Exploiting Cache-to-Cache Transfers of Clean Data in Glueless
Shared-Memory Multiprocessors

Alberto Ros, Manuel E. Acacio, José M. Garcia

Departamento de Ingenieria y Tecnologia de Computadores

Universidad de Murcia - Campus de Espinardo 30100 Murcia

{a.ros,meacacio,jmgarcia}@ditec.um.es

Abstract

In glueless shared-memory multiprocessors the
fast access to the on-chip components con-
trasts with the much slower main memory.
Unfortunately, directory-based protocols need
to obtain the sharing status of every mem-
ory block before coherence actions can be
performed. This information has tradition-
ally been stored in main memory, and there-
fore these cache coherence protocols are far
from being optimal. In this work, we propose
two alternative designs for the last-level pri-
vate cache of glueless multiprocessors aimed
at exploiting cache-to-cache transfers of clean
data: the lightweight directory and the SGluM
cache. Our proposals remove completely direc-
tory information from main memory and store
it in the home node’s cache, thus reducing the
number of accesses to main memory.

1 Introduction

Workload and technology trends point toward
highly integrated “glueless” designs [5] that in-
tegrate the processor’s core, caches, network
interface and coherence hardware onto a single
die (e.g., Alpha 21364 [3] and AMD’s Opteron
[1]). This allows to directly connect these
highly integrated nodes in a scalable way using
a high-bandwidth, low-latency point-to-point
network and leads to what is known as glue-
less shared-memory multiprocessors.

As totally-ordered interconnects are difficult
to implement in glueless designs, directory-
based cache coherence protocols have tradi-
tionally been used in these kinds of architec-

tures. Directory-based protocols keep coher-
ence through a distributed directory stored in
the portion of main memory included in ev-
ery system node [8]. In this way, the directory
structure ensures the order in the accesses to
main memory. Whenever a cache miss takes
place, it is necessary to access the directory
structure placed in the home node to recover
the sharing status of the block, and subse-
quently, perform the actions required to ensure
coherence and consistency. Hence, this kind of
cache coherence protocols achieve scalability
at the cost of putting the access to main mem-
ory in the critical path of the lower-level pri-
vate cache misses. The increased distance to
memory (the well-known memory wall prob-
lem [9]) that will be suffered in future scalable
glueless shared-memory multiprocessors raises
the necessity of low-latency cache coherence
protocols that avoid these memory accesses.

One of the solutions that have been pro-
posed for avoiding the ever increasing memory
gap is the addition of directory caches to each
one of the nodes of the multiprocessor. These
extra cache structures are aimed at keeping di-
rectory information for the most recently ref-
erenced memory blocks [2]. In this way, cache
misses that only need to access main memory
for obtaining the directory information (i.e.
cache-to-cache transfer misses) are accelerated
in most cases. However, these architectures do
not avoid the memory wall problem because
they must provide the block from main mem-
ory when it is in shared state. The way to cope
with the memory wall problem is by exploiting
cache-to-cache transfers of clean data.

124 Arquitectura del Procesador, Multi-niicleo y Multiprocesadores

3.00 5
2.75 - Traditional

g 2507 (Moc
T 2251 10bcaso8
2 200 s
> B 1.75 .
§ 1.75
% 150 1.43 e
B 1254 ;
2‘.) R 100 .11 -
S 100 o2 g 88 90 2
E 75
o
Z 50

25

.00

80 300 500 1000

Memory access latency (cycles)

Figure 1: The effect of memory wall.

Figure 1 presents the average execution time
of the benchmarks used in this work (see sec-
tion 5 for details) that is obtained for three
directory-based protocols as main memory la-
tency increases from 80 cycles to 1000 cycles.
The bar labelled Traditional is the case when
directory information is stored in main mem-
ory. DC adds an unlimited directory cache
with the same latency than the tag’s part of
the L2 data cache. Finally, DC & $-to-§ in-
cludes an unlimited directory cache and ex-
ploits cache-to-cache transfers of clean data.
As can be observed, as memory latency grows
applications’ execution time becomes signifi-
cantly larger for a traditional directory-based
protocol. The impact of increased memory
latencies is lower when directory caches are
used. However, the only way to cope with the
memory gap is to design a coherence proto-
col that avoids accessing main memory when
some cache can provide the block quicker.

Traditional multiprocessors do not support
cache-to-cache transfers of clean data mainly
because in many cases obtaining data from
main memory can be faster that obtaining
it from another cache. However, highly-
integrated glueless shared-memory multipro-
cessor designs and the increasing distance
to memory favour cache-to-cache transfers
against main memory accesses in most cases.
In this paper we propose to alternatives
for glueless multiprocessors to perform these
cache-to-cache transfers.

The first proposal, called lightweight direc-

tory, forces to have a copy of every shared
block stored in the last-level private cache of
the home node. In this way, this scheme al-
ways solves the misses for shared blocks by
accessing to the home node’s cache, and thus,
these misses are finalized in just two hops. The
main drawback of this proposal is that extra
blocks (not requested by the local processors)
are potentially brought to the L2 caches, which
can cause that the number of replacements in-
crease for some applications.

The second approach, called SGluM cache
(from Scalable Glueless Multipro-cessors),
solves misses for shared blocks by providing
the block from one of the sharers, which is
called the owner node. To find the owner node
(when it is not the home node) the home node
must store a pointer to the owner node in its
local cache. This proposal solves some cache-
to-cache transfers misses in three hops, but it
does not overload caches with blocks not re-
quested by the local processor.

We find that both cache designs reduce
the total number of accesses to main mem-
ory (on average) from 83.6% to 46.3% for
the lightweight directory architecture and to
53.9% for the SGluM cache architecture, ob-
taining improvements in total execution time
of 12% and 10% (on average) respectively. Fi-
nally, we conclude that the advantage of the
lightweight directory architecture is its sim-
plicity, whilst the SGluM cache achieves per-
formance improvements for all the applica-
tions by using extra structures.

The rest of the paper is organized as follows.
Section 2 presents the multiprocessor in which
our proposals are based. Subsequently, Sec-
tion 3 and 4 describe our two proposals. Sec-
tion 5 introduces the methodology employed
in the evaluation process. In Section 6 we in-
troduce a performance evaluation of our pro-
posals. Finally, Section 7 concludes the paper.

2 Base System

Figure 2 shows the design of the scalable glue-
less shared-memory multiprocessor that is the
base for our two proposals. This design takes
advantage of on-chip integration including the

XVIII Jornadas de Paralelismo, Zaragoza 2007

Node 0

Processor’s Core

Dir | L2 cache

Main
Memory

Processor’s chip

125

Node N-1

Processor’s Core

Dir | L2 cache

Main
Memory

Processor’s chip

O
1

| Scalable point—to—point interconnection network |

Figure 2: A suitable architecture for scalable glueless shared-memory multiprocessors.

last-level private cache (the L2 cache in this
paper), the memory and directory controller
(MC/DC), the coherence hardware and the
network interface (NI) and router inside the
processor chip of each node of the multipro-
cessor. In addition, each node has associated
a portion of the total main memory in the sys-
tem. The nodes are connected using a scalable
point-to-point interconnection network. The
key advantage this design is that all directory
information needed to keep cache coherence
is stored in the tag’s part of the on-chip L2
cache, thus reducing the latency of L2 cache
misses and completely removing the directory
information from main memory. The addition
of the directory information to the L2 cache
tags is motivated by the high temporal local-
ity in the memory accesses exhibited by the
applications [6].

The elimination of the directory information
from main memory implies that some modifi-
cations must be performed to the cache coher-
ence protocol to ensure that for all the memory
blocks held in one or more caches directory in-
formation is always present in the cache of the
home node. Moreover, before a memory block
can be evicted from the home cache, all the
copies of the block must be invalidated (pre-
mature invalidations).

3 Lightweight Directory

The lightweight directory architecture consti-
tutes a simple cache design that only adds two
fields to the L2 cache tags for storing direc-
tory information. In this way, this design does
not need extra hardware structures (in con-
trast with the inclusion of directory caches).

L2 cache
Tags Data
Tag L2 Dir Sharing Code

Figure 3: Cache design for the lightweight direc-
tory architecture.

On the other hand, this design also ensures
that an up-to-date copy of data will always
be in the cache of the home node for those
blocks in shared state, avoiding thus the long
access to main memory to get the block in
these cases. Its main drawback is, however,
that the total number of replacements could
increase for applications without temporal lo-
cality in the accesses to memory that several
nodes are performing, but fortunately this is
not the common case.

3.1 Cache Design

Figure 3 shows the cache design assumed in
the lightweight directory architecture. Only
two fields have been added: the directory state,
and the sharing code. The directory state field
can take two values (one bit):

e S (Shared): The memory block is shared
in several caches, each one of them with
clean data. When needed, the cache of
the home node will provide the block to
the requesters, since this cache has always
a valid copy even when the local processor
has not referenced the block.

126 Arquitectura del Procesador, Multi-niicleo y Multiprocesadores

e P (Private): The memory block is in just
one cache and could have been modified.
The presence bits of the sharing code field
point to the cache that holds has the sin-
gle valid copy of the block.

Note that an additional directory state is
implicit. The U state (Uncached) takes place
when the memory block is not held by any
cache and its only copy resides in main mem-
ory. This is the case of those memory blocks
that have not been accessed by any node yet,
or those that were evicted from all the caches.

3.2 Coherence Protocol

The proposed architecture requires a cache co-
herence protocol very similar to MESI with
some minor modifications that we detail next.

As usually, all the cache misses must reach
the home node, where the directory controller
checks the tags’ portion of the local L2 cache
to get the directory information. If the direc-
tory information for the requested block is not
found in the home cache, the memory block
is not cached by any node (this is the implicit
uncached state mentioned before). Hence, the
memory controller brings the block from main
memory and stores an entry for it in the L2
cache of the home node (replacing another
block if necessary) and set the block state to
invalid in case of a remote miss (just to hold
directory information), or to exclusive in case
of a local miss. Moreover, the directory state
is set to private because only one node will
hold the copy of the block. Finally, the home
node sends the block to the requester.

When a cache miss finds the directory infor-
mation in the home cache, there is no need to
access main memory. This case occurs for all
the blocks that are held by any cache. More-
over, when the directory controller finds that
the directory state is shared or the owner of
the block is the own home node, the L2 cache
in the home node keeps a valid copy of the
block, and the block can be provided imme-
diately for a read request (for write requests
all the sharers must be invalidated before the
block is sent).

The main problem of the lightweight direc-
tory is the cost of the replacements. When
an entry for a block is evicted from the home
node’s cache, all the copies of the block must
be invalidated due to the absence of directory
information in main memory. In this way, the
directory controller sends multiple invalidation
requests to the sharers (or to the owner if the
block is only present in one cache). Finally,
the replacement proceeds once the home node
has received all the acknowledgements. If the
copy of the block is dirty, the directory con-
troller updates main memory.

4 The SGIluM Cache Architecture

SGluM is a cache design that includes an extra
hardware structure and adds some fields to the
cache tags to handle efficiently the directory
information, avoiding in this way the increase
in the number of cache replacements that the
lightweight directory could introduce in some
cases. In most cases, this design avoids access-
ing main memory to get the block by obtain-
ing it from another cache that already holds it
(the home cache or another remote cache).

4.1 Cache Structure

The SGluM cache architecture is comprised of
two main structures:

e The Data and Directory Information
(DDI) structure that maintains both data
and directory information for blocks re-
quested by the local processor. This
structure is similar to the L2 cache in the
lightweight directory architecture.

e The Only Directory Information (ODI)
structure that stores just directory in-
formation (not data) for local blocks re-
quested by remote nodes and not being
used by the local processor. This struc-
ture is split into two separate small struc-
tures: the private and the shared por-
tions. The first one stores directory in-
formation for blocks that are in private
state and it only needs one pointer per
entry. The second one stores directory in-
formation for blocks in shared state (i.e.

XVIII Jornadas de Paralelismo, Zaragoza 2007

Tog L2 cache

DDI Structure
og [[g | o
rog | [50] svasmpcoe | o

g [[owoer

Shared
Tog [V ShuingCoe | owar
Tag [V | ShingCote | ownr

Tag [V | Sharing Code [Owner

Figure 4: The SGluM Cache design.

full-map), and a pointer that identifies the
node that has to provide the block when
needed (the owner node).

Figure 4 shows the design of the cache struc-
ture. The directory state for a block is un-
cached if there is no valid entry for it in any
structure. In other case, the state is derived
from the structure in which the entry is stored
(tag match in ODI) or by the state field (tag
match in DDI). These three structures are ex-
clusive.

4.2 Cache Coherence Protocol

The proposed architecture requires a cache co-
herence protocol very similar to MOESI with
some minor modifications that we detail next.

Each time a cache miss for a block reaches
the directory controller of the home node, the
directory information for the block is looked
for in parallel in each one of the three struc-
tures that compose the cache.

If directory information is not found (un-
cached state), the block is obtained from main
memory. Subsequently, a new entry must
be allocated in the cache of the home node
for keeping the directory information of that
block. For local misses, the directory informa-
tion is allocated along with data in the DDI
structure. In other case, the new entry is al-
located in the private part of the ODI struc-
ture. In this way, the blocks requested by
remote nodes do not overload potentially the
DDI structure.

127

If the entry is found in the DDI structure,
the miss is solved by obtaining the block from
this structure. In this case, the miss is solved
in only two hops when invalidations are not
needed (as in the lightweight directory). Addi-
tionally, write misses from remote nodes cause
that directory information is moved to the pri-
vate part of the ODI structure.

If the entry is found in the private part of
the ODI structure, the miss is solved with a
cache-to-cache transfer from the owner node.
For local misses, the directory information is
moved to the DDI structure, where it is kept
along data. Remote misses cause that the en-
try is moved to the shared part of the ODI
structure (read misses), or it is maintained in
its private portion (write misses).

If the entry is found in the shared part of the
ODI structure, the pointer field gives the iden-
tity of the node that must provide the block.
This node is the first node that requested the
block or the last one that wrote it. For re-
mote misses, however, the entry is either main-
tained in the shared portion of the ODI (for
read misses), or moved to its private part (for
write misses).

Finally, for replacements in the DDI struc-
ture, the ODI structure is used as a victim
cache for the directory information. If a direc-
tory entry is evicted from the ODI structure
the remote copies of the corresponding block
must be also invalidated. Once all the inval-
idations have been performed, main memory
is updated and the state of the block becomes
uncached.

5 Simulation Environment

We have modified a detailed execution-driven
simulator (RSIM [4]) to model the three cc-
NUMA multiprocessor architectures evaluated
in this work. The first one is a multiprocessor
that includes on the processor chip of every
node a directory cache for accelerating the ac-
cesses to the directory information'. For this
architecture we evaluate two configurations.
One of them, called directory cache, includes a

1This architecture resembles the implemented in
the SGI Altix 3000.

128 Arquitectura del Procesador, Multi-niicleo y Multiprocesadores

Table 1: Common system parameters.
32-Node System
Cache Parameters

64 bytes

Cache block size

L1 cache: write-through
Size, associativity 16 KB, direct mapped
Hit time 2 cycles

L2 cache: write-back

Size, associativity 64 KB, 4-way
Hit time (tag + data) 6 + 9 cycles
Directory Parameters
Directory controller cycle 1 cycle (on-chip)
On-chip directory access time | 6 cycles (as cache tag)
Off-chip directory access time | 300 cycles (as memory)
Message creation time 4 cycles first, 2 next
Memory Parameters
Memory access time 300 cycles
Memory interleaving 4-way
Network Parameters

Topology 2D mesh (4x8)
Flit size 8 bytes
Flit delay 4 cycles
Arbitration delay 2 cycles

directory cache with 2K entries in each node.
The other configuration, called unlimited di-
rectory cache, uses directory caches with un-
limited number of entries. Note that these
configurations do not support cache-to-cache
transfers for shared blocks as occurs in tradi-
tional systems. The third configuration is the
lightweight directory architecture described in
Section 3. Finally, the fourth configuration is a
multiprocessor that uses the SGluM cache ar-
chitecture described in Section 4. In this con-
figuration the P-ODI structure has 512 entries
and the S-ODI structure has 256 entries. We
have simulated systems with 32 uniprocessor
nodes. Table 1 shows the parameters used for
all the configurations. In all the configurations
full-map is used as the sharing code for the di-
rectory information, but our two architectures
are compatible with any sharing code.

The benchmarks used in our simulations
cover a variety of computation and commu-
nication patterns. Barnes (4096 bodies, 4
time steps), Cholesky (tk16.0), FFT (256K
complex doubles), Ocean (258x258 ocean),
Radix (1M keys, 1024 radix), Water-NSQ
(512 molecules, 4 time steps), and Water-SP
(512 molecules, 4 time steps) are from the
SPLASH-2 benchmark suite [7]. Unstructured
(Mesh.2K, 5 time steps) is a computational
fluid dynamics application. Finally, EM3D
(38400 nodes, 15% remotes, 25 time steps) is a
shared-memory implementation of the Split-C

|| @ birectory Cache
I Lightweight Directory
1:1 70 sGluM Cache

Normalized replacements

&f
L o

1o}
o™

Figure 5: Normalized number of replacements.

benchmark. All experimental results reported
in this work correspond to the parallel phase
of these benchmarks.

6 Evaluation Results

6.1 Impact onthe number of replacements

As previously discussed, the main drawback of
the lightweight directory architecture is that
it could increase the number of replacements
for applications with low temporal locality in
the accesses to memory that several nodes per-
form. On the contrary, the SGLuM cache uses
separate structures for blocks requested by the
local and remote processors to avoid this neg-
ative effect. Figure 5 shows the normalized
number of replacements for our two propos-
als with respect to a traditional configuration
that includes directory caches in every node.
As it can be observed, the only application in
which the number of replacements grows con-
siderably is Radix (18%). FFT (4%), Barnes,
(2%), Unstructured (2%) and Cholesky (1%)
suffer a very small increment in the number of
replacements, whilst for the other applications
no degradation is observed.

6.2 Impact on the number of misses

We achieve reductions in the latencies of cache
misses by avoiding the accesses to main mem-
ory and by exploiting cache-to-cache transfers
of clean data. Table 2 shows the percentage of
misses that are solved by providing the block
from memory for the base configuration and
for our two designs. This information is shown
for each miss type (read, write and rmw) and
for the total of the misses. In general, we can

XVIII Jornadas de Paralelismo, Zaragoza 2007

Table 2: Percentage of L2 cache misses solved in main memory.

129

Directory Cache

Lightweight I

SGIluM Cache

age) from 77.6% to 46.4%. The average reduc-

E birectory Cache
B Uniimited Directory Cache

Application [READ [WRITE [RMW [ALL || READ | WRITE [RMW [ALL [| READ | WRITE [RMW [ALL |
Barnes 94.1% | 85.4% | 5.0% [92.2% || 11.4% | 7.8% | 0.1% [10.9% [38.6% | 18.4% | 0.1% [36.3%
Cholesky 87.7% | 92.3% |76.5% | 87.9% || 37.6% | 63.1% | 0.0% | 39.6% || 55.9% | 63.0% | 0.1% | 55.4%
EM3D 93.9% | 100.0% - | 94.0% |[79-6% | 5.9% - [75.1% || 87.0% | 83.4% - |86.7%
FFT 58.6% | 79.7% - |66.8% || 61.1% | 46.7% - |55.6% || 58.6% | 79.8% - |66.8%
Ocean 82.0% | 82.1% |20.5% | 81.5% || 72.4% | 76.2% | 0.1% | 73.7% || 74.6% | 80.0% | 0.0% | 76.1%
Radix 94.2% | 97.0% -]96.0% || 89-9% | 97.1% - [95.0% || 89.9% | 97.0% - |94.3%
Unstruct. 35.6% | 1.3% | 0.1% |15.1% || 85% | 0.2% | 0.0% | 3.6% || 10.3% | 0.9% | 0.0% | 4.5%
Water-NSQ || 83.3% | 65.9% |10.8% | 76.3% || 54.5% | 65.7% | 1.6% | 57.8% || 56.8% | 66.4% | 1.2% | 59.3%
Water-SP 93.1% | 4.9% [47.3% |88.4% || 6.3% | 0.0% | 0.0% | 5.9% || 6.4% | 0.0% | 0.0% | 5.9%
[MEAN [[80.3% | 67.6% [26.7% | 77.6% || 46.8% | 40.3% | 0.3% | 46.4% [[53.0% | 54.3% | 0.2% [53.9% |
observe that our two proposed schemes reduce o -
1 1 M @ | 9 o7, g _1.00 1.00 1
the amount of misses solved by accessing main S =R | FE T T T
. . . . c 84
memory. The lightweight directory architec- g o 7
3 01
ture reduces the accesses to memory (on aver- 5 e
M
3
%
E
2

tion for the memory operations are 33.5% for
the read misses, 27.3% for the write misses and
26.4% for the rmw misses. The SGluM cache
reduces the accesses to memory from 77.6% to
53.9%, averaging 27.3% for the read misses,
13.3% for the write misses and 26.5% for the
rmw misses.

In particular, comparing the results ob-
tained for our two architectures with the re-
sults obtained for the base configuration, we
can see that in most cases the accesses to main
memory are avoided by obtaining data from
another cache, which is much faster. The ex-
ception are FFT and Radix applications. In
this case, memory misses are due to cache re-
placements instead of coherence invalidations.
This fact also causes the increase in the num-
ber of replacements for the lightweight direc-
tory architecture. Moreover, FFT has an in-
crement in the number of read misses that ac-
cess memory due to premature invalidations.
In Unstructured, memory misses account for a
small fraction of the total misses in the base
case, so that they are not significantly reduced
when any of our proposals is employed. Fi-
nally, Barnes, Cholesky, EM3D and FFT suf-
fer more memory accesses for the SGluM cache
than for the lightweight directory (from 11.2%
to 25.4%). This is because there are a lot
of cache replacements (we have small cache
sizes), and when the owner node is evicted
from an L2 cache in SGluM, the subsequent
miss must obtain the block from memory.

O] Lightweight Directory

O sGluM Cache
= -
00 T T

g
L

4 T T T T T T T T 1
4 T T T T T [T [1

&

5
o o et

o

o - o5

I
o o® e -

o*\"\&\
Figure 6: Normalized execution times.

6.3 Impact on execution time

For the applications used in this paper, Figure
6 plots the execution times that are obtained
for the two cache designs presented in this pa-
per normalized with respect to the base config-
uration (a directory-based multiprocessor that
includes directory caches in each node). In
addition, this figure plots the execution times
for a system that uses unbounded directory
caches. In general, both the lightweight direc-
tory architecture and the SGluM cache have
been shown to be able to reduce the number of
misses that obtain the block from main mem-
ory. As a consequence, reductions in terms of
execution time are obtained for our two pro-
posals (on average). The lightweight direc-
tory architecture obtains reductions in execu-
tion time of 12% on average. However, the in-
creased number of cache replacements implied
by this proposal translates into significant per-
formance degradation for applications such as
Radix (14%). For the other applications im-
provements ranging from 33% in Ocean to 4%
in Unstructured are obtained. The important
improvements in Ocean are due to the reduc-
tions in the latency of some read and rmw
misses caused for acquiring locks.

130 Arquitectura del Procesador, Multi-niicleo y Multiprocesadores

For the SGluM cache reductions in execu-
tion time that range from 18% in Ocean to 2%
in Radix are obtained for all the applications
(10% on average). The efficient handling of
directory information in this proposal avoids
interferences between the memory blocks re-
quested by the local processor and those refer-
enced by remote processors. However, the re-
quirement of getting the block from a remote
owner instead of the home node causes that
these improvements are smaller in several ap-
plications than the reported for the lightweight
directory architecture.

7 Conclusion

In this paper, we take advantage of current
technology trends and propose two different
designs for the L2 cache (lower-level caches in
general) aimed at being used in future glueless
shared-memory multiprocessors. Both propos-
als avoid unnecessary accesses to main mem-
ory by storing all the directory information in-
side the L2 cache and by exploiting cache-to-
cache transfers of clean data.

The first proposal, the lightweight direc-
tory architecture, only need two hops to per-
form cache-to-cache transfer of clean data. Its
main drawback is that extra blocks (not re-
quested by the local processors) are poten-
tially brought to the L2 caches, which could
cause an increase in the number of replace-
ments for some applications. It achieves good
performance (12% of improvement on average)
without adding any extra hardware since it re-
duces the memory accesses from 77.6% (in the
base case) to 46.3%.

The second proposal, the SGluM cache ar-
chitecture, performs cache-to-cache transfer of
clean data needing three hops when the home
node is not one of the sharers. The SGluM
cache reduces the number of accesses to mem-
ory from 77.6% (base case) to 53.9%, provid-
ing in most cases the requested blocks from
the home node’s cache (only two hops). This
proposal achieves performance improvements
for all the applications evaluated in this pa-
per (10% on average) at the cost of using a
small directory cache on chip that avoids the
negative effects that the lightweight directory
architecture has in some applications.

Finally, we think that the improvements
obtained for our designs and their simplicity
make them competitive for future medium-
scale shared-memory multiprocessors.

Acknowledgments

This work has been jointly supported by
the Spanish MEC and European Comis-
sion FEDER funds under grants “Consolider
Ingenio-2010 CSD2006-00046” and “TIN2006-
15516-C04-03”. A. Ros is supported by a re-
search grant from the Spanish MEC under the
FPU national plan (AP2004-3735).

References

[1] A. Ahmed, P. Conway, B. Hughes, and F. We-
ber. AMD Opteron™ Shared-Memory MP
Systems. In HotChips, Aug. 2002.

[2] A. Gupta, W.-D. Weber, and T. C. Mowry.
Reducing memory traffic requirements for scal-
able directory-based cache coherence schemes.
In ICPP, pages 312-321, Aug. 1990.

[3] L. Gwennap. Alpha 21364 to Ease Memory
Bottleneck. Microprocessor Report, 12(14):12—-
15, Oct. 1998.

[4] C. J. Hughes, V. S. Pai, P. Ranganathan, and
S. V. Adve. RSIM: Simulating shared-memory
multiprocessors with ILP processors. IEEE
Computer, 35(2):40-49, Feb. 2002.

[5] M. M. Martin, M. D. Hill, and D. A. Wood.
Token coherence: Decoupling performance and
correctness. In ISCA, pages 182-193, June
2003.

[6] A. Ros, M. E. Acacio, and J. M. Garcia.
A novel lightweight directory architecture for
scalable shared-memory multiprocessors. In
Euro-Par, volume 3648, pages 582-591, Aug.
2005.

[7] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh,
and A. Gupta. The SPLASH-2 programs:
Characterization and methodological consider-
ations. In ISCA, pages 24-36, June 1995.

[8] M. Woodacre, D. Robb, D. Roe, and K. Feind.
The SGI Altix™ 3000 global shared-memory
architecture. Technical Whitepaper, Silicon
Graphics, Inc., 2003.

[9] W. Wulf and S. McKee. Hitting the memory
wall: Implications of the obvious. Computer
Architecture News, 23(1):20-24, Mar. 1995.

