
X JORNADAS DE PARALELISMO, LA MANGA DEL MAR MENOR – MURCIA, SEPTIEMBRE, 1999

Abstract The conventional methodology for system
performance evaluation, which relies primarily on bench-
marks and throughput metrics, has major limitations when
analyzing the behavior and performance of computer
systems under commercial workloads. The differences
between workloads represented by benchmarks and
commercial workloads are the main reason. We find that
benchmarks have neither meaningful input/output activity
nor enough interaction with the operating system, overlook
concurrent users and underestimate scalability. This
portrait will help us to understand the limitations of current
benchmarks. Also, it could provide a possible guide for the
selection of benchmarks modelling commercial workloads.

Keywords benchmarking, commercial workload,
performance evaluation.

I. INTRODUCTION

ENCHMARKS are used in computer systems
research to analyze design alternatives, identify

performance problems, and motivate improvements in
system design. Equally important, users and
manufacturers employ benchmarks to evaluate and
compare computer systems. As an illustration,
Linpack[8] or SPEC95[43] are commonly used to make
absolute comparisons, that is, they are assumed to
characterize the overall system performance. However,
these benchmarks represent scientific workloads which
are very different from commercial workloads [18].

Commercial workloads differ from scientific
workloads in their datatypes, context switch rates,
portion of the execution time spent on OS calls, and
amount of loops, branch instructions and input/output
operations. We have excluded desktop applications
whose properties are a bit different from commercial
workloads.

This paper makes two contributions. First, it
provides a frame of reference for classifying most
popular benchmarks and describes their essential
properties. Second, it identifies the key features of
commercial workloads that are not covered by those
benchmarks.

J. Fernandez and J.M.Garcia are with the Department of Ingeniería y
Tecnología de Computadores. University of Murcia (Spain).
email:{peinador,jmgarcia}@ditec.um.es
This work has been partially supported by the Spanish CICYT under
grant TIC97-0897-C04-03.

Our analysis shows that most benchmarks has major
limitations when analyzing the behavior and performance
of computer systems under commercial workloads. They
have neither meaningful input/output activity nor enough
interaction with the operating system, overlook
concurrent users and underestimate scalability.

The rest of the paper is organized as follows. In the
next section the various stages of the performance
evaluation process using benchmarks are delineated.
Also, performance metrics, benchmark desiderable
properties, a benchmark taxonomy and some related
issues are explained. Section III provides an overview of
the most popular benchmarks. Section IV identifies the
essential features of commercial workloads. Finally, we
conclude discussing the representativeness of
benchmarks to evaluate systems destined to execute
them.

II. OUTLINE OF THE PERFORMANCE EVALUATION

USING BENCHMARKS

A. Evaluation process

The proper evaluation of a system is difficult
because of three reasons. First, it is seldom done
systematically. Second, the goals are habitually unclear
and ambiguous. Third, the process is so vague that their
results are not reproducible. To avoid these problems, we
need make the entire evaluation process explicit,
systematic, and reproducible.

The evaluation process can be divided into the
definition of the problem and the evaluation method [4].
Defining the evaluation problem implies precisely
specifying four aspects of the problem: the system or
subsystem under consideration as well as the variable
parameters; the metrics to evaluate the system; the
workload the system has to cope with; and the solution
expected by the application of the evaluation method.
The evaluation method could be by analytical modeling,
simulation or benchmarking but, in this case, we are
interested in the use of benchmarks.

B. Single figures of merit

The fundamental measurement made in any
benchmark is the time to complete some specified task.
The execution time will be a function of the problem size
and the number of processors. All other performance

Representative Benchmarks For Commercial
Workloads

J. Fernández and J. M. García1

B

305

J. FERNANDEZ AND J.M. GARCIA

figures are derive from this basic metric. Each metric has
its own uses, and gives different information about the
computer and the algorithm used in the benchmark. It is
important therefore to understand their properties, and
the differences among them. The rest of this section
looks over the most popular metrics.

The metric called MIPS stands for millions of
instructions per second. This figure of merit, used in
earlier benchmarks, is not suited for comparisons
because of some disadvantages. MIPS loses nearly all its
significance for comparisons across different instruction-
set architectures. This became more obvious when RISC
architectures appeared. Many operations performed by
one CISC instruction may require several RISC
instructions. Otherwise, MIPS varies for different
programs executed on the same computer because
depends on the instruction mix of each program. Thus, it
is conditioned by the programming language and the
compiler. Finally, MIPS can inversely change with
performance whereas it can seem strange. To soften these
inconveniences, MIPS have been redefined generating a
bundle of versions: native MIPS, peak MIPS and MIPS
VAX, related to VAX 11/780 [30]. In short, MIPS is a
skew metric unless you know the computer CPI.
Anyway, it is not an adequate metric for users.

Another popular metric, commonly reported as a
benchmark result, is MFLOPS (millions of floating
point operations per second). Clearly, MFLOPS depends
on the hardware and the code. Since MFLOPS tries to
measure the floating-point performance, it is not
applicable outside of that environment. In any case,
MFLOPS is not a reliable measure because the floating-
point instruction set do not fit well among different
architectures. MFLOPS is very sensitive to the mix of
slow and fast operations. To solve this problem
McMahon [20] proposed the utilization of normalized
MFLOPS: one flop for sums, subtractions and products;
four flops for divisions and square roots; and eight flops
for sin, cosin and exponential. Just like MIPS, we
distinguish native MFLOPS, peak MFLOPS and
normalized MFLOPS [17]. Giladi [11] examines the
correlation between the MIPS and the MFLOPS
measures, according to Linpack, for various
configurations.

Speedup is a measure of how much faster an
application runs on a parallel computer. It is calculated as
the ratio of serial execution time to parallel execution
time. There are diverse definitions of serial and parallel
execution times that result in at least three different
definitions of speedup. In any case, the speedup varies
with both the problem size and the number of processors.

Absolute speedup: compares parallel execution time
with the fastest serial algorithm run on the fastest serial
computer. In addition to the difficulty to have access the
fastest serial algorithm, the faster serial computer
improves continuously.

Real speedup: compares the parallel execution time
with the time needed by the fastest serial algorithm for
the application executing on a single node of the parallel

computer. Determining real speedup can be a problem on
a distributed-memory parallel computer because of the
shortness of memory to execute the serial algorithm for
large instances of the problem. Since all the proofs are
executed on the same system, we eliminate the variation
due to the changes in the fastest serial computer. By
contrast, real speedup is still affected by changes in the
best serial algorithm. Furthermore, using real speedup as
a performance measure independent of execution time
favours slow processors.

Relative speedup: uses the execution time of the
parallel program when run on a single node of the
parallel computer for the serial time. This variant of
speedup suffers the same problems that real speedup:
memory limitations and preference of slower processors.
In addition, relative speedup favors code that is
inefficient when run on a single processor.

According to all previous definitions, speedup
cannot exceed the number or processors unless the serial
version incurs some overhead. For example, if the
problem size is bigger than the main memory, the
secondary storage is employed. Then, there are more
accesses for data residing in secondary storage what
generates an additional overhead for the serial version. In
this way, the speedup can be greather than the number of
processors in some situations.

Efficiency is the ratio of speedup to the number of
processors. This metric is an indication of the actual
degree of speedup performance achieved as compared
with the maximum value. Clearly, the lowest efficiency
corresponds to the case of the entire program code being
executed sequentially. Meanwhile, the maximum
efficiency is achieved when all the processors are fully
utilized throughout the execution period. For the same
reasons as speedup, efficiency should not be use as an
independent metric of execution time.

Finally, there are another metrics, common in the
literature, derived from speedup -such as scaled speedup,
sizeup, generalized speedup, scalability, issoefficiency
and isospeed- that are analized by Sahni [25] and Sun
[28].

C. Benchmark desiderable properties

Not all the applications are suitable for being used as
benchmarks. This section depicts those attributes that are
expected to have a program considered as a true
benchmark.
• Comprehensibility/Intelligibility. A benchmark has

to define explicitly the aspects of the computer that
exercises. In addition, the results provided by the
benchmark should be unambiguous, concise and
easy to understand.

• Easy to use. The simplicity when executing
benchmarks is a necessary requirement to accept
them as a common frame for comparisons.

• Scalability. A scalable benchmark can be used for
evaluating a broad range of machines with very
different levels of computation power.

306

X JORNADAS DE PARALELISMO, LA MANGA DEL MAR MENOR – MURCIA, SEPTIEMBRE, 1999

• Portability. Assuming we are interested in
comparing heterogeneous systems, the code should
be easy to adapt for every machine. The main
features determining the portability of a benchmark
are the programming language, the code length and
the distribution of every type of operation. The
selected programming language assumes the
existence of a compiler for each target machine. A
short benchmark simplifies the adjustment when
passing from a system to another one. Several
operations, such as input/output operations, are
difficult to adapt for different platforms. Thus, they
constitute a drawback for code portability.

• Representativeness. A benchmark is said to be
representative of a user’s workload if the benchmark
accurately predicts performance of that workload on
a range of configurations. When looking for a
predictive benchmark, search for one with a
workload as similar as possible to the selected one,
and see how well it correlates with the relative
performance of the aim workload.

• Accessibility. The availability of a benchmark is
essential for accepting them as a standard. However,
if code is also attainable, users could compare some
results of programs which are very different among
them because of possible modifications. Therefore,
the benchmark user should know the version of the
program being used, and the changes suffered
related to the original version.

• Reproducibility. The guiding principle for reporting
performance measurements should be
reproducibility, that is, the ability to replicate the
results. For that reason, we need an exhaustive
description of both software and hardware
configuration. Reproducibility is a lost feature in
benchmarking. Thus, we can find many results in
books, reviews and papers lacking of accurate
information for knowing under what conditions the
experiment was carried out.
Finally, we must note that all the mentioned

properties are recommendable for benchmarks, but can
be in a jam among them. For example, a portable
benchmark is short and has few input/output operations.
So, that benchmark won’t be representative of real
applications with substantial code lengths and profusion
of input/output operations.

D. Benchmark taxonomy

This section is intended to provide a classification of
the most common benchmarks.
1. Toy benchmarks typically has a few hundreds of

code lines. Their output is known in advance. They
are little meaningful. Programs like Heapsort, Hanoi,
Queens, Shuffle and Sieve of Eratosthenes and many
other similar to these, are examples of this item [31].

2. Microbenchmarks are programs designed to
understand the basic performance characteristics of
the primitive operations provided by hardware,

hardware/software interface (OS and similar),
communication interface or programming model.
We can distinguish six types of microbenchmarks:
• Processing microbenchmarks measure the

performance of internal operations, e.g.,
BOBMark calculates the relative speed of a
processor’s FPU [32].

• Local memory microbenchmarks measure
latencies and bandwidths of the various levels of
the memory hierarchy and determine their
organization, e.g., STREAM is a popular
program, created and maintained by McCalpin
[19], that measures sustainable memory
bandwidth (in MB/s) and the corresponding
computation rate for simple vector kernels.
Saavedra entirely determine cache and TLB
parameters using a memory hierarchy
microbenchmark [24].

• Input-output microbenchmarks measure the
latencies and bandwidths for I/O operations,
commonly disk reads and writes, for various
strides and lengths, e.g., STKIO [34] generates
either random or sequential I/O reference
patterns over a number of drives or files to
measure I/Os per second and sustained transfer
rate (in MB/s).

• Communication microbenchmarks measure the
latencies and bandwidths of data
communication operations, for various message
sizes, e.g., netperf, developed by Rick Jones
[35], can be used to measure the performance of
many different types of networking. It provides
tests for both unidirectional throughput, and
end-to-end latency.

• Synchronization microbenchmarks measure the
performance of different synchronization
operations.

• OS microbenchmarks measure the overhead of
some basic OS tasks such as context switching,
system calls or process creation.
Recently, it has become popular to put together

collections of microbenchmarks, e.g., lmbench is a
microbenchmark suite designed to identify and
evaluate system performance bottlenecks in a global
manner [21]. lmbench measures memory bandwidth,
IPC bandwidth, cache I/O bandwidth, memory
latency, signal handling cost, process creation cost,
context switching and IPC latency.

3. Kernels are code fragments, extracted from real
applications, that constitute significant portions of
their execution times. Kernels are suitable to isolate
the performance of specific features of a machine in
order to explain the reasons for differences in
performance of real programs. Most popular kernels,
Livermore Loops [20], Nas Parallel Benchmarks [3]
and Linpack [8] are explained in a later section.

4. Synthetic benchmarks exist solely to evaluate
performance. They try to factorize most common

307

J. FERNANDEZ AND J.M. GARCIA

operations and operand types of real applications.
Unlike kernels, synthetic benchmarks don’t belong
to any real application. Whetstone and Dhrystone
are the most popular synthetic benchmarks
exercising floating-point and integer arithmetic
respectively.

5. Application benchmarks are programs commonly
employed by users for realizing their jobs. They
exhibit complex interactions that are present neither
kernels nor synthetic benchmarks.

6. Benchmark Suites. Last years, it has become popular
to measure the performance of systems with a
variety of applications. These collections include
benchmarks of different types but real applications
predominate. Clearly, a benchmark suite is as good
as their individual components. Regardless, the
advantage is that the weakness of any benchmark is
softened by other benchmarks, whenever the method
for summarizing the performance reflects the
execution time of the entire suit. Advantages and
disadvantages of methods for summarizing
performance are discussed in [10] and [16].
Initiatives like SPEC [7] or SPLASH [26] have
achieved a great relevance.

Other classifications can be found at [1] and [16].

E. Non-CPU influences in performance

Sometimes, benchmark ratios refer only to the
hardware speed. With microprocessors, this is even more
reduced to the CPU speed. However, the preceding
discussion makes it clear that other factors also have a
great influence in overall performance.
• Memory hierarchy. As DRAM becomes denser and

cheaper, machines are equiped with more memory,
and so, more data are permanently keep in memory.
Futhermore, memory subsystems are typically
organized as cache hierarchies. Otherwise, SMPs
(Symmetric Multiprocessors), where the main
bottleneck is the memory system accesed by all the
processors, have emerged as a serious option for
commercial servers [18]. All these facts have
elevated memory system as a critical performance
factor.

• I/O subsystem. Commercial applications such as on-
line transaction processing (OLTP) generate a
significant amount of I/O activity. Moreover, for
these storage intensive workloads, RAID systems
have become the industry standard for providing
efficient, fault-tolerant mass storage.

• Operating system (OS). Portability is favoured by
the absence of OS calls in benchmarks code.
However, Web servers spend on OS calls the most
of their execution time (about 70-85% [22]).

• Programming Language and Compiler. The intrinsic
properties of a programming language notably
influence in the execution time of applications even
if they are similar and generate the same results.

Obviously, the maximum code optimization level
attainable has an effect on the execution time.

• Libraries. Certain applications, such as numeric
programs, waste most of their execution time in
functions of some specialized library. The efficiency
and accuracy of these libraries affects meaningfully
their behavior.

F. Fallacies, pitfalls and other mistakes

In this section we show an overview of common
ways to distort results when evaluating performance in
order to make a computer system seems to be more
powerful than it is. These points constitute a guide for
artificially boosting performance.
1. Quotting only 32-bit performance results, not 64-bit

results.
2. Omitting some critic details about software or

hardware configuration.
3. Substracting the setup time, wasted by the

initialization routines, from the overall execution
time.

4. Including assembly code and other low-level
language constructs into the benchmark code .

5. Scaling up the problem size with the number of
processors, while analyzing performance rates
versus number or processors, to increase efficiency.

6. Projecting performance results from a partial-scale
system to a full-scale system.

7. Comparing your results against old unoptimized
code on an obsolete system.

8. When giving MFLOPS, basing the flop operation
count on an inflated parallel implementation instead
of the best sequential implementation.

9. Characterizing the performance in terms of some
unclear figure of merit that increases the
performance in detriment of execution time.

10. Modifying the algorithm used in the parallel
implementation to increase some figure of merit as
MFLOPS, no matter if it requires more time to
complete the execution.

11. Measuring parallel run times on a dedicated system,
but measuring conventional run times in a busy
environment. In short, using the best time for the
parallel system and the worst time for the
conventional system.

12. Assuming that kernels or synthetic benchmarks can
predict the performance of real applications.
Bailey [2] explains some of these items in an

humorous manner.

III. POPULAR BENCHMARKS

A. Classical benchmarks

1) Whetstone
Whetstone, developed by H.J. Curnow and B.A.

Wichman as the first synthetic benchmark, was published
in 1976 in Algol 60. It consists of several modules. Each

308

X JORNADAS DE PARALELISMO, LA MANGA DEL MAR MENOR – MURCIA, SEPTIEMBRE, 1999

module loops around statements of some particular type
and a final statement to print the results. The number of
iterations of every loop assigns a weight to it in such way
that program executes a multiple of one million of
Whetstone instructions. Benchmark results are given as
KWIPS (kilo Whetstone instructions per second) or
MWIPS- (mega Whetstone instructions per second).
Whetstone has a high percentage of floating-point
operations and data (numeric programming), spends a lot
of time in mathematical library functions, lacks of local
variables and exhibits a very high code locality.

2) Dhrystone
Just like Whetstone, Dhrystone is a synthetic

benchmark published by R.P. Weicker in 1984 in Ada. It
represents nonnumeric programming. Whetstone is
composed of twelve procedures included in one
measurement loop. Benchmark results are given as
Dhrystones per second, where a Dhrystone is an iteration
of the measurement loop. Dhrystone doesn’t contain
floating-point operations and has more procedure calls,
more if statements and fewer loops. Local variables and
parameters are used more often than global variables.

3) Livermore Fortran Kernels
Livermore Fortran Kernels, also called Livermore

Loops, are a set of 24 Fortran DO-loops extracted from
operational codes used at the Lawrence Livermore
National Laboratory. The author, McMahon [20],
collected them adding statements for time measuring.
They are a mixture of vectorizable and non-vectorizable
loops and test rather fully the computational capabilities
of the hardware, and the skill of the software in
compiling efficient code, and in vectorization. The main
value of the benchmark is the range of performance that
it demonstrates, and in this respect it complements the
limited range of loops tested in the LINPACK
benchmark. The benchmark computes normalized
MFLOPS for each kernel, together with various averages
(arithmetic, geometric and harmonic mean) and the
quartiles of the distribution.

4) PERFECT Benchmarks
The Perfect (Perfect Evaluation and Cost effective

Transformations) Benchmark suite consists of thirtheen
application programs to obtain basic metrics about
supercomputer performance [12]. Their components are
programs from four application areas: fluid dynamics,
chemistry and physics modeling, engineering design and
signal processing. Program codes are written in
Fortran77. Each program reports the CPU time, the
response time and MFLOPS. Two modes of execution
are allowed for the programs in the set. The first mode
allows no alteration of the codes beyond those that were
necessary to resolve portability problems. The second
mode permits executing an optimised version reporting
all modifications performed. All programs are complete
applications that have a few input/output operations and
perform useful calculations. The main problem of Perfect
Benchmarks is the difficulty to interpret results as a
matter of the complexity of applications. Data sets and

size of problems have been questioned too. Perfect
Benchmarks are no longer maintained.

5) Euroben
The European benchmark group was created in 1990

to analyze the performance of high-performance
scientific computers. Euroben is a benchmark for the
evaluation of single user performance of computers that
was proposed by the European Benchmark Group [27].
This benchmark is intended to give information about the
behavior of the CPU (or CPUs in a parallel
environment), the influence of CPU-memory traffic and
the I/O-throughput. Euroben follows a graded approach,
that is, it has a modular structure making possible to
extract information from simpler modules that can be
used to explain more complicated behavior in the
programs of the more extensive modules. The complete
benchmark set contains approximately 40 programs,
ranging from very small and simple ones to large
application codes. For this purpose, four modules were
defined. Module 1 contains programs that measure basic
characteristics of the machines like speed of basic
floating-point operations, memory bank conflicts, and
speed and accuracy of important intrinsic functions.
Module 2 represents important numerical algorithms like
the solution of full and sparse linear systems of FFTs.
Module 3 contains programs using more than one basic
algoritm as given in Module 2. Module 4 consists of full
applications of circuit simulation, computational
chemistry, computational fluid dynamics, lattice-gauge
simulation, seismic imaging, structural mechanics,
reservoir modelling and weather simulation. The later
module is similar to the PERFECT benchmark. All
modules are written in Fortran77 and the precision
required is at least 64 bits. Euroben Release 3.2 is
available at [37].

6) GENESIS Benchmarks
GENESIS benchmarks were developed to evaluate

the performance of the SUPRENUM distributed-memory
computer on scientific applications [1]. The programs
use the PARMACS macros for message-passing and task
creation to facilitate code portability, and are written in
standard Fortran77. Each program is provided both a
sequential and a distributed-memory version. It is
permitted to optimize the benchmark for showing the full
potential of the hardware but the results with unmodified
programs must be reported. The programs are classified
into three levels of complexity: five synthetic
benchmarks, nine kernels and six applications. The
fundamental measurement made in any benchmark is the
elapsed time to complete some specified task. GENESIS
Release 3.0 is available at [38]. It uses PARMACS 5.1
message-passing macros for PVM 3.x.

7) PARKBENCH
PARKBENCH (PARallel Kernels and

BENCHmarks) is a suite of microbenchmarks, kernels,
applications and compiler benchmarks for parallel
machines with explicit message-passing programs
written in Fortran77 or HPF [23]. The former are
divided in uniprocessor and multiprocessor

309

J. FERNANDEZ AND J.M. GARCIA

microbenchmarks and their results are given in terms of
the performance parameters defined by Hockney [17].
Uniprocessor benchmarks measure timer resolution and
accuracy (TICK1,TICK2), performance of basic
arithmetic operations (RINF1), and memory latency and
bandwidth (POLY1,POLY2). Following the
methodology of Euroben, its purpose is to obtain basic
architectural parameters that help us to understand the
behavior of kernels and applications. Kernel benchmarks
are divided into matrix kernels, Fourier transforms,
partial different equation kernels (PDE Kernels) and
others. Aplications are intended in the areas of climate
and meteorological modeling, computational fluid
dynamics (CFD), finance, moledular dynamics, plasma
physics, quantum chemistry, quantum chromodynamics
(QCD) and reservoir modeling. Finally, the compiler
benchmarks are intended for people developing High
Performance Fortran compilers to test their compiler
optimizations. PARKBENCH Release 2.2.1 is available
at [39]. Performance Database Server stores results from
PARKBENCH and other benchmarks [40].

8) NAS Parallel Benchmarks
NAS Parallel Benchmarks (NPB) were developed at

NASA Ames Research Center [3] as a set of eight
programs designed to help evaluate the performance of
parallel supercomputers. The benchmarks, which are
derived from computational fluid dynamics (CFD)
applications, consist of five kernels and three pseudo-
applications. Each program can be executed with
different sizes (Class A for “small” size, Class B for
“large” size and Class C for “very large” size) and
reports the execution time. For each program, the
execution time, MFLOPS and the normalized execution
time, related to a Cray Y-MP (Class A) or a Cray C90
(Class B), are reported. The first version of the
benchmarks, NPB 1, was defined in a "pencil and paper"
way, that is, no implementation for solving the problem
was prescribed; only precise descriptions of the problems
were given. Vendors and others implement the detailed
specifications in the NPB 1 report, using algorithms and
programming models appropriate to their different
machines. The results are verified by NAS and published
in a periodic NAS report. NPB 1 implementations are
generally proprietary. Although the idea behind this
approach is attractive from the viewpoint of the
originators of the benchmark, it may be difficult to
discriminate between the effects of a particularly good
benchmark implementation and the capabilities of the
machine it is executed on. NPB 2 are MPI-based source-
code implementations written and distributed by NAS.
They are intended to be run with little or no tuning, and
approximate the performance a typical user can expect to
obtain for a portable parallel program. They complement,
rather than replace NPB 1. NPB 2-serial are single
processor (serial) source-code implementations derived
from the NPB 2 by removing all parallelism. They are
intended to be starting points for shared memory, as tests
for parallelization tools, and as benchmarks for

workstations and PC's (Class W). NPB Release 2.3 is
available at [41].

B. Current benchmarks

1) The most reported benchmark: LINPACK
This well-known benchmark is a Fortran program

(also exists a C version) for the solution of (100x100,
300x300 or 1000x1000) dense set of linear equations by
Gaussian elimination. It is distributed by Jack Dongarra
at the University of Tennessee [8]. The results are quoted
in MFLOPS (single or double precision) and are
regularly published. Most of the compute time is wasted
in vectorisable DO-loops such as the DAXPY (scalar
times vector plus vector) and inner products. Therefore
one expects vector computers to perform well on this
benchmark. The weakness of the benchmark is that it
tests only a small number of vector operations, but it
does include the effect of memory access and it is
solving a complete (although small) real problem.
Futhermore, Dongarra in [8] advises that LINPACK
doesn’t pretend to be more than it is: it measures the
performance of systems with respect to the solution of
dense linear systems and no more. In any case, the main
value of this benchmark is that the results are known for
the most speed computers in the world (TOP500
Supercomputing sites [42]).

2) SPEC
SPEC (Standard Performance Evaluation

Corporation) consortium was created in 1990 by a
number of large workstation vendors for creating,
maintaining and distributing a standardized set of
relevant benchmarks and metrics for performance
evaluation of modern computer systems [7]. SPEC has
developed several suites for different purposes, but we
are mainly interested in SPEC CPU and SPEC WEB.
SPEC consortium also promotes other initiatives:
SPECjvm98 for comparing Java virtual machine (JVM)
client platforms; SPECsfs97 for testing NFS; SPEC GPC
(Graphics Performance Characterization Group); and
SPEChpc96 for high-performance computing.

SPEC CPU is a suite of benchmarks for testing CPU,
memory hierarchy and compiler. The first version, SPEC
CPU 92, has five integer and five floating-point
applications written in C and Fortran respectively. Their
results are reduced to one figure called SPECmark, that
is meant to be equivalent of the factor by which the
machine under consideration is faster than a DEC VAX
11/750. SPECmark is calculated as the geometric mean
of the ten SPEC ratios. Each SPEC ratio is the quotient
derived from dividing the SPEC reference time by a
particular machine’s run time. This first version of SPEC
was criticised by some weaknesses: the suite is biased in
favor of double precision floating-point processing, it has
minimal input/output, and most benchmarks stress
neither instruction nor data cache and run too sort. The
lastest version, SPEC CPU 95, appeared to alleviate
these faults. SPEC95 includes eight integer and ten
floating-point programs. Their input data sizes have been

310

X JORNADAS DE PARALELISMO, LA MANGA DEL MAR MENOR – MURCIA, SEPTIEMBRE, 1999

augmented related to SPEC92, and their resulting metrics
have been specialized. SPEC 95 distinguishes between
integer and floating-point results and each of them has an
aggressive (SPECint95, SPECfp95) and a conservative
mode (SPECint_base95, SPECfp_base95). Each
combination may be used for reporting speed or
throughput (SPECint_rate95, SPECint_base_rate95,
SPECfp_rate95, SPECfp_rate_base95), carrying out a
number of tasks. SPEC95 calculates the ratios related to
a SPARCStation 10/40 (40MHz SuperSPARC with no
L2 cache). Unfortunately, these units have no clear
relation to hardware and software parameters which
make the interpretation difficult. Futhermore, there are
some serious conceptual problems with the SPEC
metrics. First, there is no clear judgment to choice the
programs included in the suites CINT95 and CFP95.
Second, the difference between aggressive and
conservative execution depends on a fixed number of
compiler options selected by the benchmark user. Third,
the metrics are generated using the geometric mean of
individual SPECratios.

Since SPEC95 is focused to workstations, the
developers of SPEC CPU teamed up with the developers
of Perfect Benchmarks to form, in 1994, the SPEC
High-Performance Group (HPG) that published the
SPEChpc96. SPEChpc96 benchmarks represent large
industrial applications. They can measure sequential,
parallel/shared memory, and parallel/message-passing
architectures, can evaluate workstations as well as high-
performance computer systems and come in several data
set sizes [9].

SPECweb96 is a standarized performance
benchmark for evaluating the performance of Web-server
software. A SPECweb96 test consists of a server
machine that runs the Web-server software to be tested
and a number of client machines. The client machines
use the SPECweb96 software to generate a workload that
stresses the server software. The workload is gradually
increased until the server software is saturated and the
response time degrades significantly. The point at which
the server is saturated is the maximum number of HTTP
operations per second (the metric reported) that the Web-
server software can sustain. SPECweb96 has some
limitations. SPECweb96 workload was determined by
looking at log files for major sites but may not be
representative of all the possibilities. In fact, it uses only
HTTP GET commands, but it doesn’t use POST
commands or CGI calls. Also, SPECweb96 supports only
the HTTP 1.0 protocol. It does not support any of the
HTTP 1.1 mechanisms like keepalives and persistent
connections. A newer version, called SPECweb99, is
under development.

Both SPEC95 and SPECweb96 are commercial
distributions, including source code, for UNIX and
Windows NT platforms.

3) SPLASH
The SPLASH (Stanford ParalleL Applications for

SHared memory) was developed at Stanford University
to facilitate the evaluation of architectures that support a

cache-coherent address space [26]. It was replaced by the
SPLASH-2 suite, which enhanced some applications and
added others. The SPLASH-2 suite currently contains
seven complete applications and five computational
kernels. The programs represent various computational
domains, mostly scientific and engineering applications
and computer graphics. They are written in C, and use
the PARMACS macros for parallelism constructs. For
every application, a complete description is given. This
includes the problem being solved, the principal data
structures used, profile information, the structure of
paralellism in the program, and some of their static and
dynamics characteristics. Parallelism in some of the
applications is limited by the nature and size of the input
data sets. Also, the applications were written for small to
medium-scale machines in mind, and may require
restructuring to be run efficiently on larger
multiprocessors. By these reasons, the authors believe
that it is inappropriate to use SPLASH for absolute
comparisons between two systems. However, the full
applications of the suite are real, written in an
architecture-independent way and well-documented to
facilitate the comparability of results. SPLASH-2 is
available at [44].

4) TPC
The Transaction Performance Council (TPC),

founded in 1988, has developed several benchmarks,
TPC-A, TPC-B, TPC-C and TPC-D, representing
different kinds of transaction-processing and database
system workloads. TPC benchmarks are specified in
terms of high-level functional requirements rather than
specifying any given hardware or software platform or
code-level requirements. Benchmarks scale, increasing
the number of users and the database size, to prevent the
workload from being overwhelmed by the improvements
of OLTP systems. TPC uses two metrics for reporting
results: throughput of transactions per second (tps),
where response time must be smaller than a threshold
over 90% of the transactions, and cost/performance
related to the transactions per second. Total system cost
includes all hardware and software used to successfully
run the benchmark, including five years of maintenance
costs.

The first TPC benchmark was TPC-A that consists
of a simple update-intensive transaction. Its purpose was
to exercise the main features of an on-line transaction
processing (OLTP) system. It modeled a bank transaction
reading from a terminal, updating an account, writing an
history record, and finally writing to a terminal.

TPC-B was designed to exercise the system
components necessary for update-intensive database
transactions, that is, TPC-B used the same TPC-A
transaction type but eliminating the network and user
interaction components of the TPC-A workload. The two
preceding benchmarks were replaced by TPC-C and
TPC-D.

TPC-C, approved in 1992, can be considered the
successor of TPC-A as an OLTP benchmark. It was
designed to be more realistic than TPC-A but

311

J. FERNANDEZ AND J.M. GARCIA

maintaining most of its characteristics. TPC-C is a
multiuser benchmark that requires a remote terminal
emulator to simulate a population of terminals. It models
the activities of a wholesale supplier with distributed
sales districts and supply warehouses, including
customers placing orders, making payments, or making
inquiries, as well as deliveries and inventory checks.
TPC-C requires guaranteeing the atomicity and the
integrity of multiple types of transactions of varying
complexity. Database size scales with the throughput of
the system. TPC-C has a more complex database
structure compared to TPC-A, multiple transaction types
of varying complexity, on-line and deferred execution
modes, higher levels of contention on data access and
update, patterns that simulate hot spots, access by
primary as well as nonprimary keys, realistic
requirements for full-screen terminal I/O and formatting,
requirements for full transparency of data partitioning,
and transaction rollbacks.

TPC-D is a benchmark for decision support systems
(DSS). It models systems able to formulate of business
decisions through complex queries against a database.
The queries access large portions of the database unlike
OLTP, and include complex operations. Also, they
consume a lot of time, rarely modify the database, and
have only a few concurrent users.

Projected TPC benchmarks are TPC-H, TPC-R and
TPC-W. TPC-W benchmark is designed to represent any
business that must market and sell a product or service
over the Internet. For a more detailed description see [13]
or the website of the Transaction Performance Council
[45].

C. Other approaches

All the benchmarks we have mentioned up to now,
follow the fixed-size speedup model [28], that is, as more
computation power is available, the problem can be
solved in less time. In this section we expose SLALOM
that adapts to the fixed-time speedup model, and its
consequence HINT which lies over a philosophy slightly
different.

1) The precedent of SLALOM
SLALOM was developed in the Scalable Computing

Lab at Ames Laboratory on the Iowa State University. It
stands for Scalable, Language-independent, Ames
Laboratory, One-minute Measurement. SLALOM, the
first scalable supercomputer benchmark, was created to
measure how much work a computer could do in one
minute. The problem is to find the equilibrium radiation
inside a box made of diffuse colored surfaces (radiosity
method). The faces are divided into regions called
patches, the equations that determine their coupling are
set up, and are solved for red, green and blue spectral
components. SLALOM also allows parallel processing to
be used. Each processor can work with a subset of the
scene, working asynchronously with the best available
information about the rest of the scene. The SLALOM
results are the number of patches calculated in one

minute as well as the MFLOPS. The idea, as described in
[14], is correcting some deficiencies of existing
benchmarks; SLALOM is scalable and is neither
language nor platform dependent. Its use as a benchmark
has been superceded by the much simpler HINT.
SLALOM source code can be found at [31].

2) HINT
The HINT (Hierarchical INTegration) benchmark

was developed at Ames Laboratory to evaluate the
performance of a wide spectrum of computers [15].
HINT fixes neither time nor problem size. It uses internal
subdivision to look for rational bounds on the area in the
xy plane for which x ranges from 0 to 1 and y ranges
from 0 to (1-x)/(1+x). It subdivides x and y ranges into an
integer power of two equal subintervals and count the
squares that are completely inside the area (lower bound)
or completely outside the area (upper bound). HINT
reports with a measurement called QUIPS (QUality
Improvement Per Second) where quality is the reciprocal
of the difference between the upper and lower bounds.
Benchmark has unlimited scalability because quality has
no mathematical upper limit, that is, the only limit is
imposed by hardware (speed, memory and precision).
Plotting QUIPS versus memory used, we can identify the
different memory regimes of the machine. While HINT
provides a graph of performance, it also has a single
number measure called Net QUIPS. Net QUIPS is
defined as the integral of the quality divided by the
square of the time (the area under the graph). HINT can
be run with any datatype (floating-point of any precision,
integer of any precision and even BCD) and is available
for several architectures (shared memory with pthreads,
distributed-memory with MPI and several vector
machines). HINT code can be accessed at [47].

IV. COMMERCIAL WORKLOADS

The behavior of commercial workloads is known to
be very different from scientific workloads. This section
is intended to recognize the main features of commercial
workloads in order to identify what aspects of computer
performance benchmarks would have to stress for being
representative.

The main datatypes in commercial workloads are
integers and strings, in comparison with floating-point
operands in scientific workloads. This item seems not to
constitute a drawback since most benchmarks take into
account it.

In general, commercial workloads have high context
switch rates because they have many concurrent users.
Most benchmarks usually execute tasks in batch mode.
Only TPC benchmarks consider the existence of various
users at the same time.

Commercial workloads spend an important portion
of their execution time on OS calls. OLTP applications
and decision support applications spend on OS code
about 20% of their execution time, while web servers
spend between 70% and 85% [22]. However, most
benchmarks have no OS calls.

312

X JORNADAS DE PARALELISMO, LA MANGA DEL MAR MENOR – MURCIA, SEPTIEMBRE, 1999

Input/output operations have been historically
considered as the primary performance bottleneck for
commercial workloads. Innovations in disk subsystems
and the increasing gap between processor and memory
speed have brought the bottleneck near the memory
hierarchy [5]. Anyway, commercial workloads have
many input/output operations and most benchmarks have
minimal input/output operations.

Also, commercial applications execute fewer loops
and use more branch instructions than scientific
applications what along with their data access patterns
prevent them from use the memory system as effectively
as tradicional architectures. Nevertheless, almost all the
benchmarks described above are primarily based on
scientific codes.

Agreeing more computation power is available,
users confront systems with more complex problems.
However, except for SLALOM, HINT and TPC
benchmarks, extant benchmarks are based on the idea of
measuring the time various computers take to complete a
fixed-size task, that is, scalability is supplied by means of
new versions having bigger data sets.

Characterization of specific commercial workloads
such as on-line transaction processing (OLTP), decision
support systems (DSS), web index searchs or web
multimedia services, and their arquitectonic implications,
are present-day topics under study. For a more detailed
description see [5], [18], [22] and [29].

V. CONCLUSIONS

Most benchmarks are not appropriate to evaluate or
compare the performance of computer systems destinated
to execute commercial workloads. Their codes don’t
represent commercial workloads by the reasons above
exposed. In addition, as more power is available, users
dynamically increase the size of application programs.
Meanwhile, benchmarks remain static and so
benchmarks results overstate computer performance.
Except for TPC and HINT, the scalability of benchmarks
is another pendant issue.

In the other hand, computer researchers have long
cope with the problem of systematically comparing
different computers and algorithms. It is difficult or
misleading to compare them using the ratio of execution
times, above all when architectures, methods, precision
or storage capacity are very different. Our view is that
giving a graph characterizing performance, accordingly
to time or memory, seems more plausible than providing
a single number.

REFERENCES

[1] C.A. Addison, V.S. Getov, A.J.G. Hey, R.W. Hockney and I.C.
Wolton. “The GENESIS distributed-memory benchmarks”.
Computer Benchmarks. J. Dongarra and W. Gentzsch eds., ed.
North-Holland, pp. 257-271, 1993.

[2] D.H. Bailey. “Twelve ways to fool the masses when giving
performance results”. Supercomputing Review, pp. 54-55, August
1991.

[3] D.H. Bailey, E. Barszcz, L. Dagun and H.D. Simon. “NAS
Parallel Benchmarks results”. Computer Benchmarks. J.

Dongarra and W. Gentzsch eds., ed. North-Holland, pp. 225-237,
1993.

[4] G. Böckle et al. “Structured Evaluation of Computer Systems”.
IEEE Computer, Vol. 29, No 6, pp.45-51, June 1996.

[5] L.A. Barroso, K. Gharachorloo and E. Bugnion. “Memory
System Characterization of Commercial Workloads”. Procc. of
the 25th Int. Symposium on Computer Architecture, pp. 3-14, June
1998.

[6] D.E. Culler and J.P. Singh. Parallel Computer Architecture. A
Hardware/Software Approach. Ed. Morgan Kauffman, 1999.

[7] K. Dixit. “The SPEC benchmarks”. Parallel Computing, Vol.
17, pp. 1195-1209, 1991.

[8] J.J. Dongarra and H.A. van der Horst. “Performance of various
computers using standard sparse linear equations solving
techniques”. Computer Benchmarks. J. Dongarra and W
Gentzsch eds., ed. North-Holland, pp. 177-188, 1993.

[9] R. Eigenmann and S. Hassanzadeh. “Benchmarking with Real
Industrial Applications: The SPEC High-Performance Group”.
IEEE Computational Science & Engineering, Vol. 3, No. 1, pp.
18-23, Spring 1996.

[10] R. Giladi and N. Ahituv. “SPEC as a Performance Evaluation
Measure”. IEEE Computer, Vol. 28, No. 8, pp. 33-42, August
1995.

[11] R. Giladi. “Evaluating the Mflops Measure”. IEEE Micro,
Vol. 16, No. 4, pp. 69-75, August 1996.

[12] C.M. Grassl. “Parallel Performance of applications on
supercomputers”. Parallel Computing, Vol. 17, pp. 1257-1273,
1991.

[13] J. Gray. The Benchmark Handbook for Database and
Transaction Processing Systems, Second Edition. Ed. Morgan
Kauffman Publishers, 1993.

[14] J.L. Gustafson, D. Rover, S. Elbert and M. Carter. “The
Design of a Scalable, Fixed-Time Computer Benchmark”.
Journal of Parallel and Distributed Computing 12, pp. 388-401,
1991.

[15] J.L. Gustafson and Q.O. Snell. “HINT: A new Way To
Measure Computer Performance”. Proceedings of the 28th
Annual Hawaii International Conference on Systems Sciences,
IEEE Computer Society Press, Vol. 2, pp. 392-401, 1995.

[16] J.L. Hennessy and D.A. Patterson. Computer Architecture: A
Quantitative Approach, Morgan Kaufmann, Second Edition, San
Francisco, 1996.

[17] R. Hockney. “Performance parameters and benchmarking of
supercomputers”. Computer Benchmarks. J. Dongarra and W
Gentzsch eds., ed. North-Holland, pp. 41-63, 1993.

[18] K. Keeton et al. “Performance Characterization of a Quad
Pentium Pro SMP Using OLTP Workloads”. Procc. of the 25th

Int. Symposium on Computer Architecture, pp. 15-26, June 1998.
[19] J.D. McCalpin. “Memory and Machine Balance in Current

High Performance Computers”. Technical Committe on
Computer Architecture (TCCA) Newsletter, IEEE Computer
Society, December 1995.

[20] F. McMahon. “The Livermore Fortran Kernels Test of the
Numerical Performance Range”. Performance Evaluation of
Supercomputers. J.L. Martin ed., ed. North-Holland, pp. 143-186,
1988.

[21] L. McVoy and C. Staelin. “lmbench: Portable Tools for
Performance Analysis”. Procc. of the USENIX 1996 Annual
Technical Conference, San Diego, January 1996.

[22] A.K. Nanda. “Multiprocessor Architecture Evaluation Using
Commercial Applications”. First Workshop on Computer
Architecture Evaluation Using Commercial Workloads, in
conjunction with HPCA-4, February 1998.

[23] PARKBENCH Committee. Public International Benchmarks
for Parallel Computers, February 1994.

[24] R.H. Saavedra. “Measuring Cache and TLB Performance and
Their Effect on Benchmark Run Times”. IEEE Transactions on
Computers, Vol. 44, No. 10, pp. 1223-1235, October 1995.

[25] S. Sahni and V. Thanvantri. “Performance Metrics: Keeping
the Focus on Runtime”. IEEE Parallel & Distributed Technology,
Vol. 4, No. 1, pp. 43-56, Spring 1996.

313

J. FERNANDEZ AND J.M. GARCIA

[26] J. P. Singh, W. Weber and A. Gupta. “SPLASH: Stanford
Parallel Applications for Shared-Memory”. Computer
Architecture News, Vol. 20, No. 1, pp. 5-44, 1992.

[27] A. J. van der Steen. “The benchmark of the Euroben group”.
Parallel Computing, Vol. 17, pp. 1211-1221, 1991.

[28] X. Sun and J.L. Gustafson. “Toward a better paralell
performance metric”. Parallel Computing, Vol. 17, pp. 1093-
1109, 1991.

[29] P. Trancoso and J. Torrellas. “Exploiting Caches Under
Database Workloads”. First Workshop on Computer Architecture
Evaluation Using Commercial Workloads, in conjunction with
HPCA-4, February 1998.

[30] R.P. Weicker. “An Overview of Common Benchmarks”.
IEEE Computer, Vol. 23, No. 12, pp. , 1990.

WEB SITES

[31] Several Benchmarks: http://ftp.sunet.se/pub2/benchmark/
[32] BOBMark: http://www.ece.orst.edu/~rose/bobmark/
[33] STREAM: http://www.cs.virginia.edu/stream/
[34] STKIO:

http://www.stortek.com/StorageTek/software/freeware/
[35] Netperf: http://www.netperf.org/netperf/NetperfPage.html
[36] Perfect Club:

http://www.csrd.uiuc.edu/benchmark/benchmark.html
[37] EuroBen: http://www.phys.uu.nl/~steen/
[38] GENESIS:

http://www.hpcc.ecs.soton.ac.uk/RandD/genesis/genesis.html
[39] PARKBENCH: http://www.netlib.org/parkbench/
[40] Performance Database Server (PDS):

http://www.netlib.org/performance/html/PDStop.html
[41] NAS: http://science.nas.nasa.gov/Software/NPB/
[42] TOP500 Supercomputing sites: http://www.top500.org/
[43] SPEC: http://www.specbench.org/
[44] SPLASH: http://www-flash.stanford.edu/apps/SPLASH/
[45] TPC: http://www.tpc.org/
[46] SLALOM:

http://www.scl.ameslab.gov/scl/Projects/slalom1.html
[47] HINT: http://www.scl.ameslab.gov/Projects/HINT/

314

