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Memory Conscious 3D Wavelet Transform

Gregorio Bernabé, José M. Garcia, José Duato y José Gonzdlez

Resumen— The video compression algorithms based
on the 3D wavelet transform obtain excellent com-
pression rates at the expense of huge memory require-
ments, which drastically affect the execution time of
such applications. The goal of this work is to mitigate
the memory problem by exploiting the memory hier-
archy of the processor through blocking. In partic-
ular, we present two blocking approaches: cube and
rectangular that differ in the way that the original
working set is divided. We also propose the reuse
of previous computations in order to decrease the
number of memory accesses and floating point oper-
ations. Results show that the rectangular overlapped
approach with computation reuse obtains the best re-
sults in terms of execution time, a speedup of 2.42
over the non-blocking non-overlapped wavelet trans-
form, maintaining the compression ratio and the video
quality (PSNR) of the original encoder based on the
3D wavelet transform.
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I. INTRODUCTION

The increase in the volume of medical video gen-
erated in hospitals, as well as its strict regulations
and quality constraints makes the research in com-
pression techniques especially oriented to this video
an interesting area.

In the last few years, the application of the wavelet
transform [1] has become an important development.
The wavelet transform has been mainly applied to
image compression. Several coders have been devel-
oped using 2D wavelet transform [2][3][4][5]. The
2D wavelet transform has been used for compressing
video [6] as well. However, three dimensional (3D)
compression techniques seem to offer better results
than two dimensional (2D) compression techniques
which operate in each frame independently. Muraki
introduced the idea of using 3D wavelet transform
to efficiently approximate 3D volumetric data [7][8].
Since one of the three spatial dimensions can be con-
sidered similar to time, a 3D subband coding using
the zerotree method (EZW) was presented to code
video sequences [9] and posteriorly improved with
an embedded wavelet video coder using 3D set par-
titioning in hierarchical trees (SPIHT) [10]. Nowa-
days, the standard MPEG-4 [11][12] supports an ad-
hoc tool for encoding textures and still images based
on a wavelet algorithm.

In previous works [13][14], we presented an imple-
mentation of a lossy encoder for medical video based
on the 3D Fast Wavelet Transform (FWT). This en-
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coder achieves high compression ratios with excel-
lent quality, so that medical doctors cannot find dif-
ferences between the original and the reconstructed
video. However, one of the main drawbacks of using
the 3D wavelet transform is its excessive execution
time. Since three dimensions are exploited in order
to obtain high compression rates, the working set
becomes huge and the algorithm becomes limited by
memory (memory bound).

In this work, we propose a memory conscious 3D
wavelet transform that attempts to exploit the mem-
ory hierarchy by means of blocking algorithms, thus
reducing the final execution time. Blocking is a well-
known optimization technique for improving the ef-
fectiveness of memory hierarchies [15][16][17]. In-
stead of operating on entire rows, columns or frames
of the working set, blocked algorithms operate on
working subsets or blocks, so that data loaded into
the faster levels of the memory hierarchy can be
reused. Blocking has been shown to be useful for
many algorithms in linear algebra like BLAS [18],
LAPACK [19] or more recently ATLAS [20]. In par-
ticular, we propose and evaluate several blocking
approaches that differ in the way that the original
working set is divided. We also propose the reuse of
some computations to save floating point operations
as well as memory accesses.

Results show that the rectangular partition pro-
vides the best execution times, maintaining the com-
pression ratio and the video quality.

The rest of this paper is organized as follows. Sec-
tion 2 describes our proposed blocking approaches.
We present the main details of each method. Ex-
perimental Results with some test medical video are
analyzed in Section 3. Finally, Section 4 summarizes
the work and concludes the paper.

II. BLOCKING APPROACHES

Previous Wavelet-based encoders obtain excellent
results in compression rate and quality (PSNR), as
it can be observed in [13][14]. These results were ob-
tained with the 3D-FWT working on video sequences
of 64 frames of 5122512 pixels (16 MBytes of working
set). This huge working set limits the performance
of such algorithm, making it unfeasible for real-time
video transmission. Initial results showed that this
algorithm is completely memory bound, therefore,
blocking techniques become an interesting approach
to reduce its memory requirements and thus the ex-
ecution time. The goal of blocking algorithms is to
exploit the locality exhibited by memory references
by means of partitioning the initial working set in
limited chunks that fit in the different levels of the
memory hierarchy. In this way two positive effects
appear: in the one hand, memory accesses are accel-
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Fig. 1. Cube approach

erated since data are actually at the higher levels of
the memory hierarchy (closer to the processor core).
On the other hand, traffic between main memory and
the processor chip is drastically reduced, obtaining a
better use of the bandwidth provided by the baseline
computer system.

However, applying blocking algorithms to video
coders is a challenge: not only the memory hierarchy
must be exploited by means of an optimum data par-
titioning, but also quality must be preserved. Note
that partitioning the working set into independent
blocks may lead to unexpected degradations on the
quality of the resulting video due to artifacts in the
block bounds.

In this section we present two different approaches
to the blocking version of the 3D-FWT transform:
cube and rectangular, that differ in the way that the
original working set is divided.

A. Cube approach

In this first approach, we propose to divide the
original sequence, for example a video sequence of
64 frames of 5122512 pixels, into several subcubes
as we can see in figure 1, and the wavelet transform
is independently applied to each of these subcubes.
Regarding the size of these subcubes, X and Y axis
have the same size (different block sizes are evalu-
ated), whereas the number of frames in the time di-
mension is fixed to 16, which is the minimum number
of frames needed to apply the transform 2 times.

However, this approach presents two disadvan-
tages. First, as the compression ratio increases, the
Peak Signal to Noise Ratio (PSNR) drops signifi-
cantly and, second, it is detected an increasing de-
gree of visibility of the discontinuity in the recon-
struction at adjacent subcubes boundaries because
artifacts effects appear. This is due to the way that
computation is performed in the FWT, where, for a
particular pixel, the value of its coefficient after the
transform is correlated with the original values of its
neighboring pixels.
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/* 0, cl, c2, c3: Daub-4 coefficients */

/* pixels 1..8 = p[0..7] */

/* temporal vector: low-pass */

float low[8], high[8];

n=3g;

for(i=0,j=0ij < (n/2) — L;i+ =2,j++) {

low[j]=c0*p[i]+c1*p[i+1]+c2*p[i+2]+c3*p[i+3];
high[j+n/2]=c3*pl[i]-c2*p[i+1]+c1*p[i+2]-c0*p[i+3];

}
low[j]=c0*p[n-2]+c1*p[n-1]+c2*p[0]+c3*p[1];
high[j4+n/2]=c3*p[n-2]-c2*p[n-1]+c1*p[0]-cO*p[1];

Fig. 2. Algorithm of 1D FWT with Daub-4

To illustrate this problem, Figure 2 shows how
the wavelet transform is applied for an unidimen-
sional signal of 8 pixels using the Daubechie’s of four
coefficients as mother function (Daub-4). This sig-
nal is divided into two blocks of 4 pixels where the
FWT is computed independently. The resulting co-
efficient for the first pixel depends on the second,
third, fourth and itself, all of them belonging to the
same block. However, the second pixel depends on
the third, fourth, fifth and the sixth pixel (the last
two pixels belong to a different block and would not
be available in this original partitioning). The same
happens for the rest of the pixels. Since additional
pixels are needed to compute the transform in any
dimension, two different alternatives can be consid-
ered to provide this information. Non — Qverlapped
approaches utilize pixels from the same block (for
instance replicating last pixels, or using first pixels).
Overlapped approaches use pixels from the following
block. Although the latter does not seem to exploit
memory locality, it provides better compression and
quality results as we will later show.

Furthermore, the 3D-FWT implies the computa-
tion of the 1D-FWT in the time dimension. Follow-
ing the aforementioned approach, information from
additional frames is needed, which can be obtained
from the block itself or from the following blocks.
The amount of frames depends on the number of
steps of wavelet transform. For example, with the
W4 mother wavelet, applying the wavelet transform
just once needs two more frames, six frames are nec-
essary for two wavelet transforms, and, with three
wavelet transforms, fourteen frames are needed.

Thus, choosing between the overlapped and non —
overlapped approaches for the 3D-wavelet transform
is one of the main decisions it must be taken to
achieve a good trade-off between execution time and
quality. Whereas the non — overlapped approach
seems more memory efficient, since computations are
carried out using the working set of the block, qual-
ity of the reconstructed video is clearly affected by
the artifacts that appear in the block bounds due to
the fact that the coefficients of the block bounds are
computed without taking into account their neigh-
bors.
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Fig. 3. Rectangular approach

Therefore, in order to avoid the artifacts caused
by discontinuities in reconstructions between adja-
cent coding subcubes, X, Y and time axis are over-
lapped. We refer to this cube modified approach as
cube overlapped. Since the FWT is applied twice, six
rows, six columns and six frames must be overlapped
(e.g. for subcubes of 256 rows-columns of 16 frames,
now we will need subcubes of 262 rows-columns of
22 frames).

B. Rectangular approach

The 3D-FWT algorithm is programmed in C and
thus frames are stored in memory following a row
order. For the space locality of memory references to
be better exploited, it may be interesting to analyze a
different data distribution. In this section we present
the rectangular partitioning, where the original cube
is divided into several rectangles, as we can observe
in figure 3.

We also apply the overlapped wavelet transform
as in the cube approach, in order to avoid the arti-
facts and the decrease of PSNR, but only Y and time
dimensions are overlapped. For example, a video se-
quence of 64 frames of 5122512 pixels can be divided
into 8 rectangles of 16 frames of 5122256 or 32 rect-
angles of 16 frames of 5122128 pixels. After overlap-
ping, rectangles of 22 frames of 5122262 pixels or 22
frames of 5122134 pixels are obtained.

In this approach we present another contribution
of this work: the reuse of some computations in order
to reduce the number of floating point operations and
memory accesses. As we use the overlapped wavelet
transform, operations are repeated across different
blocks. For example, for the previous video sequence,
divided into 8 rectangles of 16 frames of 512256
pixels, in the first rectangle 6 rows and 6 frames must
be overlapped. When the first wavelet transform is
applied to the Y dimension, 130 low and 130 high
rows are obtained. Last two low and high rows are
the first ones of the next rectangle, so they should
not be computed again in the following block. As it
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Fig. 4. Reuse in Rectangular approach

Level 0 | L1 inst TLB, 4K page, 4-way, 32 entries
L1 data TLB, 4K page, 4-way, 64 entries
Level 1 | L1 inst cache, 16 KB, 4-way, 32 byte line
L1 data cache, 16 KB, 4-way, 32 byte line
Level 2 L2 cache, 256 KB, 8-way, 32 byte line
Level 3 512 Mbytes DRAM

TABLA T
DESCRIPTION OF THE MEMORY HIERARCHY

can be seen in figure 4, some computations carried
out for the first block are reused for the second block.
For instance, if we divide into several rectangles of
16 frames of 512232 or 512x16 pixels, 12% and 25%
of the operations will be reused respectively in the Y
dimension.

III. EXPERIMENTAL RESULTS

The evaluation has been carried out on a 1GHz-
Intel Pentium-IIT processor with 512 Mbytes of
RAM. The main properties of the memory hierarchy
are summarized in table I. The operating system
was Linux 2.2.14. The programs have been written
in the C programming language.

Our measurements have been made using the per-
formance monitoring counters available in the P6
processor family. The Intel Pentium-series proces-
sors include a 64-bit cycle counter, and two 40-bit
event counters, with a list of events and additional
semantics that depend on the particular processor.
We have used a library, Rabbit (v.2.0.1) [21], to read
and manipulate Intel processor hardware event coun-
ters in C under the Linux operating system.

We have compared execution time consumed by
the 3D-wavelet transform for the different block-
ing approaches and with the original 3D-FW'T lossy
compression method [13], on a heart video medical
sequence of 64 frames of 5122512 pixels coded in gray
scale (8 bits per pixel).

Figure 5 shows the execution time obtained with
the fast wavelet transform to compute 64 frames
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video sequence

of 5122512 pixels and for the different blocking ap-
proaches: cube non-overlapped, cube overlapped and
rectangular. Results are presented for different block
sizes, from 16x16x16 to 512x512x16 in the cube
approaches and from 512x16x16 to 5122512x16 in
the rectangular approach. Also, we have included
the execution time without blocking, using the non-
overlapped and the overlapped wavelet transform.

First of all, we can observe that blocking ap-
proaches clearly reduce the execution time of the
original algorithm for all configurations. The opti-
mal block size in the cube non-overlapped approach
(64264216) obtains a speedup of 2.71 over the origi-
nal non-overlapped wavelet transform, whereas over-
lapped blocking approaches, cube (optimal block
size 32x32x16) and rectangular (optimal block size
512x64x16), provide a speedup of 1.77 and 2.42 re-
spectively, compared to the non-overlapped wavelet
transform.

As we can see, among the different blocking ap-
proaches, the rectangular approach obtains the best
results, as we expected. This behavior is due to the
better exploitation of locality of its memory accesses
and the reuse of floating point operations. For in-
stance, in the rectangular approach, the optimal con-
figuration is 512264216 which obtain a speedup of
1.48 over the 64264216 in the cube overlapped ap-
proach. In some configurations (16216216, 32232x16
and 64z64x16) the cube non-overlapped approach
obtains faster times than the rectangular approach,
however this approach presents artifacts and a de-
crease of the PSNR (around 4 points) in the recon-
structed video, that discards it for high quality com-
pression of medical video. On the other hand, over-
lapped approaches maintain the same compression
rate and quality than the non-blocking approaches,
which confirm the potential of these methods. Higher
execution times on overlapped blocking approaches
compared to the non-overlapped ones are due to the
increase of the working set of blocks since data from
the following blocks must be incorporated. However,

sequence
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these overlapped approaches obtain the best trade-
off between performance and quality.

In order to gain some insight about the speedups
obtained by blocking approaches, Figures 6 and 7
present the memory cache behavior for the heart
video sequence. We measure this behavior using
Data Cache Unit (DCU) Lines In and L2 Lines In
events of the performance counters, which represent
the number of lines allocated in the L1 Data Cache
and the L2 cache respectively (i.e. the number of ac-
cesses that miss in both caches). It can be observed
that the rectangular approach allocates less number
of L1 and L2 lines than the cube overlapped ap-
proach, justifying the decrease in the execution time.
Recall that data are stored by rows, since the rectan-
gular approach keeps more coefficients in a row than
the cube approach, spatial locality is better exploited
and the number of compulsory misses is drastically
reduced.

Summarizing, overlapped approaches maintain the
compression rate and the quality of the video
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whereas the non-overlapped approach produces an
unacceptable degree of visibility in the reconstructed
video.

Regarding the blocking overlapped approaches,
the rectangular one exploits better the memory hier-
archy than the cube, and thus the execution time
is significantly reduced. The effect of rectangu-
lar or cube blocking achieves execution times 12%
(512264216) and 33% (32232216) faster than blocks
of 5122512z16.

IV. CONCLUSIONS

In this work, we have focused on reducing the
execution time of the 3D-Fast Wavelet Transform
when it is applied to code medical video. We have
presented two proposals. First, we have developed
and evaluated several blocking algorithms in order
to exploit the memory hierarchy. Second, we pro-
pose the reuse of computations in order to decrease
the number of floating point operations and mem-
ory accesses. Results show that the rectangular ap-
proach obtains the best results, achieving for opti-
mal block size (512264216) speedups of 2.42 over the
non-blocking non-overlapped wavelet transform and
1.48 over the optimal (64x64x16) cube overlapped
approach. Furthermore, the rectangular overlapped
approach maintains the same video quality and the
compression ratio of the original encoder.
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