDA
Extensions

NVCC CPU Code

PTX Code

PTX to Target
Compiler

G80

PTX Code

T10

Fig. 2. Nvcc compilation process

which can share data through Shared Memory and can perform barrier synchro-
nization by invoking the –syncthreads primitive [31]. Besides, thread blocks can not
perform synchronization. The synchronization across blocks can only be obtained
by terminating the kernel.

Furthermore, the host code calls the kernel function like a C function by passing
parameters if it is needed, and also by specifying the number of threads per block
and the number of blocks making up the grid. Each block within the grid has their
own identifier [22]. This identifier can be one, two or three dimensions depending
on how the programmer has declared the grid, accessed via .x, .y, and .z index
fields. Each thread within the block have their own identifier which can be one, two
or three dimensions as well. Combining thread and block identifiers, the threads
can access to different data address, and also select the work that they have to do.

The kernel code is specified through the key word global and the syntax is:
global kernelName <<< dimGrid, dimBlock >>> (...parameter list...) where

dimGrid and dimBlock are three-elements vectors that specify the dimensions of
the grid in blocks and the dimensions of the blocks in threads, respectively [21].

3.3 Threading model

A SM is a hardware device specifically designed with multithreaded capabilities.
Each SM manages and executes up to 1024 threads in hardware with zero schedul-
ing overhead. Each thread has its own thread execution state and can execute an
independent code path. The SMs execute threads in a Single-Instruction Multiple-
Thread (SIMT) fashion [16]. Basically, in the SIMT model all the threads execute
the same instruction on different piece of data. The SMs create, manage, schedule
and execute threads in groups of 32 threads. This set of 32 threads is called Warp.
Each SM can handle up to 32 Warps (1024 threads in total, see table 2). Individual

376 M.A. Mart́ınez–del–Amor et al.

Fig. 3. Thread organization in CUDA programming model

threads of the same Warp must be of the same type and start together at the same
program address, but they are free to branch and execute independently.

Table 2. Major Hardware and Software Limitations programing on CUDA

Configuration Parameters Limitation

Threads/SM 1024

Thread Blocks/SM 8

32-bit Registers/SM 16384

Shared Memory/SM 16KB

Threads/Block 512

Threads/Warp 32

Warps/SM 32

Simulating Active Membrane Systems Using GPUs 377

The execution flow begins with a set of Warps ready to be selected. The instruc-
tion unit selects one of them, which is ready for issue and executing instructions.
The SM maps all the threads in an active Warp per SP core, and each thread
executes independently with its own instructions and register state. Some threads
of the active Warp can be inactive due to branching or predication, and it is also
another critical point in the optimisation process. The maximum performance is
achieved when all the threads in an active Warp takes the same path (the same
execution flow). If the threads of a Warp diverge, the Warp serially executes each
branch path taken, disabling threads that are not on that path, and when all the
paths complete, the threads reconverge to the original execution path.

4 Design of the Simulator for Recognizer P Systems

In this section we briefly describe the simulator of recognizer P systems with
active membranes, elementary division and polarization. Firstly, we explain the
previous work that we have done in order to prepare the development of the
parallel simulator on the GPU. Then, we introduce the algorithm design in the
CUDA programming language, and finally, we finish with our simulator’s design.

4.1 Design of the baseline simulator

As previously mentioned, CUDA programming model is based on C/C++ lan-
guage. Therefore, the first recommended step when developing applications in
CUDA is to start from a baseline algorithm written in C++, where some parts
can be susceptible to be parallelized on the GPU.

In this work, we have based on the simulator for P systems with active mem-
branes developed in PLinguaCore by I. Pérez–Hurtado et al [5]. This sequential
(or single-threaded) simulator is programmed in JAVA, so the first step was to
translate the code to C++.

The simulator is executed into two main stages: selection stage and execution
stage. The selection stage consists of the search for the rules to be executed in
each membrane. Once the rules have been selected, the execution stage consists of
the execution of these rules.

The input data for the selection stage consists of the description of the mem-
branes with their multisets (strings over the working alphabet O, labels associated
with the membrane in H, etc...), and the set of rules R to be selected. The output
data of this stage is the set of selected rules. Only the execution stage changes the
information of the configuration. It is the reason because execution stage needs
synchronization when accessing to the membrane structure and the multisets. At
this point of implementation, we have parallelized the selection stage on the GPU,
and the execution stage is still executed on the CPU because of the synchronization
problem.

We also have developed an adapted sequential simulator for the CPU (called
fast sequential simulator), which has the same constraints as the CUDA simulator

378 M.A. Mart́ınez–del–Amor et al.

explained in the next subsections to make a fair comparison among them. This
simulator achieves much better performance than the original sequential simulator.

4.2 Algorithm design in CUDA

Whenever we design algorithms in the CUDA programming model, our main effort
is dividing the required work into processing pieces, which have to be processed
by TB thread blocks of T threads each. Using a thread block size of T=256, it is
empirically determined to obtain the overall best performance on the Tesla C1060
[28]. Each thread block access to one different set of input data, and assigns a
single or small constant number of input elements to each thread.

Each thread block can be considered independent to the other, and it is at
this level at which internal communication (among threads) is cheap using explicit
barriers to synchronize, and external communication (among blocks) becomes ex-
pensive, since global synchronization only can be achieved by the barrier implicit
between successive kernel calls. The need of global synchronization in our designs
requires successive kernel calls even to the same kernel.

4.3 Design of the parallel simulator

Fig. 4. Mapping membranes and objects with thread blocks and threads

In our design, we identify each membrane as a thread block where each thread
represents at least an element of the alphabet O (figure 4). Each thread block runs
in parallel looking for the set of rules that has to select for its membrane, and each
individual thread is responsible for selecting the rules associated with the object
that it represents (each thread selects the rules that need to be executed by using
the represented object).

As result of the execution stage, the membranes can vary including news el-
ements, dissolving membranes, dividing membranes, etc. Therefore, we have to

Simulating Active Membrane Systems Using GPUs 379

modify the input data for the selection stage with the newest structure of mem-
branes, and then call the selection again. It is an iterative process until a halting
configuration is reached.

Finally, our simulator presents some limitations, constrained by some pecu-
liarities in the CUDA programming model. The main limitations are showed in
table 3, and the following stand out among them: it can handle only two levels
of membrane hierarchy for simplicity in synchronization (the skin and the rest of
elementary membranes), which is enough for solving lots of NP-complete prob-
lems; and the number of objects in the alphabet must be divisible by a number
smaller than 512 (the maximum thread block size), in order to distribute the ob-
jects among the threads equally.

Table 3. Main limitations in the parallel simulator

Parameter Limitation

Levels of membrane hierarchy 2

Maximum alphabet size 65535

Maximum label set size 65535

Maximum multiplicity of an object in an
elementary membrane

65535

Alphabet size Divisible by a number smaller than 512

5 A Case of Study: Implementing a Solution to the
N-Queens problem

In this section, we briefly present a solution to the N-Queens problem, given by
Miguel A. Gutiérrez–Naranjo et al [10], using our simulator.

5.1 A family of P systems for solving the N-Queens problem

The N-Queens problem can be expressed as a formula in conjunctive normal
form, in such way that one truth assignment of the formula is considered as N-
Queens solution. A family of recognizer P system for the SAT problem [27] can
state whether exists a solution to the formula or not sending yes or no to the
environment.

However, the yes ot no answer from the recognizer P system is not enough
because it is also important to know the solutions. Besides, the system needs to
give us the way to encode the state of the N-Queens problem.

The P system designed for solving the N-Queens problem is a modification
of the P system for the SAT problem. It is an uniform family of deterministic
recognizer P system which solves SAT as a decision problem (i.e., the P system

380 M.A. Mart́ınez–del–Amor et al.

sends yes or no to the environment in the last computation step), but it also stores
the truth assignments that makes true the formula encoded in the elementary
membranes of the halting configuration.

5.2 Implementation

P-Lingua 1.0 [5] is a programming language useful for defining P system models
with active membranes. We use P-Lingua to encode a solution to the N-Queens
problem, and also to generate a file that our simulator can use as input. Figure 5
shows the P-Lingua process to generate the input for our simulator.

Fig. 5. Generation of the simulator’s input

P-Lingua 2.0 [7] translates a model written in P-Lingua language into a binary
file. A binary file is a file whose information is encoded in Bytes and bits (not
understandable by humans like plain text), which is suitable for trying to compress
the data. This binary file contains all the information of the P system (Alphabet,
Labels, Rules, . . .) which is executed by our simulator.

In our tests, we use the P system for solving the 3-Queens and 4-Queens prob-
lems. The former creates 512 membranes and up to 1883 different objects. The
latter creates 65536 membranes and up to 8120 different objects, and now the
simulator can handle it because we have decreased the memory requirement by
the simulator in [18]. On one hand, the P system for 5-Queens needs to generate
33554432 membranes and 25574 objects, what leads in a memory space limitation
(requires up to 1.5TB). On the other hand, note that 2-Queens is a system with
only 4 membranes, what is not enough for exploiting the parallelism in P systems.

6 Performance Analysis

We now examine the experimental performance of our simulator. Our performance
test are based on the solutions to 3-Queens and 4-Queens problems previously

Simulating Active Membrane Systems Using GPUs 381

explained in 5.2. They state an example of how a NP-complete problem can be
solved by the simulator for the P systems with active membranes. We report
the selection stage time which is executed on the GPU, and compare it with
the selection stage for the fast sequential code. We do not include the cost of
transferring input (and output) data from (and to) host CPU memory across
the PCI-Express bus to the GPU’s on board memory, which negatively affects
to the overall simulation time. Selection is one building block of a larger-scale
computation. Our aim is to get a full implementation of the simulator on the
GPU. In such case, the transfers across PCI-Express bus will be close to zero.

We have used the Nvidia GPU Tesla C1060 which has 240 execution cores and
4GB of device memory, plugged in a computer server with a Intel Core2 Quad
CPU and 8GB of RAM, using the 32bits ubuntu server as Operating System.

The selection stage on the GPU takes about 171 msec for the 3-Queens. So
it is 2.7 times faster than the selection stage on the CPU which takes 465 msec.
For the 4-Queens problem our simulator is 2 times faster than the fast sequential
version, taking 315291 and 629849 msec in selection respectively.

Our experimental results demonstrate the results we expect to see: a massively
parallel problem such as selection of the rules in a P-System with active membranes
achieves faster running times on a massively parallel architecture such as GPU.

7 Conclusions and Future Work

In this paper, we have presented a simulator for the class of recognizer P systems
with active membranes using CUDA. P system computations have a double par-
allel nature. The first level of parallelism is presented by the objects inside the
membranes, and the second one is presented between membranes. Hence, we have
simulated these P systems in a platform which provides those levels of parallelism.
This platform is the GPU, with parallelism between thread blocks and threads.
Besides, we have used a programming language called P-Lingua to encode P sys-
tems as input for our simulator. This tool helped us to use the P system for solving
the N-Queens problem in order to test our simulator.

Using the power and parallelism that provides the GPU to simulate P systems
with active membranes is a new concept in the development of applications for
membrane computing. Even the GPU is not a cellular machine, its features help
the researches to accelerate their simulations allowing the consolidation of the
cellular machines as alternative to traditional machines.

The first version of the simulator is presented for P systems with active mem-
branes, elementary division and polarization, specifically, we have developed the
selection stage of the simulator on the GPU. In forthcoming versions, we will in-
clude the execution version on the GPU. This issue allows a completely parallel
execution on the GPU, avoiding CPU-GPU transfers in every step, which degrades
system performance.

382 M.A. Mart́ınez–del–Amor et al.

Moreover, we are working to obtain fully simulation of P systems with active
membranes, deleting the limitations showed in table 3. Besides, we will include
new funcionality in the simulator like not elementary division.

It is also important to point out that this simulator is limited by the resources
available on the GPU as well as the CPU (RAM, Device Memory, CPU, GPU).
They limit the size of the instances of NP-complete problems whose solutions
can be successfully simulated. Although developing general purpose programs on
the GPU is easier than several years ago with tools such as CUDA, to extract the
maximum performance of the GPU is still hard, so we need to make a deep analysis
to obtain the maximum performance available for our simulator. For instance, in
the following versions of the simulator we will reduce the memory requirements
in order to simulate bigger instances of NP-complete problems and avoid idle
threads, by deleting objects with zero multiplicity. For this task we can use spare
matrix in our simulator’s design.

The massively parallel environment that provides the GPUs is good enough
for the simulator, however, we need to go beyond. The newest cluster of GPUs
provides a higher massively parallel environment, so we will attempt to scale to
those systems to obtain better performance in our simulated codes.

Finally, we will study the adaptation of the design of P systems to the con-
straints of the GPU to make faster simulations. Furthermore, it would be inter-
esting to avoid the brute force algorithms in P system computations, and start
to design heuristics in the design of membrane solutions (i.e. avoiding membrane
division as possible).

Acknowledgement

The first three authors acknowledge the support of the project TIN2006–13425 of
the Ministerio de Educación y Ciencia of Spain, cofinanced by FEDER funds, and
the support of the “Proyecto de Excelencia con Investigador de Reconocida Vaĺıa”
of the Junta de Andalućıa under grant TIC04200. The last three authors acknowl-
edge the support of the project from the Fundación Séneca (Agencia Regional de
Ciencia y Tecnoloǵıa, Región de Murcia) under grant 00001/CS/2007, and also by
the Spanish MEC and European Commission FEDER.

References

1. A. Alhazov, M.J. Pérez–Jiménez. Uniform solution of QSAT using polarizationless ac-
tive membranes. Machines, Computations, and Universality. Lecture Notes in Com-
puter Science, 4664 (2007), 122–133.

2. I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, P. Hanrahan.
Brook for GPUs: stream computing on graphics hardware. SIGGRAPH ’04, ACM
Press, (2004), 777–786.

3. G. Ciobanu, M.J. Pérez–Jiménez, G. Paun, (eds.) Applications of membrane com-
puting. Natural Computing Series, Springer, (2006).

Simulating Active Membrane Systems Using GPUs 383

4. G. Ciobanu, G. Wenyuan. P systems running on a cluster of computers. Lecture
Notes in Computer Science, 2993 (2004), 123–139.

5. D. Dı́az–Pernil, I. Pérez–Hurtado, M.J. Pérez–Jiménez, A. Riscos–Núñez. A P-
Lingua programming environment for Membrane Computing. Lecture Notes in Com-
puter Science, 5391 (2009) , 187–203.

6. L. Fernández, V.J. Mart́ınez, F. Arroyo, L.F. Mingo. A hardware circuit for selecting
active rules in transition P systems. Proceedings of the Seventh International Sym-
posium on Symbolic and Numeric Algorithms for Scientific Computing (2005), pp.
415.

7. M. Garćıa–Quismondo, R. Gutiérrez–Escudero, M.A. Mart́ınez–del–Amor, E. Ore-
juela, I. Pérez–Hurtado. P–Lingua 2.0: A software framework for cell-like P systems.
International Journal of Computers, Communications and Control, Vol. IV, 3 (2009),
234–243.

8. M. Garland, S.L. Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Morton, E. Phillips,
Y. Zhang, V. Volkov. Parallel computing experiences with CUDA. IEEE Micro, 28,
4 (2008), 13–27.

9. N.K. Govindaraju, D. Manocha. Cache–efficient numerical algorithms using graphics
hardware. Parallel Computing, 33, 10–11 (2007), 663–684.

10. M.A. Gutiérrez–Naranjo, M.A. Mart́ınez–del–Amor, I. Pérez–Hurtado, M.J. Pérez–
Jiménez. Solving the N–Queens Puzzle with P systems. Proceedings of the 7th Brain-
storming Week on Membrane Computing, Vol. I (2009), pp. 199–210.

11. M.A. Gutiérrez–Naranjo, M.J. Pérez–Jiménez, A. Riscos–Núñez. Available mem-
brane computing software. Applications of Membrane Computing, Natural Comput-
ing Series, Springer–Verlag, 2006. Chapter 15 (2006), pp. 411–436.

12. M.A. Gutiérrez–Naranjo, M.J. Pérez–Jiménez, A. Riscos–Núñez. Towards a program-
ming language in cellular computing. Electronic Notes in Theoretical Computer Sci-
ence, 123 (2005), 93–110.

13. M. Harris, S. Sengupta, J.D. Owens. Parallel prefix sum (Scan) with CUDA. GPU
Gems, 3 (2007).

14. T.D. Hartley, U. Catalyurek, A. Ruiz, F. Igual, R. Mayo, M. Ujaldon. Biomedical
image analysis on a cooperative cluster of GPUs and multicores. ICS ’08: Proceedings
of the 22nd annual international conference on Supercomputing, ACM (2008), pp.
15–25.

15. M.D. Lam, E.E. Rothberg, M.E. Wolf. The cache performance and optimizations of
blocked algorithms. ASPLOS-IV: Proceedings of the fourth international conference
on Architectural support for programming languages and operating systems, ACM
(1991), pp. 63–74.

16. E. Lindholm, J. Nickolls, S. Oberman, J. Montrym. Nvidia Tesla: A unified graphics
and computing architecture. IEEE Micro, 28, 2 (2008), 39–55.

17. W.R. Mark, R.S. Glanville, K. Akeley, M.J. Kilgard. Cg: a system for programming
graphics hardware in a C–like language. SIGGRAPH ’03, ACM (2003), pp. 896–907.

18. M.A. Mart́ınez–del–Amor, I. Pérez–Hurtado, M.J. Pérez–Jiménez, Jose M. Cecilia,
Ginés D. Guerrero, José M. Garćıa. Simulation of Recognizer P Systems by using
Manycore GPUs. Proceedings of 7th Brainstorming Week on Membrane Computing,
Vol. II (2009), pp. 45–58.

19. J. Michalakes, M. Vachharajani. GPU acceleration of numerical weather prediction.
IPDPS. (2008), pp. 1–7.

20. V. Nguyen, D. Kearney, G. Gioiosa. An algorithm for non-deterministic object distri-
bution in P systems and its implementation in hardware. Lecture Notes in Computer
Science, 5391 (2009), 325–354.

384 M.A. Mart́ınez–del–Amor et al.

21. J. Nickolls, I. Buck, M. Garland, K. Skadron. Scalable parallel programming with
CUDA. Queue, 6, 2 (2008), 40–53.

22. J. D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone, J.C. Phillips. Gpu com-
puting. Proceedings of the IEEE, 96, 5 (2008), pp. 879–899.

23. J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krger, A.E. Lefohn, T.J.
Purcell. A survey of general–purpose computation on graphics hardware. Computer
Graphics Forum, 26, 1 (2007), 80–113.

24. G. Păun. Computing with membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108–143, and Turku Center for Computer Science-TUCS Report No
208.

25. G. Păun: Membrane Computing, An introduction. Springer-Verlag, Berĺın (2002).
26. M.J. Pérez–Jiménez, A. Romero–Jiménez, F. Sancho–Caparrini. Complexity classes

in models of cellular computing with membranes. Natural Computing, 2, 3 (2003),
265–285.

27. M.J. Pérez–Jiménez, A. Romero–Jiménez, F. Sancho–Caparrini. A polynomial com-
plexity class in P systems using membrane division. Journal of Automata, Languages
and Combinatorics, 11, 4 (2006), 423–434.

28. N. Satish, M. Harris, M. Garland. Designing Efficient Sorting Algorithms for Many-
core GPUs. To Appear in Proceedings of the 23rd IEEE International Parallel and
Distributed Processing Symposium, 2009.

29. A. Ruiz, M. Ujaldon, J.A. Andrades, J. Becerra, K. Huang, T. Pan, J.H. Saltz. The
GPU on biomedical image processing for color and phenotype analysis. BIBE, (2007),
pp. 1124–1128.

30. S. Ryoo, C. Rodrigues, S. Baghsorkhi, S. Stone, D. Kirk, W. mei Hwu. Optimiza-
tion principles and application performance evaluation of a multithreaded GPU using
CUDA. Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, (2008), pp. 73–82.

31. S. Ryoo, C.I. Rodrigues, S.S. Stone, J.A. Stratton, Sain-Zee Ueng, S.S. Baghsorkhi,
W.W. Hwu. Program optimization carving for GPU computing. J. Parallel Distrib.
Comput., 68, 10 (2008), 1389–1401.

32. Nvidia CUDA Programming Guide 2.0, (2008): http://developer.download.

nvidia.com/compute/cuda/2_0/docs/NVIDIA_CUDA_Programming_Guide_2.0.pdf

33. GPGPU organization. World Wide Web electronic publication: http://www.gpgpu.
org

34. Nvidia CUDA. World Wide Web electronic publication: http://www.nvidia.com/

cuda

