
REPAS: Reliable Execution for Parallel

ApplicationS in Tiled-CMPs�

Daniel Sánchez, Juan L. Aragón, and José M. Garćıa

Departamento de Ingenieŕıa y Tecnoloǵıa de Computadores
Universidad de Murcia, 30071 Murcia (Spain)
{dsanchez,jlaragon,jmgarcia}@ditec.um.es

Abstract. Reliability has become a first-class consideration issue for
architects along with performance and energy-efficiency. The increasing
scaling technology and subsequent supply voltage reductions, together
with temperature fluctuations, augment the susceptibility of architec-
tures to errors. Previous approaches have tried to provide fault tolerance.
However, they usually present critical drawbacks concerning either hard-
ware duplication or performance degradation, which for the majority of
common users results unacceptable.

RMT (Redundant Multi-Threading) is a family of techniques based
on SMT processors in which two independent threads (master and slave),
fed with the same inputs, redundantly execute the same instructions, in
order to detect faults by checking their outputs. In this paper, we study
the under-explored architectural support of RMT techniques to reliably
execute shared-memory applications. We show how atomic operations
induce to serialization points between master and slave threads. This
bottleneck has an impact of 34% in execution time for several parallel
scientific benchmarks. To address this issue, we present REPAS (Reli-
able execution of Parallel ApplicationS in tiled-CMPs), a novel RMT
mechanism to provide reliable execution in shared-memory applications.

While previous proposals achieve the same goal by using a big amount
of hardware - usually, twice the number of cores in the system - REPAS
architecture only needs a few extra hardware, since the redundant execu-
tion is made within 2-way SMT cores in which the majority of hardware
is shared. Our evaluation shows that REPAS is able to provide full cover-
age against soft-errors with a lower performance slowdown in comparison
to a non-redundant system than previous proposals at the same time it
uses less hardware resources.

1 Introduction

The increase in the number of available transistors in a chip has made it possible
to build powerful processors. In this way, CMPs have become a good approach
� This work has been jointly supported by the Fundación Séneca (Agencia Regional

de Ciencia y Tecnoloǵıa, Región de Murcia) under grant 05831/PI/07, also by the
Spanish MEC and European Commission FEDER funds under grants “Consolider
Ingenio-2010 CSD2006-00046” and “TIN2006-15516-C04-03”.

H. Sips, D. Epema, and H.-X. Lin (Eds.): Euro-Par 2009, LNCS 5704, pp. 321–333, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

322 D. Sánchez, J.L. Aragón, and J.M. Garćıa

to improve performance in an energy-efficient way, while keeping a manage-
able complexity to exploit the thread-level parallelism. Furthermore, for cur-
rent and future CMP architectures, more efficient designs are tiled-CMPs [18].
These architectures are organized around a direct network, since area, scalability
and power constraints make impractical the use of a bus as the interconnection
network.

However, this trend in the increasing number of transistors per chip has a
major drawback due to the growth of the failure ratio in every new scale gen-
eration [14]. Firstly, the fact of having a higher number of transistors per chip
increases the probability of a fault. Secondly, the growth of temperature, the
decrease of the supply voltage and the subthreshold voltage in the chip, in ad-
dition to other non-desirable effects such as higher power supply noise, signal
cross-talking, process variation or in-progress wear-out, compromise the system’s
reliability.

Hardware errors can be divided into three main categories: transient faults,
intermittent faults and permanent faults [8, 3]. Both transient and intermittent
faults appear and disappear by themselves. The difference is that, while tran-
sient faults are originated by external agents like particle strikes over the chip,
intermittent faults are caused by intra-chip factors, such as process variation
combined with voltage and temperature fluctuations [20]. In addition, transient
faults disappear faster than intermittent faults, on average. Finally, permanent
faults remain in the hardware until the damaged part is replaced. Therefore, this
paper aims at the study of fault tolerant techniques to detect and recover from
transient and intermittent faults, also known as soft errors.

Although the fault ratio does not represent a handicap for the majority of
users, several studies show how soft errors can heavily damage industry [8].
For instance, in 1984 Intel had certain problems delivering chips to AT&T as
a result of alpha particle contamination in the manufacturing process. In 2000,
a reliability problem was reported by Sun Microsystems in its UltraSparc-II
servers deriving from insufficient protection in the SRAM. A report from Cypress
Semiconductor shows how a car factory is halted once a month because of soft
errors [21]. Another fact to take into account is that the fault ratio increases
due to altitude. Therefore, reliability has become a major design problem in the
aerospace industry.

Fault detection has usually been achieved through the redundant execution
of the program instructions, while recovery methods are commonly based on
checkpointing. A checkpoint reflects a safe state of the architecture in a temporal
point. When a fault is detected, the architecture is rolled-back to the previous
checkpoint and the execution is restarted.

There are several proposals to achieve fault tolerance in microarchitectures.
RMT (Redundant Multi-Threading) is a family of techniques based on redundant
execution in which two threads execute the same instructions. Simultaneous and
Redundantly Threaded processors (SRT) [12] and SRT with Recovery (SRTR)
[19] are two of them, implemented on SMT processors in which two independent
and redundant threads are executed with a delay respect to the other which

REPAS: Reliable Execution for Parallel ApplicationS in Tiled-CMPs 323

speeds up their execution. These early approaches are attractive since they do
not require many design changes in a traditional SMT processor. In addition,
they only add some extra hardware for communication purposes between the
threads. However, the major drawback of SRT(R) is the inherent non-scalability
of SMT processors as the number of threads increases. The arrival of CMP
architectures contributed to solve this problem, with proposals such as Chip-level
Redundant Threaded processors (CRTR) [2], Reunion [16] and Dynamic Core
Coupling (DCC) [5]. These techniques, in contrast, suffer from high inter-core
communication through either dedicated buses or the underlying interconnection
network.

Although there are different approaches using SRTR and CRTR with sequen-
tial or independent multithreaded applications [19][4], the architectural support
for redundant execution with shared-memory workloads is not well suited, since
atomic operations induce a serialization point between master and slave threads,
as we will show in Section 3.1. On the other hand, more recent proposals such as
Reunion or DCC, aimed at parallel workloads, use a shared-bus as interconnec-
tion network. Therefore, when they are moved to a more scalable environment
such as a direct-network, they suffer from significant performance degradation
as the number of cores increases (as studied in [17]), in addition to the extra
number of cores that they require.

To address all these issues, in this paper we propose Reliable Execution of Par-
allel ApplicationS (REPAS) in tiled-CMPs. The main features that characterize
REPAS are:

– A scalable solution built on adding dual SMT cores to form a tiled-CMP.
– Ability to detect and recover from transient and intermittent faults.
– Reduced performance overhead as compared to previous proposals (less than

13% slowdown than CRTR and 7% less than DCC for 16-thread workloads.
Recall that DCC uses twice the number of cores (i.e., 32 vs. 16 cores) for
those reported slowdowns.

– Low decoupling between master and slave threads which allows both quicker
fault detection and faster recovery times (reduced to just tens of cycles). The
former represents an interesting feature for critical applications in which fault
detection cannot be delayed long; being the latter an important feature in
case of a burst of faults, as it usually occurs for intermittent faults [20].

The rest of the paper is organized as follows. Section 2 provides some back-
ground and reviews related work. Section 3 details the previous CRTR archi-
tecture and shows its performance issues in shared-memory environments. In
Section 4 we describe REPAS and Section 5 shows the experimental results.
Finally, Section 6 summarizes the main conclusions of our work.

2 Related Work

When comparing different fault-tolerant mechanisms, we can point out four
main characteristics. Firstly, the sphere of replication or SoR [12], which de-
termines the components in the microarchitecture that are replicated. Secondly,

324 D. Sánchez, J.L. Aragón, and J.M. Garćıa

Table 1. Main characteristics of several fault-tolerant architectures

SoR Synchronization Input
Replication

Output
Comparison

SRT(R)
CRT(R)

Pipeline, Registers Staggered
execution

Strict
(Queue-based)

Instruction by
instruction

Reunion Pipeline, Registers,
L1Cache

Loose coupling Relaxed input
replication

Fingerprints

DCC Pipeline, Registers,
L1Cache

Thousands of
instructions

Consistency
window

Fingerprints,
Checkpoints

HDTLR Pipeline, Registers,
L1Cache

Thousands of
instructions

Sub-epochs Fingerprints,
Checkpoints

the synchronization, which indicates how often redundant copies compare their
computation results. Thirdly, the input replication method, which defines how
redundant copies observe the same data. Finally, the output comparison method,
which defines how the correctness of the computation is assured. Table 1 sum-
marizes the main characteristics of the proposals covered in this section.

One of the first approaches to full redundant execution is Lockstepping [1], a
proposal in which two statically bound execution cores receive the same inputs
and execute the same instructions step by step. Later, the family of techniques
Simultaneous and Redundantly Threaded processors (SRT) [12], SRT with Re-
covery (SRTR) [19], Chip-level Redundantly Threaded processors (CRT) [9] and
CRT with Recovery (CRTR) [2] was proposed, based on a previous approach
called AR-SMT [13]. In SRT(R) redundant threads are executed within the same
core. The SoR includes the entire SMT pipeline but the first level of cache. The
threads execute in a staggered execution mode, using strict input replication and
output comparison on every instruction. Other studies have chosen to allocate
redundant threads in separate cores. This way, if a permanent fault damages an
entire core, a single thread can still be executed. Among these studies it is worth
mentioning CRT(R) [9, 2], Reunion [16], DCC [5] and HDTLR [11]. In all these
proposals, a fundamental point is how redundant pairs communicate with each
other, as we will summarize later.

In Reunion, the vocal core is responsible for accessing and modifying shared-
memory coherently. However, the mute core only accesses memory by means of
non-coherent requests called phantom requests, providing redundant access to
the memory system. This approach is called relaxed input replication. In order
to detect faults, the current architectural state is interchanged among redun-
dant cores by using a compression method called fingerprinting [15] through a
dedicated point-to-point fast bus. Relaxed input replication leads to input in-
coherence which are detected as faults. As a result, checking intervals must be
short (hundred of instructions) to avoid excessive penalties. Violations in relaxed
input replication induce to a serialized execution (very similar to lock-stepped
execution) between redundant cores, affecting performance with a degradation
of 22% over a base system when no faults are injected.

Dynamic Core Coupling (DCC) [5] does not use any special communication
channel and reduces the overhead of Reunion by providing a decoupled execu-
tion of instructions, making larger comparison intervals (thousand of instruc-
tions) and reducing the network traffic. At the end of each interval, the state of

REPAS: Reliable Execution for Parallel ApplicationS in Tiled-CMPs 325

redundant pairs is interchanged and, if no error is detected, a new checkpoint is
taken. As shown in [5], the optimal checkpoint interval for DCC is 10,000 cycles,
meaning that the time between a fault happens and its detection is usually very
high. Input incoherences are avoided by a consistency window which forbids data
updates, while the members of a pair have not observed the same value. How-
ever, DCC uses a shared bus as interconnection network, which simplifies the
consistency window mechanism. Nevertheless, this kind of buses are not scalable
due to area and power constraints. In [17], DCC is studied in a direct-network
environment, and it is shown that the performance degradation rises to 19%,
39% and 42% for 8, 16, and 32 core pairs.

Recently, Rashid et al. proposed Highly-Decoupled Thread-Level Redundancy
(HDTLR) [11]. HDTLR architecture is similar to DCC, in which the recovery
mechanism is based on checkpoints which reflect the architecture changes be-
tween epochs, and modifications are not made visible to L2 until verification.
However, in HDTLR each redundant thread is executed in different
hardware contexts (computing wavefront and verification wavefront), maintain-
ing coherency independently. This way, the consistency window is avoided.
However, the asynchronous progress of the two hardware contexts could lead
to memory races, which result in different execution outcomes, masking this
issue as a transient fault. In a worst-case scenario, not even a rollback would
guarantee forward progress. Thus, an order tracking mechanism, which enforces
the same access pattern in redundant threads, is proposed. This mechanism im-
plies the recurrent creation of sub-epochs by expensive global synchronizations.
Again, in this study the interconnection network is a non-scalable shared-bus.

3 CRTR as a Building Block for Reliability

CRTR is a fault tolerance architecture proposed by Gomaa et al. [2], an exten-
sion to SRTR [19], for CMP environments. In CRTR, two redundant threads
are executed on separate SMT processor cores, providing transient fault detec-
tion. Furthermore, since redundant threads are allocated in distant hardware,
the architecture is, as well, potentially able to tolerate permanent faults. These
threads are called master (or leading) and slave (or trailing) threads, since one
of them runs ahead the other by a number of instructions called slack. As in
a traditional SMT processor, each thread owns a PC register, a renaming map
table and a register file, while all the other resources are shared.

The master thread is responsible for accessing memory to load data which
bypasses to the slave thread, along with the accessed address. Both data and
addresses are kept in a FIFO structure called Load Value Queue (LVQ) [12].
This structure prevents the slave thread from observing different values from
those the master did, a phenomenon called input incoherence. The aim in CRTR
is to avoid cache updates until the corresponding value has been verified. In
order to do that, when a store instruction commits in the master, the value and
accessed address are bypassed to the slave which keeps them in a structure called

326 D. Sánchez, J.L. Aragón, and J.M. Garćıa

Store Value Queue (SVQ) [12]. When a store commits in the slave, it accesses the
SVQ and if the check successes, the L1 cache is updated. Other structures used in
CRTR are the Branch Outcome Queue (BOQ) [12] and the Register Value Queue
(RVQ) [19]. The BOQ is used by the master to bypass the destination of a branch
to the slave which uses this information as branch predictions. Availability for
these hints is assured thanks to the slack, since by the time the slave needs to
predict a branch, the master knows the correct destination, which bypasses to
the slave. This way, the execution speed of the latter is increased because branch
mispredictions are avoided. Finally, the RVQ is used to bypass register values
of every committed instruction by the master, which are needed for checking.
Whenever a fault is detected, the recovery mechanism commences. The slave
register file is a safe point, since no updates are performed on it until a successful
verification. Therefore, the slave bypasses the content of its register file to the
master, pipelines of both threads are flushed and execution is restarted from the
detected faulty instruction.

As it was said before, separating the execution of a master thread and its
corresponding slave in different cores adds the ability to tolerate permanent
faults. However, it requires a wide datapath between cores in order to bypass all
the information required for checking. Furthermore, although wire delays may
be hidden by the slack, the cores bypassing data must be close to each other to
avoid stalling.

3.1 CRTR in Shared-Memory Environments

Although CRTR was originally proposed and evaluated for sequential applica-
tions [9, 2], the authors argue that it could be used for multithreaded applica-
tions, too. However, we have found that, with no additional restrictions, CRTR
can lead to wrong program execution for shared-memory workloads in a CMP
scenario, even in the absence of transient faults.

In shared-memory applications, such as those that can be found in SPLASH-2,
the access to critical sections is granted by primitives which depend on atomic
instructions. In CRTR, the master thread never updates memory. Therefore,
when a master executes the code to access a critical section, the value of the
variable “lock” will not be visible until the slave executes and verifies the
same instructions. This behaviour enables two (or more) master threads to ac-
cess a critical section at the same time, which potentially leads to a wrong
execution.

In order to preserve sequential consistency and, therefore, the correct program
execution, the most straightforward solution is to synchronize master and slave
threads whenever an atomic instruction is executed. This conservative approach
introduces a noticeable performance degradation (an average 34% slowdown as
evaluated in Section 5.2). The duration of the stall of the master thread depends
on two factors: (1) the size of the slack, which determines how far the slave
thread is, and (2) the number of write operations in the SVQ, which must be
written in L1 prior to the atomic operation to preserve consistency.

REPAS: Reliable Execution for Parallel ApplicationS in Tiled-CMPs 327

4 REPAS Architecture

At this point, we propose Reliable Execution for Parallel ApplicationS (REPAS)
in tiled-CMPs. We create the reliable architecture of REPAS by adding CRTR
cores to form a tiled-CMP. However, we avoid the idea of separating master and
slave threads in different cores. We justify this decision for two main reasons:
(1) as a first approach, our architecture will not tolerate permanent faults whose
appearance ratio is still much lower than the ratio of transient faults [10], and
(2) we avoid the use of the expensive inter-core datapaths. An overview of the
core architecture can be seen in Figure 1. As in a traditional SMT processor,
issue queues, register file, functional units and L1-cache are shared among the
threads. The shaded boxes in Figure 1 represent the extra hardware introduced
by CRTR and REPAS as explained in Section 3.

In benchmarks with high contention resulting from synchronization, the con-
straint described in Section 3.1 for CRTR, may increase the performance degra-
dation of the architecture dramatically. To avoid frequent master stalls derived
from consistency, we propose an alternative management of stores. Instead of
updating memory just after verification, a more suitable approach is allowing
updates in L1 cache without checking. By doing so, the master thread will not
be stalled as a result of synchronizations.

Collaterally, we clearly reduce the pressure on the SVQ. In the original CRTR
implementation, a master’s load must look into the SVQ to obtain the value pro-
duced by an earlier store. This implies an associative search along the structure
for every load instruction. In REPAS, we eliminate these searches since the up-
to-date values for every block are stored in L1 cache where they can be accessed
as usual.

Unfortunately, this measure complicates the recovery mechanism. When a
fault is detected, the L1 cache may have unverified blocks. Upon detection, all
unverified blocks must be invalidated. Furthermore, when a store is correctly
checked by the slave, the word in L1 must be written-back into L2. This way,
the L2 cache remains consistent, even if the block in L1 is invalidated as a

Fig. 1. REPAS core architecture overview

328 D. Sánchez, J.L. Aragón, and J.M. Garćıa

result of a fault. This mechanism is carried out in background, and despite the
increased L1-to-L2 traffic, it does not have a noticeable impact on performance.

4.1 Implementation Details of REPAS

To avoid error propagation deriving from a wrong result stored in L1 cache by
the master, unverified blocks in cache must be identified. In order to do this,
we introduce an additional bit per L1 cache block called Unverified bit which
is activated on any master write. When the Unverified bit is set on a cache
block, it cannot be displaced or shared with other nodes, effectively avoiding
the propagation of a faulty block. Eventually, the Unverified bit will be cleared
when the corresponding slave thread verifies the correct execution of the memory
update.

Clearing the Unverified bit is not a trivial task. A master thread can update
a cache block several times before a verification takes place. If the first check
performed by the slave is successful, it means that the first memory update was
valid. However, this does not imply that the whole block is completely verified,
since the rest of the updates has not been checked yet. One simple way of knowing
if a block needs more checks before clearing the unverified bit is by looking if
the block appears more than once in the SVQ. If it does, more verifications need
to be performed. Yet, this measure implies an associative search in the SVQ.
Nonetheless, as we said before, we eliminate much of the pressure produced
by master’s loads. In quantitative terms, in the original CRTR proposal there
was an associative search every master’s load, and now we have an associative
search every slave’s store. This results in a significant reduction of associative
searches within the SVQ, given the fact that the load/store ratio for the studied
benchmarks is almost 3 to 1. Furthermore, as this operation is performed in
parallel to the access to L1 cache, we do not expect an increase in the cycle time
to access L1-cache.

5 Evaluation

5.1 Simulation Environment

We have implemented REPAS as well as the proposed extensions to CRTR
to support the execution of parallel applications, evaluating the performance
results by using the functional simulator Virtutech Simics [6], extended with the
execution-driven multiprocessor simulator GEMS [7].

Our study has been focused on a 16-way tiled-CMP in which each core is a
dual-threaded SMT, which has its own private L1 cache, a portion of the shared
L2 cache and a connection to the on-chip network. The architecture follows the
sequential consistency model with the write-read reordering optimization. The
main parameters of the architecture are shown in Table 2(a). For the evaluation,
we have used a selection of scientific applications: Barnes, FFT, Ocean, Radix,
Raytrace, Water-NSQ and Water-SP are from the SPLASH-2 benchmark suite.

REPAS: Reliable Execution for Parallel ApplicationS in Tiled-CMPs 329

Table 2. Characteristics of the evaluated architecture and used benchmarks

(a) System characteristics

16-Way Tiled CMP System Cache Parameters
Processor Speed 2 GHz Cache line size 64 bytes

Max. Fetch / retire rate 4 instructions / cycle L1 cache
Consistency model Sequential Consistency Size, associativity 64KB, 4 ways

Memory parameters Hit time 1 cycle
Coherence protocol MOESI Shared L2 cache

Write Buffer 64 entries Size, associativity 512KB/tile, 4 ways
Memory access time 300 cycles Hit time 15 cycles

Network parameters Fault tolerance parameters
Topology 2D mesh LVQ/SVQ 64 entries each

Link latency (one hop) 4 cycles RVQ 80 entries
Flit size 4 bytes BOQ 64 entries

Link bandwidth 1 flit/cycle Slack Fetch 256 instructions

(b) Input sizes

Benchmark Size Benchmark Size
Barnes 8192 bodies, 4 time steps Tomcatv 256 points, 5 iterations
FFT 256K complex doubles Unstructured Mesh.2K, 5 time steps

Ocean 258 x 258 ocean Water-NSQ 512 molecules, 4 time steps
Radix 1M keys, 1024 radix Water-SP 512 molecules, 4 time steps

Raytrace 10Mb, teapot.env scene

Tomcatv is a parallel version of a SPEC benchmark and Unstructured is a com-
putational fluid dynamics application. The experimental results reported in this
work correspond to the parallel phase of each program only. Sizes problems are
shown in Table 2(b).

5.2 Performance Analysis

We have simulated the benchmarks listed in Table 2(b) in a tiled-CMP with 16
cores. Figure 2 compares CRTR with REPAS. The results are normalized to a
system in which no redundancy is introduced. Overall, these results clearly show
that REPAS performs better than CRTR. This tendency is more noticeable in
benchmarks such as Unstructured or Raytrace, which present many more atomic
synchronizations than the rest of the studied benchmarks, as it can be observed
in Table 3.

CRTR obtains an average performance degradation of 34% in comparison
to a non-redundant system. On the contrary, REPAS is able to reduce this
degradation down to 21%. Atomic operations damage CRTR in two ways. Firstly,
they act as serialization points: the slave thread must catch up with the master.
Secondly, all the stores in the SVQ must be issued to memory before the actual
atomic operation, in order to preserve the sequential consistency model.

Table 3. Frequency of atomic synchronizations (per 100 cycles)

Barnes FFT Ocean Radix Raytrace Tomcatv Unstructured Water-NSQ Water-SP

Synchronizations 0.162 0.039 0.142 0.013 0.2 0.02 3.99 0.146 0.014
Cycles per

synchronization 478.7 405.1 376.7 451.2 561.9 405.6 566 563.7 408.8

330 D. Sánchez, J.L. Aragón, and J.M. Garćıa

Fig. 2. Execution time overhead over a non fault-tolerant architecture

We have also evaluated DCC in a 32-core CMP with a 2D-mesh network, using
the same parameters shown in Table 2(a). As studied in [17], DCC performs poorly
in this environment due to the latency imposed by the age table, introduced to
maintain the master-slave consistency. As we can see in Figure 2, REPAS is 7%
faster than DCC on average. However, it is important to note that DCC uses twice
as much hardware as REPAS, since the redundant threads are executed in different
cores. This represents another advantage of REPAS over DCC.

Finally, we show the performance of SMT-dual, a coarse-grained redundancy
approach which represents a 16-core 2-way SMT architecture executing two
copies (A and A’) of each studied application. Within each core, one thread
of A and one thread of A’ are executed. As mentioned in [12], this helps to illus-
trate what the performance degradation of a SMT processor is when two copies
of the same thread are running within the same core. As we can see, REPAS
is 9% faster than SMT-dual on average which, at the same time, is faster than
CRTR in 2%.

5.3 Speculative Sharing

REPAS does not allow the sharing of unverified blocks as a conservative measure
to avoid the propagation of errors among cores. On the contrary, DCC [5] is
based on a speculative sharing policy. Given that blocks are only verified at
checkpointing creation intervals (i.e., 10,000 cycles), avoiding speculative sharing
in DCC would degrade performance in an unacceptable way.

For comparison purposes, we have studied the effect of sharing unverified
blocks in REPAS. In order to avoid an unrecoverable situation, speculatively
delivered data block the commit stage of the requestor. In this way, we introduce

REPAS: Reliable Execution for Parallel ApplicationS in Tiled-CMPs 331

Table 4. Number of speculative sharings and time needed to verify those blocks

Barnes FFT Ocean Radix Raytrace Tomcatv Unstructured Water-NSQ Water-SP AVG

Speculative
sharings 12077 50 9217 901 39155 163 224286 244 252 -
Time to

verification 102 91.72 96.71 81.8 80.79 107.337 113.14 102.377 76.76 95

new data in the pipeline to operate with (similarly to conventional speculative
execution to support branch prediction). Furthermore, a speculative block can
be shared by two or more requestors. When the producer validates the block, it
sends a signal to all the sharers confirming that the acquired block was correct
and the commit stage is re-opened in their pipelines. If a core which produced
speculatively shared data detects a fault, an invalidation message is sent to all
the sharers in order to flush their pipelines, undoing the previous work.

We have not considered to migrate unverified data speculatively, since an
expensive mechanism would be necessary to keep track of the changes in the
ownership, the sharing chains as well as in the original value of the data block
for recovery purposes.

Table 4 reflects that speculations are highly uncommon, and that all the time
in which we could benefit from, 95 cycles on average, cannot be fully amortized
because pipeline is closed at commit. This explains why speculative sharings
do not obtain much benefit in REPAS. The performance evaluation shows a
negligible performance improvement on average. However, or those benchmarks
as Barnes, Raytrace and Unstructured which show a greater number of sharings,
the performance is increased around 1% over the basic mechanism. Overall, the
performance increase due to speculative sharing seems inadequate, since it is not
worth the incremented complexity in the recovery mechanism of the architecture.

5.4 Transient Fault Injection

We have shown that REPAS is able to reduce the performance degradation of
previous proposals in a fault-free scenario. However, faults and the recovery mech-
anism to solve them introduce an additional degradation which must be also stud-
ied. Figure 3 shows the execution overhead of REPAS under different fault rates.
Failure rates are expressed in terms of faulty instructions per million of cycles per
core. These rates are much higher than expected. However, they are being evalu-
ated to overstress the architecture and to show the scalability of the system.

As we can see in Figure 3(a), REPAS is able to tolerate rates of 100 faulty in-
structions per million per core with an average performance degradation of 2%
over a test with no injected faults. The average overhead grows to 10% when the
fault ratio is increased to 1000 per million. The time spent on every recovery de-
pends on the executed benchmark and it is 80 cycles on average, as we can see in
Figure 3(b). This time includes the invalidation of all the unverified blocks and the
rollback of the architecture up to the point where the fault was detected. Although
we have not completely evaluated it yet, other proposals such as DCC spend thou-
sands of cycles to achieve the same goal (10,000 cycles in a worst-case scenario).
This clearly shows the greater scalability of REPAS in a faulty environment.

332 D. Sánchez, J.L. Aragón, and J.M. Garćıa

(a) Overhead under different fault rates (b) Average time needed for recovery

Fig. 3. Execution time overhead and rollback time under different failure rates

6 Conclusions

Processors are becoming more susceptible to transient faults due to several factors
such as technology scaling, voltage reduction, temperature fluctuations, process
variation or signal cross-talking. Although there are many approaches exploring
reliability for single-threaded applications, shared-memory environments have not
been thoroughly studied.

In this paper, we first study the under-explored architectural support for
CRTR to reliably execute shared-memory applications. We show how atomic
operations induce a serialization point between master and slave threads. A
bottleneck which has an average impact of 34% in the execution time over several
parallel scientific benchmarks.

To address this issue, we propose REPAS: Reliable Execution for Parallel
ApplicationS in Tiled-CMPs, where we allow updates in L1 cache before veri-
fication. Thus, we obtain a more decoupled execution, reducing the stall time
due to synchronization. To avoid fault propagation among cores, unverified data
reside in L1 cache, in which sharing is not allowed as a conservative measure.
With this mechanism, we can reduce the overall performance degradation to 21%
with regards to a non-redundant system, advantaging other recent approaches
such as Dynamic Core Coupling (DCC) which has an overall impact of 28% us-
ing twice the number or cores. Finally, we have also shown that our proposal is
able to tolerate fault rates up to 100 faulty instructions per million of executed
instructions per core, with an overall performance overhead of hardly 2% over a
system with no injected faults.

References

[1] Bartlett, J., Gray, J., et al.: Fault tolerance in tandem computer systems. In: The
Evolution of Fault-Tolerant Systems (1987)

[2] Gomaa, M., Scarbrough, C., et al.: Transient-fault recovery for chip multipro-
cessors. In: Proc. of the 30th annual Int’ Symp. on Computer architecture
(ISCA 2003), San Diego, California, USA (2003)

REPAS: Reliable Execution for Parallel ApplicationS in Tiled-CMPs 333

[3] González, A., Mahlke, S., et al.: Reliability: Fallacy or reality? IEEE Micro. 27(6)
(2007)

[4] Kumar, S., Aggarwal, A.: Speculative instruction validation for performance-
reliability trade-off. In: Proc. of the 2008 IEEE 14th Int’ Symp. on High Per-
formance Computer Architecture (HPCA 2008), Salt Lake City, USA (2008)

[5] LaFrieda, C., Ipek, E.: et al. Utilizing dynamically coupled cores to form a re-
silient chip multiprocessor. In: Proc. of the 37th Annual IEEE/IFIP Int’ Conf. on
Dependable Systems and Networks (DSN 2007), Edinburgh, UK (2007)

[6] Magnusson, P., Christensson, M., et al.: Simics: A full system simulation platform.
Computer 35(2) (2002)

[7] Martin, M.K., Sorin, D.J., et al.: Multifacet’s general execution-driven multipro-
cessor simulator (gems) toolset. SIGARCH Comput. Archit. News 33(4) (2005)

[8] Mukherjee, S.: Architecture design for soft errors. Morgan Kaufmann, San Fran-
cisco (2008)

[9] Mukherjee, S., Kontz, M., et al.: Detailed design and evaluation of redundant
multithreading alternatives. In: Proc. of the 29th annual Int’ Symp. on Computer
architecture (ISCA 2002), Anchorage, AK, USA (2002)

[10] Pizza, M., Strigini, L., et al.: Optimal discrimination between transient and per-
manent faults. In: Third IEEE International High-Assurance Systems Engineering
Symposium, pp. 214–223 (1998)

[11] Rashid, M., Huang, M.: Supporting highly-decoupled thread-level redundancy for
parallel programs. In: Proc. of the 14th Int’ Symp. on High Performance Computer
Architecture (HPCA 2008), Salt Lake City, USA (2008)

[12] Reinhardt, S.K., Mukherjee, S.: Transient fault detection via simultaneous mul-
tithreading. In: Proc. of the 27th annual Int’ Symp. on Computer architecture
(ISCA 2000), Vancouver, BC, Canada (2000)

[13] Rotenberg, E.: Ar-smt: A microarchitectural approach to fault tolerance in micro-
processors. In: Proc. of the 29th Annual Int’ Symp. on Fault-Tolerant Computing
(FTCS 1999), Madison, WI, USA (1999)

[14] Shivakumar, P., Kistler, M., et al.: Modeling the effect of technology trends on
soft error rate of combinational logic. In: Proc. of the Int’ Conf. on Dependable
Systems and Networks (DSN 2002), Bethesda, MD, USA (2002)

[15] Smolens, J.C., Gold, B.T., et al.: Fingerprinting: Bounding soft-error-detection
latency and bandwidth. IEEE Micro. 24(6) (2004)

[16] Smolens, J.C., Gold, B.T., et al.: Reunion: Complexity-effective multicore redun-
dancy. In: Proc. of the 39th Annual IEEE/ACM Int’ Symp. on Microarchitecture
(MICRO 39), Orlando, FL, USA (2006)

[17] Sánchez, D., Aragón, J.L., et al.: Evaluating dynamic core coupling in a scal-
able tiled-cmp architecture. In: Proc. of the 7th Int. Workshop on Duplicating,
Deconstructing, and Debunking (WDDD 2008). In conjunction with ISCA (2008)

[18] Taylor, M.B., Kim, J., et al.: The raw microprocessor: A computational fabric for
software circuits and general-purpose programs. IEEE Micro. 22(2), 25–35 (2002)

[19] Vijaykumar, T., Pomeranz, I., et al.: Transient fault recovery using simultaneous
multithreading. In: Proc. of the 29th Annual Int’ Symp. on Computer Architecture
(ISCA 2002), Anchorage, AK (2002)

[20] Wells, P.M., Chakraborty, K., et al.: Adapting to intermittent faults in multicore
systems. In: Proc. of the 13th Int’ Conf. on Architectural support for programming
languages and operating systems (ASPLOS 2008), Seattle, WA, USA (2008)

[21] Zielger, J.F., Puchner, H.: SER-History, Trends and Challenges. Cypress Semi-
conductor Corporation (2004)

	REPAS: Reliable Execution for Parallel ApplicationS in Tiled-CMPs
	Introduction
	Related Work
	CRTR as a Building Block for Reliability
	CRTR in Shared-Memory Environments

	REPAS Architecture
	Implementation Details of REPAS

	Evaluation
	Simulation Environment
	Performance Analysis
	Speculative Sharing
	Transient Fault Injection

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

