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Abstract. Genome-scale metabolic networks let us to understand the
behavior of the metabolism in the cells of live organisms. The availability
of great amounts of such data gives scientific community the opportu-
nity to infer in silico new metabolic knowledge. Elementary Flux Modes
(EFM) are minimal contained pathways or subsets of a metabolic net-
work that are very useful to achieve the comprehension of a very specific
metabolic function (as well as dis-functions), and to get the knowledge to
develop new drugs. Metabolic networks can have large connectivity and,
therefore, EFMs resolution faces a combinational explosion challenge to
be solved. In this paper we propose a new approach to obtain EFMs
based on graph methods and the shortest path between end nodes. Our
method finds all the pathways in the metabolic network and it is able
to prioritize the pathway search accounting the biological mean pursued.
Our technique has two phases, the exploration one and the characteriza-
tion one, and we show how it works in a well-known case study.
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1 Motivation

Cellular metabolism is the set of biochemical enzyme-catalyzed reactions in-
volved in the generation of nutrients and energy necessary for the cells in living
organisms. Those reactions are equations of metabolites with stoichiometric coef-
ficients. All the reactions and metabolites used to be grouped in a stoichiometric
matrix. A metabolic pathway of a cell is a piece of the network, that is, a se-
quence of some of its reactions. Metabolic pathways have been found quite useful
in different domains such as personalized medicine, drug discovery techniques or
genomic feature discovery. Therefore, many efforts have been lately made to find
pathways experimentally or by inferring them computationally.

Several mathematical methods modeling metabolism are emerging that are
able to incorporate datasets provided by different omics technologies. Many
of these methods are encompassed within constraint-based models, in which
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a set of mathematical constraints are defined using a genome-scale metabolic
network (GSMN) reconstruction as a starting point. Several curated GSMNs can
be found in the literature [19]. However, being able to automatically characterize
the biochemical reactions present in a particular metabolism through omics data
truly constitutes a challenge [15].

The term constraint-based modeling (CBM) groups different approaches that
analyze the metabolic behavior based on the stoichiometric relations between
compounds participating in enzymatic reactions. CBM defines two constraints
that pathways must fulfill. The first one is the steady-state condition that refers
to the property of mass balance within the cell. In other words, the concentration
of internal metabolites remains constant over the time. The second relevant
constraint refers to thermodynamic feasibility, which restricts some fluxes from
being non-negative (irreversibility constrain).

An elementary flux mode (EFM) [16] is a special type of metabolic pathway
comprising a subset of reactions that meets the two aforementioned conditions
plus the non-decomposability condition, that is, the pathway cannot be decom-
posed into smaller solutions (i.e., a subset of the pathway is not a feasible path-
way as well). In other words, EFMs are solutions with the minimum support
necessary to operate in stoichiometric steady-state balance with all reactions in
the appropriate direction. EFMs are an effort to translate a complex network
into a canonical expression of vector generators of a solution space.

In a typical metabolic network the number of reactions is higher than the
number of metabolites, so that many possibilities can be found that are a solution
to the system. As the metabolic network increases in size so do the amount of
EFMs, which number explodes in a combinatorial fashion. Computing the full
set of EFMs in large metabolic networks still constitutes a challenging issue.

Continuing with this effort, we have developed a new method to find system-
atically all the pathways from a metabolic network. In this paper we present our
approach based on a novel strategy to find shortest pathways between end nodes
in a graph representation of the network. Specifically, our approach exploits the
well-known graph theory and tools to drive the search of EFMs prioritizing, if
needed, the pathway search to account the biological mean quest. Our technique
is composed of two phases, the exploration and the characterization one, and
along the paper we describe the how the first phase works in a case study.

Unlike traditional Linear Programming (LP) approaches, our proposal avoids
expensive floating-point calculations allowing us to speed-up the quest of all the
available pathways in a certain metabolic network. Moreover, our approach is
quite suitable to be developed in new commodity parallel architectures (such as
multi- and many-cores and accelerators like GPUs), allowing shorter execution
times and less energy consumption.

The rest of the paper is structured as follows. Section 2 gives some back-
ground on the constraint-based mathematical modeling. In Section 3 we show
the method we have followed to design our technique. Section 4 presents a case
study of our approach, and the paper concludes giving some related work in
Section 5, and offering our conclusions and future work in Section 6.
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2 Background

Constraint based modeling (CBM) starts with a stoichiometric matrix S where
the values are the stoichiometric coefficients for metabolites (rows) on each reac-
tion (columns). Every reaction is characterized by the reaction rate (also known
as flux rate) which numerically gives the rate at which the substrate metabolites
are converted to the product metabolites.

Be −→r a vector of flux rate that represents a pathway, therefore fulfilling
the steady-state and the thermodynamic feasibility constrains. The steady-state
condition means that internal metabolites are balanced and concentration re-
mains constant (S · −→r =

−→
0 ), and the feasibility constraint means that each

irreversible reaction only participates with a positive rate (∀i, ri ≥ 0) when it is
part of the solution. Finally, −→r represents an EFM if the non-decomposability
condition is met (−→r is not a lineal combination of other flux rate vectors).

The stoichiometric matrix S let us build an adjacency matrix that corre-
sponds to the graph G = (V,E), a non-weighted directed bipartite graph where
V are both reactions and metabolites, and the edges E are directed attend-
ing the sign of the stoichiometric coefficients. A pathway is a sub-graph of G,
G′ = (V ′, E′), which is equivalent to −→r and vice versa.

A known drawback of graph exploration methods is that the flux rate vector
is missing at the final of the process. In order to verify which ones of the pathways
founds are EFMs, it is needed to do a final verification test using stoichiometry.

3 The shortest path technique to find EFMs

We propose a new CBM approach based on path-finding techniques. Our method
consists of two phases, the exploration phase and the characterization one. The
exploration phase consists of 3 stages for traversing the graph and finding the
feasible pathways. In the first stage, we use the pathway distance metric approach
(that is, the amount of reactions participants at the pathway) and take advantage
of the fact that it should be biologically meaningful [1]. Therefore, the quest
starts the graph exploration by building an axis between a source and a target
of the network applying the Dijkstra’s shortest path algorithm [2]. The choice of
the path end nodes (source, target or both) comes from the biological problem
we are dealing with.

At the end of this stage, an axis has been built using the Dijkstras algorithm
that traverses the graph through metabolites and reactions from the source node
to the target one using the shortest distance. Some of the reactions included in
the axis can need metabolites that have not been included yet. We name this
kind of metabolites as orphan metabolites.

The second stage goes back from the target to the source (bottom-up ap-
proach) to solve the orphan metabolite problem. This process traverses the in-
verted graph and it is done in a recursive way.

The third stage consists of the simulation of all the reactions that should oc-
cur due to the presence of the required metabolites produced by other reactions.
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The third stage ends when the end nodes are connected by a complete graph of
reactions without orphans nor non-consumed internal metabolites.

After the third stage, our approach has found systematically all the pathways
in the axis formed by those end nodes in a metabolic network. This process
should be iterative by every pair of interesting end nodes.

The characterization phase needs to check all the pathways produced to de-
termine which of them are EFMs. The final pathways obtained seem minimal
because none of the elements can be eliminated without sacrificing consistency.
Moreover, pathways fulfill the necessary conditions to have the steady-state bal-
ance. However, it cannot be assured the steady-state condition because the sto-
ichiometry is not playing a role during the run of our approach. Without stoi-
chiometry, and depending on the network structure, it can be got a lot of false
positives but also some other real positives. In terms of feasibility, the pathways
are built fulfilling the necessary conditions to be feasible, that is, respecting
the positive direction of every reaction, but the feasibility constrain is only met
conditioned to the steady-state consistency.

This second phase is needed as the steady-state constraint has not been
granted during the exploration phase of the graph and, therefore, it must be
checked afterwards. Currently, we are developing some heuristics to properly
select EFMs from the full set of feasible pathways produced.

4 Case study

As mentioned before, our approach produces all possible pathways and, for cer-
tain cases, EFMs can inferred from those pathways. In simple networks like the
EFMtool example published in [4] (6 metabolites and 12 reactions), once all
the pathways has been found, the characterization phase has got the full list
of EFMs easily discarding decomposable pathways. In addition, for this small
and not complex network, the flux rate vector has easily been calculated for any
found EFM.

Let us consider as an example the aforementioned network represented by
the stoichiometric matrix S shown in the matrix 1. Note that the reactions R2
and R8 are reversible reactions. For the rest of the process these reactions need
to be unfolded in R2, R2 rev, R8 and R8 rev automatically. Unfolded reactions
must be included in the matrix with individual columns in the new extended
stoichiometric matrix that it is shown next. Therefore, all the reactions are from
now irreversible.

S =



R1 R2r R3 R4 R5 R6 R7 R8r R9 R10

A 1 0 0 0 −1 −1 −1 0 0 0
B 0 1 0 0 1 0 0 −1 −1 0
C 0 0 0 0 0 1 0 1 0 −1
D 0 0 0 0 0 0 1 0 0 −1
E 0 0 0 −1 0 0 0 0 0 1
F 0 0 −1 0 0 0 0 0 1 1

 (1)
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Based on the extended S we build the graph G = (V,E) represented graph-
ically in the figure 1, where vertices V are both metabolites and reactions, and
edges E are the incidence arcs following the direction of the reactions.

S =



R1 R2 R2 rev R3 R4 R5 R6 R7 R8 R8 rev R9 R10

A 1 0 0 0 0 −1 −1 −1 0 0 0 0
B 0 1 −1 0 0 1 0 0 −1 1 −1 0
C 0 0 0 0 0 0 1 0 1 −1 0 −1
D 0 0 0 0 0 0 0 1 0 0 0 −1
E 0 0 0 0 −1 0 0 0 0 0 0 1
F 0 0 0 −1 0 0 0 0 0 0 1 1



dpi

R1

A

R5R6R7

BCD

R8

R9

R2_rev

R2 R8_rev

F

R3

R10

E

R4

Fig. 1. Graph obtained after the first stage

Our technique starts in the exploration phase, which has three stages. In
its first stage, the Dijkstra’s shortest algorithm is run to build an axis for the
foreseeable pathway. A shortest path for this example is shown in the Figure 1
with the participating nodes in gray. This shortest path is a route between R1 as
input extreme of our metabolic network and R4 as output extreme. Obviously
every pair of extreme points can be considered. Many times, the paths obtained
in this stage could have the orphan metabolite problem. In the example we are
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considering, R10 needs that the metabolite D (dotted in the Figure) is also
available in the cell to be part of the pathway.

The second stage has the objective to fix this inconvenience. Following with
the example, this stage try to include the metabolite D in the axis {R1, A, R6,
C, R10, E, R4} to form the axis {R1, A, R6, C, D, R10, E, R4}. Many solutions
with different complexity can be developed for each found shortest path. In our
case, this stage incorporates the reaction R7 to the pathway to supply D.

The third stage is responsible to assure that every metabolite produced by
the pathway has consumer reactions, that is, it should be consumed inside the
pathway. In our example, R10 produces the metabolite F but there is no con-
sumer reaction for it. This stage looks for what reactions could occur with the
metabolite F in order to be consumed. In this example, there is only one possi-
bility (R3 reaction), and it will be incorporated to the pathway. After this three
stages we have the pathway {R1, R6, R10, R4, R7, R3} with the metabolites
{A, C, D, E, F} involved in it. The reactions have been shown in the same order
they were obtained. The pathway is shown in the Figure 2.

R1

A

R5R6R7

BCD

R8

R9

R2_rev

R2 R8_rev

F

R3

R10

E

R4

Fig. 2. Final pathway

Following with the example, in [4] the set of EFMs correspondent to the
metabolic network are available. One of those EFMs is given by the flux rate
−→r = (2, 0, 1, 1, 0, 1, 1, 0, 0, 1) and it corresponds with our pathway {R1, R6,
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R10, R4, R7, R3} (same non-zero and positive coefficients). Therefore, as there
is not possible to have other EFMs with the same non-zero and positive rates,
our approach has obtained the same EFM that efmtool.

In the end, −→r can be translated into the stoichiometric sub-matrix S′ by
maintaining columns and rows correspondent to those nodes of G′. It is impor-
tant to note that G′, S′ and −→r are fully equivalent. It can be proven that if −→r
is an EFM, then S′ ·−→r =

−→
0 .

S′ =



R1 R3 R4 R6 R7 R10

A 1 0 0 −1 −1 0
C 0 0 0 1 0 −1
D 0 0 0 0 1 −1
E 0 0 −1 0 0 1
F 0 −1 0 0 0 1


Finally, our approach is currently being checked against other small network

like the network of E. coli core model [3] with 95 reactions and 72 metabolites,
and it is obtaining some promising results.

5 Related work

The advantages of analyzing metabolic networks based on EFMs have been
shown in different works [5] [14]. However, their use has been limited because
enumerating them is computationally demanding. Algorithms have been devel-
oped to enumerate all the EFMs in medium-size metabolic networks [20][21]
[17]. However, despite the development of novel methods using state of the art
computational techniques expediting their application in larger networks [7], this
family of algorithms fails on GSMNs using standard computers, because of the
combinatorial explosion in the number of EFMs [9]. In this light, several meth-
ods have been recently proposed to determine a subset of EFMs in GSMNs [6]
[12] [13].

Computational approaches to metabolic pathways can be classified in two
groups: stoichiometric approaches and path-finding approaches [10]. Summa-
rizing, the first ones use the stoichiometric data to do calculations during the
process. Linear Programming and Null-Space Algorithm [8] are some of the
mathematical strategies applied to find pathways, mainly solving the system of
linear equations propose by the stoichiometric matrix. Stoichiometric approaches
have the quality of impose biochemically meaningful stoichiometric constraints
to the solutions but at the cost of intense floating point calculations.

The second ones translate the network into a directed graph to explore it.
Path-finding approaches are considered to constitute some advance with respect
to stoichiometry approaches mainly because they rest on the well-known graph
theory and let the use of techniques based on distance metric, revealed as bi-
ologically relevant [1]. Because of the combinatorial nature of the search, some
proposals only find a subset of all feasible pathways, whereas other approaches
get the full set of feasible pathways [18]. The major drawback of path-finding
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approaches is that the lack of use of stoichiometry during the exploration pro-
cess cannot assure that the solution has biological meaning and meets all the
constraints. Therefore, an extra stage is needed to determine if a found pathway
meets the constraints and it constitutes an EFM.

Finally, some other authors combine both approaches trying to build on
strengths of each and avoid respective drawbacks and computational expenses
[11].

6 Conclusions and future work

In this paper we propose a new approach to obtain EFMs based on graph meth-
ods and the shortest path between end nodes. The novel approach we have
presented here constitutes an advance with respect to previous approaches as it
relies on a three-stage method based on the Dijkstra’s shortest path algorithm,
and an extra heuristic and mathematical phase that can produce systematically
candidates to EFM.

Our method finds all the pathways in the metabolic network and it is able
to prioritize the pathway search accounting the biological mean pursued. Our
technique has two phases, the exploration one and the characterization one, and
we show how it works in a well-known case study.

Unlike traditional Linear Programming (LP) approaches, our proposal avoids
expensive floating-point calculations allowing us to speed-up the quest of all the
available pathways in a certain metabolic network. We realize that the fact of
the combinatorial explosion while exploration of the graph is a common problem
to path-finding approaches (loops and the increasing size of the networks worsen
the problem), so we foresee that the parallelization of this process could give us
a lot of benefits. Our approach is quite suitable to be developed in new com-
modity parallel architectures (such as multi- and many-cores and accelerators
like GPUs), allowing shorter execution times and less energy consumption.

As for future work, the characterization phase of the EFMs from the set
of pathways obtained is still immature and more work should be done in rela-
tion with it, as developing some heuristics from artificial intelligence techniques
like ants colony. Another direction of future work is the parallelization of all
of the stages of our method using HPC commodity architectures, as multicore
processors and accelerators (like GPUs or Xeon Phi).
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