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Adaptive Selection of Cache Indexing Bits
for Removing Conflict Misses
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Abstract—The design of cache memories is a crucial part of the design cycle of a modern processor, since they are able to bridge

the performance gap between the processor and the memory. Unfortunately, caches with low degrees of associativity suffer a large

amount of conflict misses. Although by increasing their associativity a significant fraction of these misses can be removed, this comes

at a high cost in both power, area, and access time.

In this work, we address the problem of high number of conflict misses in low-associative caches, by proposing an indexing policy that

adaptively selects the bits from the block address used to index the cache. The basic premise of this work is that the non-uniformity in

the set usage is caused by a poor selection of the indexing bits. Instead, by selecting at run time those bits that disperse the working

set more evenly across the available sets, a large fraction of the conflict misses (85%, on average) can be removed. This leads to IPC

improvements of 10.9% for the SPEC CPU2006 benchmark suite. By having less accesses in the L2 cache, our proposal also reduces

the energy consumption of the cache hierarchy by 13.2%. These benefits come with a negligible area overhead.

Index Terms—Cache memories, conflict misses, adaptive indexing, working set variations.

✦

1 INTRODUCTION AND MOTIVATION

W ITH the scaling of transistors following Moore’s law,

the significance of the memory hierarchy to the overall

system performance continues growing. The design of the

first level cache is an important parameter for achieving high

performance systems since it is accessed in the critical path

of the processor, which determines the clock frequency of

the system. Therefore, first level caches should be as fast as

possible, should consume as less power as possible, and should

minimize the number of accesses to second level caches.

Direct-mapped caches are faster, consume less energy per

access and are smaller in terms of area than set-associative

caches [1]. Since direct-mapped caches do not need to hold

multiple blocks per set as their set-associative counterparts

do, they only have to store one tag per set in the tag array.

Hence, they only require one tag comparison per access and

do not require a multiplexer to select which of the ways

holds the correct tag. The lack of these structures significantly

reduces the amount of required wires. These properties lead

to a shorter critical path, and thus, typically to a faster access

time. Additionally, the overall reduction in area due to the

non-existence of multiple ways and the circuitry required to

support them, is significant. This leads to both less dynamic

power consumed per access and less static power consumption.

These characteristics make direct-mapped caches an attractive

approach for being employed as first level caches, especially

for embedded systems [2].

On the other hand, set-associative caches achieve higher

hit rates than direct-mapped caches due to a reduction in
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the number of conflict misses. Conflict misses typically oc-

cur because the requested blocks tend to have non-uniform

distribution across the available cache sets. By increasing

the associativity of the cache, these types of misses can be

completely removed. However this comes at a high cost in

terms of access latency, required area, and power consumption.

A cache structure achieving a good trade-off between direct-

mapped and set-associative caches, would result in a smaller,

more power efficient, and better performing cache.

Cache memories commonly use the least significant bits

(LSB) of the block address to form the cache index. For

applications that exhibit high spatial locality, i.e., memory

requests are mostly consecutive, this indexing function works

fairly well because it uniformly distributes requested blocks

across the available cache sets. However, for applications

that do not exhibit spatial locality, low-associativity caches

can suffer a lot of conflict misses due to a non-uniform

distribution of blocks into cache sets. By increasing cache

associativity, these types of misses can be completely removed.

However, high-associativity caches have the previously stated

drawbacks, which make them undesirable.

This work is motivated by three key observations. First, at

any given time, 10% of the sets of a first level cache account

for 90% of the conflict misses using a typical LSB indexing

function [3], [4]. This suggests that a LSB indexing function

does not distribute the blocks evenly among the cache sets.

As a consequence, several authors have proposed to change

the cache indexing function in order to distribute blocks more

evenly across cache sets, thus reducing the number of conflict

misses [5], [3], [6].

Second, a careful inspection of the sequence of requested

addresses for a particular application can lead to the removal

of a lot of conflicting accesses, for example, by picking the

address bits that guarantee a better distribution of blocks

among sets to form the index [7]. Unfortunately, most of the
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Fig. 1: Mapping memory requests to a direct-mapped cache.

previously proposed indexing functions are independent of the

application that is accessing the cache.

Figure 1 illustrates the second observation for a stride

memory access pattern. This is a common access pattern

that appears, for example, in applications that perform matrix

multiplication, where different memory blocks which are not

adjacent but have fixed distance are accessed [8]. In the

particular scenario shown in Figure 1, the stride is 256 bytes,

and the cache is a 8-set direct-mapped (DM) cache with 64-

byte cache blocks using a LSB indexing function. Figure 1a

depicts how the LSB indexing policy would map the stride

accesses to the mentioned cache. In this case, the choice of the

least significant bits (0, 1, and 2) results in conflicting accesses

in set 0 and set 4. However, these conflicting accesses may be

removed if a more informed choice of bits is made. This is

shown in Figure 1b, where the choice of other address bits

(2, 3, and 4) lead to a better dispersion of the addresses and

as such, no conflicting accesses. Notice that, in this example,

even a 2-way set associative cache would not be able to avoid

conflicting sets.

Third, the sets that have the conflicting accesses change not

only per application but also within the same application for

different program phases [9]. This implies that static indexing

policies, such as [7], [5], [3], [6], will not be able to achieve

an optimal distribution of blocks. Therefore, we claim that an

adaptive cache indexing policy is necessary to minimize the

number of conflicting accesses.

In this paper we present ASCIB (Adaptive Selection of

Cache Indexing Bits), a cache indexing policy that tries to

find the address bits that maximize the dispersion of the

working set to the available cache sets. This way, most conflict

misses can be avoided. Since the working set varies both per

application and per phase within the same application, the set

of bits that will result in a better dispersion also changes.

Therefore, our indexing policy must be able to adapt to such

changes at run time.

As demonstrated by Givargis [7], the problem of finding the

optimal indexing bits is a problem unsolvable in polynomial

time (i.e., NP-complete). However, we find that a smart

heuristic can get a solution very close to the optimal one, while

also being able to be calculated at run time. Our algorithm,

similar to the simplex method, changes a single bit of the

indexing function on each iteration. The decision of whether

this step will lead us to a better solution is driven by a metric

which we name as mean relative period.

Finally, changing the indexing of the cache implies that

some of the cache blocks will have to be either moved,

or evicted from the cache in order to keep it consistent.

Fortunately, these indexing changes typically happen on pro-

gram phase changes, where the working set would change in

any case. Therefore, the additional misses incurred by these

evictions are in most cases not very significant. Although

the proposed adaptive indexing scheme is transparent to the

associativity of the underlying cache, we believe that it is more

appropriate for use alongside low-associativity caches, since it

directly targets conflict misses.

Experimental results for the SPEC CPU2006 benchmark

suite [10] using cycle accurate, full system simulation suggest

that our proposal is able to remove 85% of conflict misses

and 55% of the total misses for a direct-mapped cache. This

is reflected in IPC improvements of 10.9% on average when

compared to a conventional LSB indexing policy. Having less

accesses to the L2 cache, the cache hierarchy of the proposed

scheme also consumes 13.2% less energy on average. These

significant benefits come with a negligible area and latency

overhead.

A preliminary version of the proposed adaptive indexing

policy was presented in [11]. Here, we improve the motivation

and description of that work, we implement two variations of

the proposal that employ two index functions and that obtain

significantly better results, and we extend the evaluation by

analyzing the area requirements with the CACTI tool, studying

the impact in performance of the number of address bits

considered for the indexing function, and showing the variation

in the address bits at runtime.

The rest of this paper is organized as follows. Section 2

discusses the related work. Section 3 presents the adaptive

cache indexing policy. The experimental methodology is then

described in Section 4 and Section 5 presents the results

obtained. Finally, Section 6 concludes the paper.

2 RELATED WORK

The seminal work by Hill [1] was the first to suggest that

in some cases the use of direct-mapped caches may be more

profitable than the use of set-associative caches. Following
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this work, many researchers investigated on design points that

lie between direct-mapped and set-associative caches. Ideally,

caches should have the access latency, area requirements, and

power consumption of a direct-mapped cache coupled with the

high hit rates of a set-associative one. One way to bridge the

differences between direct-mapped caches and set-associative

ones, is to start with a set-associative cache and try to access

only the way that holds the requested block [12], [13], [14].

In this way, access latency can be lowered since only one way

needs to be accessed for each cache access. An alternative

approach is to start from a direct-mapped cache organization

and try either to rehash conflicting blocks to other sets [15],

[4], [16], [9] or to distribute them more evenly across the sets

[7], [5], [3], [6]. Since the mechanism presented in this paper

follows the latter approach, this section mainly focuses on the

these works.

XOR-based mapping policies (e.g., bitwise [5] and polyno-

mial [6]) are used to obtain a pseudo-randomly placement of

blocks. In this way, a better distribution of blocks among cache

sets can be obtained, thus reducing the amount of conflict

misses. Like our proposal, these mapping functions require

a previous computation of the block address to obtain the

cache index, being in both cases fairly simple to implement.

However, XOR-based mapping policies are not aware of the

particular access patterns of each application and do not

perform run-time adaptation. Then, they are able to reduce

the conflict misses only up to some extent, and in some cases

they even increase them, as we demonstrate in Section 5.2.

Kharbutli et al. [3] propose two indexing functions based

on operations with prime numbers (prime modulo and prime

displacement). The first one achieves better dispersion at the

cost of having a more complex calculation. Unfortunately,

both proposals have the drawback of wasting a few cache sets

because the cache index is calculated by performing a module

operation with the largest prime number that is smaller than

the number of cache sets. Although these functions are able to

reduce conflict misses, they are most suitable for large caches

that are not accessed in the critical path of the processor (e.g.,

second level caches) due to two reasons. First, the fraction

in unused cache sets decreases for larger caches. Second, the

logic required for calculating the cache index is too complex

(even for the prime displacement function). Again, the lack of

adaptivity of this proposal prevent it from avoiding as much

conflict misses as ours (see Section 5.2).

The skewed-associative cache [17] is a 2-way cache that

uses one hashing function per way. This function is derived

by XORing two bit fields from the block address. The most

significant limitation for skewed-caches is that they cannot

easily use a pseudo LRU (or true LRU) replacement policy,

since there is no notion of a cache set. Since we maintain the

same indexing function per set, the proposed scheme wouldn’t

have the same limitation if applied to a set-associative cache.

Moreover, different from our proposal, the skewed associative

cache cannot be applied to direct mapped caches.

The work presented at [7] also noticed that the use of

some bits for the cache indexing could reduce the miss rate.

For detecting which bits to use, a new offline algorithm is

presented which, when fed with some information acquired by

a first run of the given workloads, can provide the overall best

set of bits to use for indexing. Although this approach makes

sense for the embedded domain, this is not the case for more

general purpose computing. Additionally, run-time adaptation

can yield significantly better results. In fact, as it will later be

shown in Section 5.3, the optimal indexing functions found by

our mapping policy vary both per application and per phase

whitin the same application.

The B-Cache [18] tries to reduce conflict misses by bal-

ancing the accesses to the sets of direct-mapped caches.

In order to do this they increase the decoder length and

incorporate programmable decoders and a replacement policy

to the design. Our proposal is similar in the sense that we

also extend the number of bits considered for the cache index.

However, the proposed scheme can choose a larger number of

bits for the indexing function which, as it will be shown, it

is very beneficial. Additionally, the proposed indexing logic is

simpler since it only has to select the bits that comprise the

cache index.

Jouppi [19] proposes the use of a small fully associative

buffer, the victim cache, whose purpose is to hold conflicting

blocks evicted from cache. Although the victim cache has

been demonstrated to be very efficient at reducing conflict

misses, different from the previous proposals and ours it adds

extra cache capacity. Additionally, the victim cache requires

a fully associative search for each cache miss. Therefore, our

approach is more power efficient, while it also does not require

an additional cycle for each conflict miss that it is able to save.

Furthermore, Etsion and Feitelson [20] propose to improve

the victim cache by storing frequently used blocks in direct-

mapped cache and transient blocks in the victim cache. Our

scheme is orthogonal to both proposals, and therefore, it could

be used along with a victim cache to further reduce conflict

misses.

The column-associative cache [15] uses a direct-mapped

cache and an extra bit for dynamically selecting alternate

hashing functions. Although this form of semi-associativity

is able to remove a large amount of misses it does so at

the cost of a large number of second accesses. Moreover,

our adaptive scheme is able to reduce a greater fraction of

conflict misses by varying the index function at run time.

Column-associative caches can be extended to include multiple

alternative locations, which are described in [21], [22]. Again,

our proposal can also be used for indexing column-associative

caches, as we discuss later in Section 3.4.

The adaptive group-associative cache (AGAC) [4] attempts

to find under-utilized cache sets in order to allocate evicted

blocks to them. Similar to the column-associative cache, this

approach has the drawback of needing sometimes a second

access to the cache.

The V-Way cache [16] tries to remove many of the conflict

misses by allowing more tags than physical sets and using

pointers to associate the tags in use with the actual sets.

This scheme tries to emulate a global replacement policy for

set-associative caches, thus removing conflict misses that are

due to poor replacement of blocks. Finally, the Set Balancing

Cache [9], shows that further improvements can be achieved

over the v-way cache by performing better set-balancing.
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Differently from us, the proposed techniques aim explicitly

non-first level caches.

3 ASCIB: ADAPTIVE SELECTION OF CACHE

INDEX BITS

The key observation this work is based on is that by changing

the indexing bits depending on run-time behavior, a more uni-

form distribution of blocks to cache sets can be achieved. To

this end, we first present an algorithm for detecting the address

bits that more uniformly spread the memory references across

the cache sets. Second, we outline the hardware required to

form the cache index from the selected address bits. And third,

we deal with the consistency problems of changing the cache

indexing function at run time. We propose two solutions for

the latter problem: flushing the blocks that are not correctly

mapped after the index change and keeping the previous mask

active.

3.1 Algorithm for Detecting the Best Address Bits

An appropriate choice of the address bits that comprise the

indexing function is essential for achieving a good distribution

of blocks among cache sets, and therefore, for avoiding most

conflict misses. Since the problem of obtaining these bits

from the available ones has been demonstrated to be NP-

complete [7], we opt for a simpler heuristic, which is similar

to the simplex method. Particularly, our algorithm iteratively

improves the indexing function by only swapping one bit

upon every indexing function change. As it happens in the

simplex method, after several iterations we will reach a sub-

optimal solution for which any bit change will lead to a worse

distribution of blocks. Of course, this solution can change

dynamically depending on the variations in the working set.

In particular, each iteration of the algorithm is split into

three phases: the bit-victimization phase, the bit-selection

phase, and the idle phase. During the bit-victimization phase,

our algorithm selects the bit that will be replaced from the

current indexing function. Ideally, this bit should be the one

that does not help in dispersing the accessed blocks evenly

among the cache sets. When such a bit is found the bit-

selection phase starts. During this phase, the bit that replaces

the victimized one is selected. This bit should be the one

that, along with the remaining bits (i.e., all bits forming the

index apart from the victimized one), would result in spreading

memory references to cache sets as much as possible. Since

the bit-selection algorithm also considers the victimized bit, it

may finally choose as the new bit the one we had before. This

is a nice property of the algorithm, since if the current indexing

function can not be improved, it is not changed. Finally, an

idle phase, where no actions are performed by the algorithm,

is introduced in order to save power consumption. Since no

measurements are performed, extra dynamic power consump-

tion is not introduced during this phase. The assumption made

to introduce this phase is that once the bit-selection phase ends

the indexing function will perform properly for some time.

An important decision for designing the proposed scheme

is the number of address bits that should be considered as

candidates for being part of the indexing function. As it will

Set Offset

B

b

Tag

Fig. 2: Memory address and bits used to index the cache.

be demonstrated in Section 5.1, the more bits are analyzed,

the more conflict misses are avoided. However, at the same

time if a very large number of bits is examined, our proposal

may have a negative impact in both latency, area, and power

consumption. Throughout this paper, we will call the number

of bits needed to form the cache index as b and the number

of address bits considered for selection as B (see Figure 2).

The following subsections describe these three phases in

more detail. It is important to point out that the operations

performed in each phase are not in the critical path of the

cache access. As such, the required hardware does not have

any impact on the cache access latency.

3.1.1 Bit-Victimization Phase

The goal of this phase is to find which bit should be removed

from the current indexing function because it is not helping in

distributing evenly memory blocks among sets. We have found

that the bits that do not help in distributing accesses across the

cache have one of the following two characteristics:

• Low entropy: Entropy is a metric that measures variabil-

ity. A bit position that hardly changes its value for a

certain set of memory references presents low entropy. If

a bit position with low entropy is used to form the cache

index, most accessed blocks map to half of the sets in the

cache, while the other half would remain almost unused.

Figure 3a shows an example where bit b0 presents no

entropy at all. Therefore, referenced blocks can only map

to the shaded sets, which represent half of the cache size.

• High correlation: Two bit positions that most times have

the same value or most times have a different value show

high correlation. If the cache index is formed from two

bits that have high correlation, again, half of the sets in

the cache is highly utilized while the remaining half just

maps a few blocks. Figure 3b shows an example where

bits b1 and b2 are totally correlated. As in the previous

example, referenced blocks can only map to the shaded

sets, which represent half of the cache size.

Therefore, during this phase we are going to discard either

the bit with lower entropy or one of the two bits presenting

higher correlation. In order to calculate both metrics we only

consider memory addresses for blocks that suffer a cache miss.

In this way, we reduce the number of times that we account

for the same address while we also focus mainly on conflicting

accesses and save a considerable amount of energy.

Since for each cache miss we calculate both the entropy

of single bits and the correlation of pairs of bits, we need b

counters for the entropy of each bit and
b (b−1)

2 counters for

the correlation of any pair of bits. This results in a total of
b (b+1)

2 counters. Note that b is log2 s, where s is the number

of cache sets. A deep analysis about the area requirements of

this proposal is carried out in Section 5.5.
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Fig. 3: Examples and counters for the bit-victimization phase.

The algorithm for the victimization phase works as fol-

lows. At the beginning of the phase, every counter is reset.

Entropy counters are just updated by adding each bit value

to the corresponding counter, i.e., entropy counteri(ECi) is

increased when biti is 1. Correlation counters are updated by

XORing every pair of bits and by adding the result to the

corresponding counter, i.e., correlation counteri,j(CCi,j) is

increased when biti⊕bitj is 1. A final counter is used to store

the total number of addresses processed. The victimization

phase ends either when any of the entropy or correlation

counters saturates (each counter is comprised of 15 bits) or

after a certain number of cycles (through experimentation we

have found that 100000 cycles works properly). At the end of

the phase, the selected bit will be the one with lower entropy

or higher correlation. In order to compare both metrics we

define the usefulness metric (U ) for a single bit and a pair of

bits, which is calculated as follows:

Ui = MIN(ECi, total addresses− ECi) (1)

Ui,j = MIN(CCi,j , total addresses− CCi,j) (2)

The bit with lower usefulness is chosen for being evicted

from the indexing function. In case the lower usefulness

corresponds to a pair of bits (correlation), the one with lower

individual usefulness (entropy) will be evicted. Figure 3c gives

an example of the bit-victimization process for a 32-set cache

(b = 5). The lower usefulness corresponds to correlation1,3,

and from these two bits, the one with lower entropy is bit b3,

so b3 will be the discarded bit.

3.1.2 Bit-Selection Phase

Having found a bit to victimize, this next phase is responsible

for finding the bit that will be the best replacement for the

victimized one. This choice is based on a metric named

as mean relative period (MRP). In order to understand this

metric, we will first explain the concept of mean period (MP)

for an address bit position. By focusing on just one bit position

of the address for a certain number of memory accesses, the

period of the bit position can be defined as the number of

consecutive 0’s or 1’s. When there is a bit change (from 0

to 1, and vice versa), a new period is computed. The mean

period is then the average of these periods and it is calculated

as follows:

MP =

np∑

i=0

periodi

np
=

nb

np
(3)

where
n∑

i=0

periodi corresponds to the number of bits in

the sequence (nb), and np is the number of periods, i.e., the

number of bit changes (from 0 to 1 or from 1 to 0) plus one.

For example, for the sequence 00111011, nb = 8 and np = 4,

so MP = 2.

However, although the bit with smaller mean period is the

bit that more frequently changes (changing every time leads

to MP=1), this metric does not guarantee that this is the best

bit to be selected. This is because the new bit could vary

with a similar pattern with one of the other bits that are

going to form the index (i.e., is correlated with an already

used bit), which will ultimately lead to unused sets, as shown

in the previous section. Therefore, we propose the mean

relative period (MRP), which is the mean period calculated

considering subsequent accesses whose address always has a

set of bits kept unchanged. In our case, these set of bits are

the b− 1 bits that passed the bit-victimization phase.

MRP =

2b−1∑

j=0

mean period(j)

2b−1
=

2b−1∑

j=0

nbj
npj

2b−1
(4)

In Eq. (4), nbj represents the number of accessed addresses

whose b− 1 bits that passed the previous phase correspond to

j, and npj is the number of 0-to-1 or 1-to-0 changes for the

bit that we are evaluating considering only addresses where

the b− 1 bits that passed the previous phase are equal to j.

Our goal is to find the bit from the remaining B − (b− 1)
bits with lower MRP, because this will be the bit changing the

most while keeping fixed the other ones, i.e., not correlated

with any of the used bits. Conceptually, this will also be the

bit that will help distribute better the requested blocks among

sets.

Figure 4 shows an example of the goodness of these two

metrics, where bits b1 and b2 are candidates to form the index

along with bit bo. Although bit b1 shows lower MP than bit

b2, it is highly correlated to bit b0, which will lead to a bad

indexing function. Since the MRP metric also considers the

other bits in the indexing function, it notices this correlation,

and consequently, chooses bit b2 as the new bit, which shows

the lowest MRP possible.

The scheme illustrated in Figure 5 is used to compute the

selected bit. The required structure is a small direct-mapped

tag cache with 2b−1 sets. This tag cache is indexed using the

same bits of the data cache after removing the bit that we
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cache
4−set DM1 0

0 0

1 0

0 1

1 1

0 1

1 1
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Mapping chosing bit 2

Bit 1 sequence for Bit 0 = 0: 1111
Bit 1 sequence for Bit 0 = 1: 0000
Bit 1 MRP = (4 / 1 + 4 / 1) / 2 = 4

Bit 2 sequence for Bit 0 = 0: 1010
Bit 2 sequence for Bit 0 = 1: 0101
Bit 2 MRP = (4/4 + 4/4)/2 = 1

Bit 2 sequence: 10011001; MP = 8 / 5 = 1.6Bit 1 sequence: 10101010; MP = 8 / 8 = 1

The MP metric would select Bit 1 The MRP metric would select Bit 2

Fig. 4: Example of MP and MRP metrics.
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Fig. 5: Scheme of the bit-selection process.

wish to replace. Therefore, this cache uses a similar indexing

logic as the data cache, which will be explained in Section 3.2.

Only the address bits that we wish to analyze (B − (b − 1)
bits) are kept in the tags field of the tag cache. The tag cache

just holds those bits (9 bits as we will see in Section 5.1),

and as such it is fairly small. This cache is updated on every

data cache access. However, due to its small size the power

consumption of our proposal does not increase significantly.

On a replacement from this structure, the tag of the evicted

block and the tag of the new block are bitwise XORed. This

provides information about changes of relative periods for each

of the bits. The aggregate number of relative periods (
2b−1∑

j=0

npj)

for each tested bit is kept in B − (b − 1) registers. After

a certain number of cycles, the number of periods of each

bit are compared. The bit with greater number of periods is

selected, since it will be the bit with smaller MRP. Note that

this hardware does not compute the number of accesses to each

set in the tag cache (nbj). In this way, we simplify Eq. (4), thus

simplifying the hardware (e.g., we do not require to perform

divisions) and we save area. This simplification is based on the

expectation that every nbj will have similar values since they

are the bits that better distribute the accesses. Experimentally

we found that accounting for nbj in the equation does not

offer any performance improvements. Additionally, we found

that a good length for this phase is 100000 cycles.

Having completed the second phase, the algorithm can

proceed to update the indexing function if necessary. Since an

indexing function change can affect the mapping of the blocks

in cache, some inconsistency issues could arise. In Section 3.3,

we address this problem.

Bit 0 Bit 1 b−1Bit

Indexing Function Logic

M
UX

M
UX

0

1

M
UX

b
−1

Address Cache set

B 1

1

1

b

log(B) log(B) log(B)

...

...

Bit mask
registers

Fig. 6: Forming the index using the selected bits.

3.1.3 Idle Phase

Once the bit-selection phase is completed and the indexing

function has been changed (if necessary), we assume that the

current function will perform appropriately for some time.

Therefore, we decide to introduce an idle phase where no

actions are taken by the proposed algorithm. In this way,

the extra power consumption entailed by our proposal can

be reduced, since no extra structures are accessed during this

phase. Through experimentation we have found that a length

for this phase of 400000 cycles is a good trade-off because the

proposed mechanism does not lose much of its effectiveness.

When the idle phase finishes, the algorithm begins a new

iteration starting with the bit-victimization phase.

3.2 Forming the Adaptive Index

A critical component of the proposed mechanism is the one

that forms the index out of the available bits. This circuit has

to be fast since it will lie in the critical path of the cache

access and as such it may impact its access latency.

The proposed circuit is depicted in Figure 6. The indexing

function is determined by the position of the bits selected for

the indexing. This information is stored in b registers (called

bit mask registers). One of these registers is updated when

the indexing function changes. The size of each register is

log2(B). These B bits are taken from each block address in

order to calculate the corresponding cache set for the block.

Our logic has b B-to-1 multiplexers, which are lied out in

parallel. Each of them is used for selecting one address bit

according to its corresponding bit mask register. The output

of all the multiplexers forms the desired cache index, that is

used as input for the cache decoder.

The multiplexers shown in the figure can be implemented

using transmission gates in order to have small delay. Since all

multiplexers are processed in parallel, the delay of the indexing

logic corresponds to the delay of a B-to-1 multiplexer. This

delay depends on the number of transistors in the critical path

which can be calculated as a function of B. We have found that

a value for B greater than 16 does not improve the accuracy of

our indexing policy (see Section 5.1), and therefore we employ

16-to-1 multiplexers. The delay of a 16-to-1 multiplexer when

it is implemented using transmission gates is very small since

it only requires one inverter and four transmission gates in the

critical path, as described in [23]. As it can be observed, the

delay incurred by this logic is very small, and therefore we
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consider in the evaluation of this work that our cache can be

accessed in the same number of cycles as a traditional direct-

mapped cache.

3.3 Indexing Function Changes

From the point when the previously described algorithm

changes the indexing function (at the end of the bit-selection

phase), all subsequent memory references use the new function

to access the cache. This can cause consistency issues since

memory blocks that resided in the cache prior to the indexing

change can be referenced and mapped to a different set, thus

having two different cache locations for the same memory

block.

A simple approach to maintain the consistency of the cache

is to flush those blocks that will be mapped to a different

set when using the new index function. Since the proposed

algorithm only changes one bit per iteration, it is quite possible

that some cached blocks will be mapped to the same set using

the new indexing function. Otherwise, blocks that will find

their indexing changed must be evicted from cache.

Therefore, a cache lookup is required on every indexing

change. For every block stored in the cache, we check whether

the selected bit and the victimized bit have the same value (i.e.,

the block maps to the same set). If so, we only need to update

the tag according to the new function. Otherwise, the block is

evicted from cache. The cache is locked while it is performing

the lookup.

Evicted cache blocks need to calculate their memory address

if they are written back to the next cache level. Since in our

proposal the tag is formed by using different address bits

than in a LSB proposal, the mechanism to compose the block

address is slightly different. Particularly, the address of a block

can be obtained by merging its bit in the tag and the bits of

the set where the block is stored according to the indexing

function used to map the block to that cache set.

If there is not a variation in the working set, our indexing

function should not change (in this case the selected bit is the

victimized one). Fortunately, we expect that indexing changes

are triggered on the boundaries of different program phases

where the working set also changes and as such many misses

would occur in any case. As a consequence, the overall impact

of the misses caused by indexing changes is expected to be

small. Despite its simplicity, this scheme works well, as shown

later, in Section 5.

3.4 Allowing Two Indexing Functions to Coexist

An alternative approach in keeping the cache consistent is to

keep active the previous index on an index change, i.e., two

indexing functions at a time. In this way, it is not necessary

to flush the blocks located according to the previous index.

Although indexing changes are not frequent, flushing multiple

blocks at the same time can cause a bottleneck.

In this approach, whenever a requested block is not found

in the set designated by the current index function (current

set), a second lookup is performed in the set obtained by the

previous index function (previous set), in a similar way to

the column-associative cache [15]. Supporting two indexing

functions requires another set of bit mask registers and an

extra bit for every cache entry to indicate according to which

function the block is mapped.

Although keeping two functions results in alleviating most

of the cache flushing, the number of cache lookups can

increase due to the second cache lookups. Fortunately, by

comparing how useful are the blocks that reside in the two

sets, we can place the most useful ones in the current set.

Blocks can thus be promoted from the previous set to the

current set. Additionally, when a new block is brought into

the cache (in the current set) causing the eviction of another

block, the evicted block can be victimized to the previous set.

In order to perform the promotion and victimization of

blocks we need a way of judging whether a line will be useful

or not in the near future. We leverage upon a technique that

was previously proposed to reduce the static power consump-

tion of cache memories, namely cache decay [24]. Similarly to

cache decay, we require a two-bit saturated counter per set. We

increment these counters every 2K cycles and reset them on

every cache access. Blocks that have their counters saturated,

i.e., decayed blocks, are then thought of being no further used.

Note that in contrast with the cache decay technique, we do

not perform gated-vdd to the decayed blocks, we merely used

the mechanism as a proxy to the usefulness of the blocks.

A block found in the cache in its previous set is promoted

to the current set when the current set has either an available

or a decayed entry. In the case of a decayed block, it will be

evicted from cache. Likewise, a block evicted from a particular

set is victimized to its alternative set (the current set if it

is victimized from the previous set, and vice versa) if the

alternative set has an entry which is available, decayed, or with

a higher decay value than the victimized block. In the case of a

decayed or live block, it will be evicted from cache. Note that

some blocks cannot promote or be victimized because both

indexing functions map the block to the same set.

Since we opt for the decay counter solution in order to

decide on whether we should promote or victimize blocks, the

additional hardware required for this scheme is only minimal

and as such we feel it is a reasonable optimization.

Finally, when a decision is taken to change the current

indexing function again, the previous index will be removed,

the current index will become the previous one, and the newly

generated index will become the current one. In this case, all

blocks stored in the cache according to the old-previous index

must be evicted. Since index changes happen at a very coarse

granularity and thanks to the promotion mechanism, typically

these blocks are very few.

4 EVALUATION METHODOLOGY

4.1 Simulation Environment and Benchmarks

The proposed indexing policy is evaluated with the Simics

full-system simulator [25] running the Solaris 10 operating

system and extended with the Gems toolset [26] so as to

simulate a cycle-accurate out-of-order processor (Opal) and

memory subsystem with two cache levels (Ruby). Our power

and area estimations are based on Cacti 6.5 [27], assuming

the parameters shown in Table 1. The main differences with
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TABLE 1: Base CACTI configuration.

Parameter Value

Block size 64 bytes
Number of ports 1 read-write
Bank count 1 bank
Technology (nm) 32
Cell & peripheral type itrs-hp
Bus width 64 bits
Temperature (◦K) 350

TABLE 2: Architectural parameters.

Parameter Value

Fetch/Issue/Retire width 6, 4, 4
I-window/RoB 64, 100
Ld/St queue 64, 64
Branch Predictor YAGS 64Kb
BTB/RAS 1K entries, 2-way, 32 entries
Minimum misprediction 16 cycles
L1 D-cache and I-cache 16KB, 1-way, 1 cycle
L2 cache 2MB, 16-way, 7 cycles
Main memory 150 cycles
Victimization phase timeout 100K cycles
Selection phase timeout 100K cycles
Idle phase timeout 400K cycles

respect to the CACTI parameters in [11] are the technology

and the bus width (45nm and 256 bits in [11]).

Although the proposed indexing policy can also be imple-

mented for associative caches, this work evaluates its impact

on direct-mapped L1 data caches (and not to the instructions

cache), since it is for those caches when it is more effective. In

this way, we use as the base for the simulations a 16KB direct-

mapped L1 cache. According to Cacti 6.5, we can assume 1

cycle for accessing the 16KB L1 cache considering a processor

frequency of 3.8GHz or lower. Additionally, we also provide

a sensitivity analysis for L1 cache sizes ranging from 4KB to

128KB (Section 5.2). Finally, we also compare our proposal

applied to direct-mapped caches to both 2-way and 4-way set-

associative caches (Section 5.6). We employ the same access

latency for every indexing function and L1 cache evaluated

(1 cycle). The parameters chosen for the base system are

shown in Table 2. Through experimentation we have found

that a value between 50K and 200K for the victimization and

selection phases show similar results (and the best in terms of

IPC). For the idle phase, the IPC is not increased until 800K

cycles, where it increases less than 1%, on average.

Table 3 shows in the first group of rows the specific

parameters for each cache structure in the system (i.e., the

L1 cache, the L2 cache, and the tag cache employed by our

indexing policy). In the second group of rows the table shows

the results obtained with the CACTI tool for each cache. These

results focus in both the power and area consumed by the

caches. We can see the increase associativity for the L1 cache

results in increase in dynamic energy, leakage, and area. The

larger size and associativity of the L2 cache also leads to

more consumption and area than the L1 cache. Finally, the

tag cache incurs minimal power consumption and area. More

details about power consumption and area requirements can

be found in Section 5.

We use the SPEC CPU2006 benchmark suite [10] to drive

our simulation infrastructure. We fast forward all the bench-

marks for the first 4 billion instructions. Throughout this

period we only warm up the caches. We then simulate each

of the benchmarks for a slice of 500 million instructions for

which we collect statistics.

4.2 Overview of evaluated approaches

We evaluate three approaches that implement our adaptive

indexing function and we compare them to other direct-

mapped caches that use previously proposed hashing functions

and rehashing techniques.

As the base configuration, we evaluate a direct-mapped

cache that uses the least significant bits for indexing the

cache (LSB). The results obtained for the other proposals

evaluated in this work are normalized with respect to this base

configuration.

The three approaches that implement our adaptive indexing

are: ASCIB, which is the basic approach that implements a

single indexing function; ASCIB-2, which implements two

indexing functions but never moves blocks from one set to

another; and ASCIB-2-decay, which implements two functions

and employs the decay technique to promote and victimize

blocks.

Regarding the state of the art, we also evaluate the bitwise

Xor function proposed by González et al. [5] (Xor) and

the prime module function presented by Kharbutli et al. [3]

(PrimeMod). Although the latter approach requires a large

latency to form the cache index, we optimistically assume

that it can be calculated in a fast way and the L1 cache

can be accessed in just one cycle. The near-optimal static

indexing proposed by Givargis [7] (Static) have also been

evaluated. In order to get the near-optimal indexing function

we have first run all the applications and for everyone we

have obtained the bits forming the indexing function according

to the heuristic algorithm presented in [28]. Additionally, we

have implemented and evaluated the column-associative cache

[15] (ColumnAssoc), assuming that second accesses require

one extra cycle.

Finally, we also perform a comparison with respect to 2-

way and 4-way set-associative caches using the least signifi-

cant bits for indexing the cache (LSB-2ways and LSB-4ways,

respectively). We also assume for this comparison that these

caches can be accessed in just one cycle. Obviously, adding

extra cycles in the access of these caches will lead to a worse

performance.

5 EXPERIMENTAL RESULTS

In this section, we first analyze the number of bits that should

be considered by the metric employed in the bit-selection

phase, since this number can affect the cache access latency.

We then evaluate the performance of the proposed indexing

function with respect to the other proposals described in

the previous section. We also study the importance of the

adaptation to different phases and applications in a indexing

policy. Then, we show the memory overhead and the power

consumption of our proposal. Finally, we perform a compari-

son to set-associative caches.
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TABLE 3: Cache memory hierarchy details and CACTI’s outputs.

Parameter // Output
L1 cache L1 cache L1 cache L2 cache Tag cache

(1 way) (2 ways) (4 ways) (16 ways) (1 way)

Size (data) 16384 bytes 16384 bytes 16384 bytes 2097152 bytes 0 bytes
Access mode fast fast fast normal normal
Associativity 1 way 2 ways 4 ways 16 ways 1 way
Tag size default default default default 9 bits

Dynamic energy per access (nJ) 0.00797120 0.0107714 0.0172302 0.101193 0.000370928
Leakage (mW ) 7.70152 8.68475 11.0876 827.136 0.0819848

Area (mm2) 0.0436331 0.0495356 0.0644173 3.91218 0.000485455

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Number of bits

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1.02

N
o

rm
al

iz
ed

 IP
C

astar
bzip2
calculix
dealII
gamess
gcc
gobmk
gromacs
h264ref

hmmer
namd
omnetpp
perlbench
povray
sjeng
soplex
sphinx3
xalancbmk

Fig. 7: IPC varying the number of extra address bits considered

for the adaptive indexing function.

5.1 Analysis of the Number of Address Bits Consid-
ered for the Indexing Function

The number of bits considered for generating the index is

an important design decision, since it trades avoidable cache

misses for complexity/latency for generating the index. The

more cache misses we avoid the more IPC we obtain.

Figure 7 presents the IPC for our ASCIB approach (with a

single function) when we vary the number of address bits to

be considered. The x axis represents the value of B−b, which

is the number of extra bits (apart from the ones already used

for the indexing function) to be analyzed. When B − b takes

a value of zero (i.e., zero extra bits considered), our proposal

behaves as a LSB policy. IPC is normalized with respect to a

configuration that considers 14 extra bits.

As expected, IPC improves as more address bits are consid-

ered. These improvements in IPC can be directly contributed

to reductions in the number of conflict misses. Note also that

a value for B − b greater than 8 (i.e., B = 16, since b = 8
for a 256-set direct-mapped cache) does not improve the IPC

considerably. Because the indexing logic for values of B larger

than 16, would introduce an additional transmission gate in

the critical path of the cache access [23], we conclude that

a value of B equal to 16 is the best design point. Thus, we

will assume this value for the simulation results shown in the

following sections.

5.2 Performance Evaluation

Figure 8 presents the MPKI (misses per thousand instructions)

for the different schemes evaluated. In this graph, cache misses

are split into four categories: Cold, Capacity and Conflict

misses corresponds to the typical 3C categories [29], while

Flushing misses represent the misses caused as consequence

of the cache flushing performed upon an indexing change. The

graph shows that for the assumed 16KB direct-mapped cache,

the amount of capacity misses is quite high.

We can observe that the main benefit of all the schemes over

the base case comes in terms of a reduction in the amount of

conflict misses. Compared to the base case, Xor reduces the

conflict misses by 13% on average. However, this approach

increases the number of misses for several applications (e.g.,

gamess, hmmer, perlbench, and sjeng). PrimeMod is able to

avoid 65% of conflict misses, on average, but it does not

behave properly for some applications, particularly for dealII,

where the number of MPKI is almost doubled with respect

to the base case. The static indexing is able to reduce the

number of conflict misses by 41%, on average. However, for

some applications like astar, gcc, or sjeng it incurs in more

misses than the base configuration. The column associative

cache reduces conflict misses by 62%, on average. However,

it increases the number of MPKI for astar when compared to

LSB. Finally, ASCIB is able to remove 73% of conflict misses,

reducing the MPKI for all the applications by 47%, on average;

ASCIB-2 obtains results similar to ASCIB, since the impact of

flushing is not very high; and ASCIB-2-decay removes the

largest fraction of conflict misses thanks to the victimization

policy that considers the decay degree of blocks (85%, on

average), thus reducing the MPKI by 55%, on average.

We can also notice that the amount of Flushing misses

added by ASCIB is negligible. These results support our

assumption that the eviction of cache blocks upon indexing

changes does not severely impact on applications’ perfor-

mance, since indexing changes are not too frequent and,

moreover, they happen on the boundaries of program phases.

Figure 9 presents the IPC for the evaluated approaches.

As the graph confirms there is a strong correlation between

MPKI and IPC. The Xor scheme improves the base case by

2%. Perhaps the most worrying fact for this scheme is its

inconsistent behavior, since it is worse than LSB for some

applications (e.g., gamess and perlbench). PrimeMod improves

the IPC compared to Xor, obviating the fact that the logic for

generating the index cannot be efficiently implemented for L1

caches. Particularly, if we assume that a L1 cache that uses

the PrimeMod hash function can be accessed in 1 cycle, the

obtained improvements would be 6.8% with respect to the

base case. The static indexing improved IPC by 3% compared

to the base case. However, it is not behaving better than the
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Fig. 8: MPKI for the schemes evaluated in this paper.
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Fig. 9: Normalized IPC of the schemes evaluated in this paper.

base configuration for all the benchmarks (e.g., astar and gcc).

The column-associative cache improves the IPC by 4.1%,

on average, over the base case. Although it obtains similar

reduction in MPKI as the PrimeMod function, sometimes

hits are due to a second access, which negatively impacts

performance (our results show that 22% of the hits of column-

associative caches need a second access). ASCIB is better than

all the previously proposed schemes, improving IPC by 8.5%

over the base case. Similar results are obtained for ASCIB-2,

but when the decay technique is applied, the improvement of

using two indexing functions are notable. Particularly, ASCIB-

2-decay improves execution time by 10.9%.

To conclude the performance evaluation, we do a sensitivity

analysis varying the cache size. Figure 10 shows the IPC of

the evaluated proposals for cache sizes ranging from 4KB to

128KB. We can observe that the adaptive schemes outperform

the other proposals for all cache sizes. Obviously, when the

cache size becomes very large, the cache miss rate decreases,

and therefore, the improvements in IPC are lower. We can also

appreciate that the advantages of using two index functions

remain valid for all evaluated cache sizes. The schemes that

perform closer to ASCIB are Xor, for large cache sizes, and

PrimeMod (although the latter cannot be efficiently imple-

mented for L1 caches).

5.3 Analyzing Run-Time Adaptation

This section tries to shed some light on how the adaptation

scheme works. First, we show how many indexing changes

happened in the simulated time interval and how many lines

are evicted in each change. Then, we plot the run-time varia-

tion of the bits used to form the index for every application.

As Table 4 reveals, the numbers of indexing changes during

the execution of 500 million instructions are very low. We

can observe that Sphinx3 is the application with more changes

(around 1 change every 200000 instructions). On the other

hand, povray is the application with less index changes (just
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Fig. 10: Normalized IPC considering different cache sizes.

twelve). On every indexing change some lines have to be

evicted. Since our cache size is 16KB, the number of 64-byte

blocks in the cache is 256. We can observe that, when we

employ a single indexing function, between one half or two

thirds of the cache blocks are evicted upon indexing changes,

on average. When we employ a second indexing function and

it has to be discarded due to an index change, there are almost

no blocks in the cache mapped according to this previous

function because the new blocks coming to the cache are

stored in the current set. Finally, when the decay technique

is employed, the victimization of blocks moves more blocks

to the previous set and, consequently, there are more flushed

blocks than in ASCIB-2.

Figure 11 plots the run-time variation of the bits used to

form the index for every application. In particular, the figure

depicts the eight bits forming the cache index from the 16

address bit analyzed by our mechanism (from position 6th to

21st if we skip the block offset). We can observe that the bits

forming the indexing policy varies both per application and

per phases within the same application. Therefore, a static

hashing function, that is not able to adapt to such variations,

is fundamentally limited.

Interestingly, some applications have lots of index changes
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Fig. 11: Run-time variation of bits used to index the L1 cache for each application.

TABLE 4: Number of indexing changes and average number

of lines evicted per change.

Benchmark
Indexing Flushes per change

changes ASCIB ASCIB-2 ASCIB-2-decay

astar 154 175.2 12.3 58.9
bzip2 444 136.1 11.4 38.1
calculix 120 166.2 0.4 36.9
dealII 547 148.3 33.1 51.5
gamess 294 179.8 14.5 45.9
gcc 765 155.1 7.5 46.2
gobmk 1281 158.0 23.9 42.9
gromacs 741 166.9 4.0 45.8
h264ref 485 149.4 14.0 45.8
hmmer 734 164.8 0.5 35.3
namd 184 171.2 0.8 44.9
omnetpp 2304 168.3 1.3 44.3
perlbench 679 123.0 35.5 39.7
povray 12 147.9 28.2 37.6
sjeng 506 146.9 18.9 36.5
soplex 2461 176.7 1.8 48.9
sphinx3 2650 162.8 12.9 61.5
xalancbmk 763 160.4 0.1 43.0

while others use the same index bits for a long time. Particu-

larly, for some applications (e.g., bzip2, calculix, gromacs, and

soplex) a similar behavior of our indexing policy is repeated

several times during the execution of the application. This

behavior corresponds to several iterations, where the working

set changes inside each iteration.

Finally, as expected, the least significant bits are more used

than the most significant bits on average. For example, bzip2,

calculix, namd, and xalancbmk use to form the index by

using such bits. However, some applications require the use of

some most significant bits to achieve a more even distribution.

Surprising cases are astar, gcc, and povray. Astar, avoids using

the bits from position 7th to position 11th, while gcc and

povray use most of the time one bit of the most significant

ones (21st and 19th, respectively). These are examples where

the B-Cache would not work as well as the proposed scheme.

5.4 Energy Efficiency

Figure 12 presents an evaluation of the difference in the

dynamic energy consumed by the caches employed for all

the schemes. The figure splits the consumption according to

the three main structures involved in our memory hierarchy:

the L1 cache, the L2 cache, and the tag cache and other

counters employed by our mechanism. As it is shown, the

more the L1 miss ratio is reduced, the more dynamic energy
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Fig. 12: Normalized dynamic energy consumption for the schemes evaluated in this paper.

is saved at the L2 cache. The consumption of the L1 cache is

similar for all the indexing policies except for the column-

associative cache and for the two-index ASCIB proposals,

where sometimes a cache hit requires two cache accesses.

We found that the number of hits in the second set in the

column associative cache is significantly higher than in both

ASCIB proposals. Finally, it is important to note that the

energy consumption of the tag cache along with the counters

employed by our proposal is insignificant. Therefore, ASCIB

reduces the energy consumption of the cache hierarchy by

10.3% compared to the base case, on average, ASCIB-2, has

slightly more consumption due to the second accesses to the

L1, and ASCIB-2-decay is the most energy efficient scheme

(13.2% reductions with respect to LSB, on average) thanks to

the large reduction achieved in the number of misses.

5.5 Memory and Area Overhead

This section analyses the overhead of ASCIB compared to a

cache that uses a LSB indexing function. We mainly focus on

the size of the structures used for the algorithm that adapts

the indexing function at run time: the
b (b+1)

2 counters used

to detect low-entropy and high-correlated bits during the bit-

victimization phase, a tag cache used to compute the mean

relative period for all the bits considered in the bit-selection

phase, and other counters for storing the mean relative period

for each bit being analyzed to be selected.

Table 5 shows the extra memory requirements of our pro-

posal for several cache sizes. Each of the counters employed

in the bit-victimization phase has 14 bits. The total counter has

20 bits. On the other hand, since we only consider up to 16 bits

from the address (this is the value that we have choose for B)

and there are b − 1 bits remaining from the bit-victimization

phase, only 16 − (b − 1) bits need to be stored in the tag

cache. Moreover, the number of sets of the tag cache is 2b−1,

i.e., half the number of sets of the data cache. From table 5,

we can also observe that our proposal scales very well with

the size of the cache, i.e., the area overhead of our proposal

decreases as the cache size increases. The memory overhead

of our proposal with respect to a 16KB direct-mapped cache

is only 1.28%.

We also have used CACTI to calculate the area requirements

of our tag cache and its area overhead with respect to the

L1 cache, as Table 5 also shows. Again, we can see that the

area requirements of our tag cache are insignificant, having

a 1.00% overhead over the LSB indexing policy for 16KB

direct-mapped caches. Additionally, the larger the cache size

is the lower is the overhead of our tag cache.
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Fig. 13: Comparison to associative caches in terms of CPI,

dynamic energy consumption, and area. Lower is better.

Finally, note that the requirements for the tag cache in area

overhead are the same for the three ASCIB proposals. With

respect to the L1 cache, ASCIB-2 only requires one extra bit

per entry to indicate the function that was used to map the

block, while ASCIB-2-decay only requires two additional bits

to store the decay value of each block in the cache. Therefore,

the memory overhead these two proposals is very small (less

than 0.2% for ASCIB-2 and 0.6% for ASCIB-2-decay with

respect to ASCIB).

5.6 Comparison to associative caches

In this section we compare ASCIB to 2-way and 4-way

associative caches, considering that the access time of all

caches is the same. Figure 13 shows this comparison in terms

of CPI, energy, and area. For the energy consumption we

consider both the L1 and the L2 caches, since an associative

L1 cache incur in more energy consumed per access, but also

in less consumption at the L2 cache. Results are normalized

with respect to a traditional DM cache (LSB-DM). The bars

labelled as Energy L1 and Energy L2 represent the fraction

of the Energy L1+L2 bar consumed by each cache level.

The 2-way associative cache reduces CPI by 11.7%, while

the 4-way associative cache reduces it by 13.4%. Although

this is a higher reduction than that obtained by our proposal,

these numbers consider 1-cycle hit time for the associative

cache –for a 2-cycle 2-way cache, the CPI is slightly worse

than that reached by our proposal. However, this performance

comes at both area and energy costs. The energy consumption

of the L1 cache increases when we use associative caches,

as previously shown in Table 3. Although the number of L2

accesses is reduced, the impact in the energy consumption

of the L1 cache is more important so the overall power

increases, up to 1.3% and 39.8% for a 2-way and 4-way cache,

respectively, compared to a direct-mapped cache. Thus, our

proposal consumes 11.5% less energy than a 2-way associative

cache and 35.9% less energy than a 4-way associative cache.

Finally, the area overhead of our proposal with respect to a
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TABLE 5: Memory and area overhead of the proposed mechanism.

Memory overhead Area overhead

Cache Cache Index Candidate Bit-victimization Bit-selection ASCIB L1 cache Tag cache ASCIB

size (KB) sets bits (b) bits bytes (overhead) bytes (overhead) overhead area (mm2) area (mm2) overhead

4 64 6 11 39.25 (0.90%) 63.25 (1.44%) 2.34% 0.00944308 0.000140266 1.49%
8 128 7 10 51.50 (0.59%) 97.50 (1.11%) 1.70% 0.0162362 0.000231336 1.42%

16 256 8 9 65.50 (0.37%) 159.75 (0.91%) 1.28% 0.0436331 0.000436909 1.00%
32 512 9 8 81.25 (0.23%) 270.00 (0.77%) 1.00% 0.0934962 0.000883619 0.95%
64 1024 10 7 98.75 (0.14%) 460.25 (0.66%) 0.80% 0.195248 0.00213503 1.09%
128 2048 11 6 118.00 (0.08%) 778.50 (0.56%) 0.64% 0.375293 0.00290737 0.77%

16KB DM cache is about 1%, while a 2-way set-associative

cache increases area requirements by 13.5%. Therefore, our

proposal requires 11.0% less area than a 2-way associative

cache and 31.6% less area than a 4-way associative cache.

6 CONCLUSIONS

In this paper we present an adaptive cache indexing policy

that is able to reduce the conflict misses by more uniformly

spreading the memory references to the available sets. The

basic premise of this work is that the non-uniformity in the set

usage is caused by a poor selection of the index bits. Instead,

by selecting as index bits the bits that disperse the working set

more evenly in the available sets, a large fraction of the conflict

misses can be removed, which finally leads to improvements

in applications’ execution time.

Because the proposed mechanism is able to better disperse

memory blocks across cache sets, it achieves significantly

lower miss rates than conventional caches. Overall, we show

that the proposed scheme reduces the percentage of conflict

misses by 73% and 85% with one and two index functions,

respectively. This is reflected in IPC improvements by 8.5%

and 10.9%, on average, when compared to a conventional

cache that uses a least significant bits indexing. Additionally,

our proposal reduces the energy consumption of the cache

hierarchy by 10.3% and 13.2%, respectively, with a negligible

area overhead compared to a direct-mapped cache. Finally,

when our indexing policy implementing a single function is

used along with direct-mapped caches it can obtain a CPI close

to that of associative caches, consuming 11.5% less energy and

requiring 11.0% less area than a 2-way associative cache.
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