
Cluster Computing Using MPI and Windows

NT to Solve the Processing of Remotely Sensed

Imagery

J. A. Gallud1, J.M. Garc��a2, and J. Garc��a-Consuegra1

1 Departamento de Inform�atica,

Universidad de Castilla-La Mancha,

Campus Universitario, 02071 Albacete, Spain

fjgallud, jdgarciag@info-ab.uclm.es.
2 Departamento de Ingenier��a y Tecnolog��a de Computadores,

Facultad de Inform�atica. Universidad de Murcia, Spain,

Campus de Espinardo, 30080 Murcia

jmgarcia@ditec.um.es

Abstract. The design of e�cient distributed applications depends on

the coordinate use of di�erent API (Application Programming Interface)

like MPI and NT API's. In fact, a particular optimized code can be reused

in many other applications reducing the cost of its design by means of

a set of libraries. Distributed processing is applied in remote sensing

in order to reduce spatial or temporal cost using the message passing

paradigm. In this paper, we present a workbench called DIPORSI, de-

veloped to provide a framework for the distributed processing of Landsat

images using a cluster of NT workstations. Our application is based on

a NT implementation (WMPI) of the MPI standard. Thus, the large

amount of time required by the sequential processes drops when the

parallel processing is used. Moreover, we have obtained a reduction of

computation time over the 400% for large size images and a moderate

number of parallel nodes. Our results con�rm that cluster computing

is a cost/performance e�ective solution to the remotely sensed image

processing.

1 Introduction

The available of high-speed networks and increasingly powerful commodity pro-

cessors is making the usage of clusters of computers an appealing vehicle for

cost e�ective parallel computing. Cluster computers have several advantages,

as they are built using commodity-o�-the-shelf hardware components and they

can be programmed using the standard parallel tools and utilities. Clearly, the

cluster environment is better suited to applications that are not communication-

intensive, since a LAN typically has a high message start-up latencies and low

bandwidths.

However, several research projects are analyzing the communication subsys-

tem, in order to provide the same quality of message delivery as MPPs. The goal



of these projects is to reduce the message latency to the minimum, usually by

eliminating the most of the operating system and device driver overheads [3, 14]

Traditionaly, parallel processing is an area that it has been dominated by

Unix-based systems. That is also true in the cluster computing �eld. However,

the computers PC-based market is clearly dominated by the Windows NT op-

erating system. Recently, many research projects have explored the possibilities

of cluster computing under Windows NT [2, 4].

Remote sensing involves the manipulation and interpretation of digital im-

ages which have been captured from remote sensors on board of satellite or air-

craft systems. Such images collect information about the Earth's surface, which

allow scientists to perform many environmental studies.

Remotely sensed image processing is an interesting application area for dis-

tributed computing techniques [8, 13]. The large data volumes involved and the

consequent processing bottleneck may indeed reduce their e�ective use in many

real situations, and hence the need for exploring the possibility of splitting both

the data and processing over several storing and computing units [1]. All the

procedures involved in the digital image manipulation of such images may be

categorized into one or more of the following four broad types of computer as-

sisted operations: image recti�cation and restoration, image enhancement, image

classi�cation and data merging [11].

In this paper, we describe a distributed workbench called DIPORSI, by means

the coordinated use of both the MPI API and the Windows NT File System API.

DIPORSI stands for DIstributed Processing Of Remotely Sensed Imagery and has

been designed to run on a cluster of Windows NT workstations. DIPORSI was

designed to perform a considerable number of the former tasks by using a cluster

of workstations composed by NT platforms which are connected by means of an

Ethernet network using the Message-Passing Interface standard (MPI). MPI

provides an interface to design distributed applications that run on a parallel

system [7].

This paper shows how reducing the long computation time required by remote

sensing distributed procedures. All the distributed applications are implemented

by splitting the original images into several small ones, which are processed in

each node simultaneously. Moreover, remote sensed image is a good application

to run in a distributed way, because it is computation-intensive with a small

communication between processes. The comparative results have been obtained

using a distributed algorithm to georeference a distorted remotely sensed image.

This algorithm has been coded in MPI, and we have obtained a very good

speedup, and a reduction in the computation time over the 400% for large images

and a moderate number of nodes.

The following section explains the structure of the current DIPORSI work-

bench. In section 3 we present the comparative study based on a particular pro-

cessing of Landsat-TM images. Finally, in section 4 the conclusions and future

work are drawn.



2 The DIPORSI structure and its capabilities

DIPORSI workbench was designed to perform in a distributed way, a great

variety of the algorithms used in the remotely sensed image processing. These

algorithms work to obtain either a new digital image or new features from the

original image.

Many remote sensing algorithms work in a parametric way, that is, the re-

quested application is related to the initial parameters. The newer and most

used algorithms are the classi�ers and their behaviour are governed by a set of

initial parameters. To obtain a classi�ed image, the algorithm begins its compu-

tations with such initial values as yield the resultant image. This resultant image

depends on both the initial parameters as well as the original multidimensional

image. In many cases, the process must be repeated with other parameter values

because the results are unacceptable. This explains both the need of reducing

the spatial and temporal costs by means of a distributed processing, and the

parametric nature of the distributed workbench.

DIPORSI appears as a layer between MPI functions and the code of each

process. DIPORSI o�ers a set of functions and a message structure to the user

for performing in an easy and distributed manner whatever remote sensing algo-

rithm. Some recent works have proposed similar frameworks for related problems

[5, 9].

In �gure 1, the functional diagram of DIPORSI can be seen. Note that only

one process is executed in each processor.

PARAMETRIC FILE:

NODE 1: ALGORITHM 5

NODE 2: ALGORITHM 3

NODE N: ALGORITHM 6

DATA FILES

ROOT

PROCESS

1

PROCESS

2

PROCESS

3

PROCESS
N

CONTROL MESSAGES

DATA PROCESSED

ALGORITHM 1

ALGORITHM 2

ALGORITHM N

Fig. 1. DIPORSI schema



DIPORSI runs in a batch way. Thus, all the user has to do is to generate a

parametric �le with the following information: The algorithm (or the sequence

of algorithms) to manipulate the remote sensed image (i.e. the georeferring al-

gorithm using the bilinear interpolation method), the workload distribution to

the computing nodes, and the number and the location of the data images.

DIPORSI provides the user a number of functions for managing �les of dif-

ferent kinds such as text �les, data �les, raster images, etc. Our application

allows us to work by distributing both spatially and temporarily either of the

remote sensing algorithms. That is, we can make all the nodes perform the same

computations on di�erent data or each node does di�erent computations on the

same image. Also, DIPORSI generates special messages to the user in response

to execution of the distributed algorithm.

Initially, DIPORSI was implemented with a set of functions to manage �les

to allow that processes manage the data transfer control. These functions were

designed by means of MPI functions to send and receive data and control �les

like images or the parametric �les. The idea was based on providing 
exibility

to individual processes. However the response times were a�ected by the task

of broadcasting the images among the nodes. Currently, DIPORSI uses the �le

system functions provided by NT operating system instead of calling a function

implemented from MPI primitives. Thus, the distributed processes can make use

of the network capabilities present in the NT operating system like protection

and security.

3 The performance of DIPORSI

In this section we present the comparative results between DIPORSI versus

the sequential execution of a particular algorithm. For comparison purposes,

we run a remote sensing algorithm that is used to compute a corrected image

from a distorted one. Next, the algorithm used will be brie
y described. In [6] we

presented a preliminary results we have obtained with the initial implementation

of DIPORSI.

When a image is remotely sensed, a number of di�erent errors appear distort-

ing it in such a way that cannot be used correctly. The process of georeferring a

satellite image consists in the application of a set of mathematical operations on

the original image to obtain a geometrically corrected image. So, the purpose of

geometric correction is to compensate for the distortions introduced by di�erent

factors (earth curvature, relief displacement, and so on) so that the corrected

image will have the geometric integrity of a map [11, 12].

The usual procedure applies the traditional polynomial correction algorithm

with or without using a digital model terrain. This kind of distorsion is cor-

rected by analyzing well-distributed ground control points occurring in an im-

age. These values are then submitted to a least-squares regression analysis to

determine coe�cients for two coordinate transformation equations that can be

used to interrelate the geometrically correct coordinates and the distorted im-

age coordinates. Once the coe�cients for these equations are determined, the



distorted image coordinates for any map position can be precisely estimated.

However, the process is actually made inversely. An undistorted output matrix

of empty map cells is de�ned, and then each cell is �lled in with the gray level

of the corresponding pixel (digital number or DN), or pixels depending on the

method employed, in the distorted image [10]. That is to say, the process is

performed using the following operations:

1. The coordinates of each element in the undistorted image are transformed

to determine their corresponding location in the original distorted image.

2. The intensivity value or DN of the undistorted image is determined by using

one of these usual methods: nearest neighbour, bilinear interpolation and

cubic convolution.

The distributed algorithm works in a similar way as the sequential. The

�rst step is made by the master process, which opens a �le that contains the

information of the task to be solved. This process reads a parametric �le, in

which all the activities to be performed in the distributed environment and

their parameters are speci�ed in an ordered way. The master process sends such

information to all the nodes involved. Thus, each node knows what it must

do (correction method) and how much information it must receive (number of

bands -the resultant image to a given frequency-, resolution, the transformation

functions, etc).

The next step consist of each node runs the algorithm, which acts on the

region of the distorted image where the computations must do the corrections.

Each node uses the �le system functions to access to the data and compute its

partial sub image locally.

The last step consist on the task of recovering the resultant image. In the

older algorithm this was made by the root process. In this distributed algorithm,

each node writes its partial sub image directly on the main node by means of

�le system functions.

A Landsat image has 7 bands, 6 with 30x30 meters and 1 with 120x120meters

of resolution respectively, with approximately 40Mb each band, which explains

the high value of the response time when geometric correction is computed in a

single machine. Our parallel algorithm works by splitting the original distorted

image into number-of-rows/number-of-nodes blocks in accordance with an uni-

form workload allocation, then each node computes a small submatrix reducing

the computation time and improving the overall performance of the algorithm.

Our hardware environment is the following. The single machine is a Pentium

II 333 Mhz with 32 MB of RAM running Windows NT Workstation 4.0. The

distributed machine is composed of the 8 PII 333 Mhz with 32 MB of RAM

running Windows NT Workstation v4.0. The nodes are linked using a 10 Mbps

Ethernet.

The �gure 2 shows the comparative results obtained between the sequential

and the distributed algorithm. The times of the distributed algorithm were ob-

tained with two nodes. It can be observed that the larger image sizes are used,

the better results are achieved with the distributed algorithm.



Comparative results

0

100

200

300

400

500

600

700

800

1M
B

2M
B

4M
B

10
M
B

20
M
B

37
M
B

Image sizes

s
e
c
o

n
d

s

DIPORSI

Sequential

Fig. 2. The distributed algorithm vs sequential.

In the �gure 3 we can see the speedup obtained with the distributed algorithm

for a range from 2 to 8 nodes. Obviously, not all the nodes show the exactly same

behaviour though are quite similar.

The �gure shows the linear reduction of the time as many as the number

of the nodes increase. Moreover, it can be seen that we achieve a near linear

speedup for large image sizes.

However, these �gures show the computation times, not the total response

time of the algorithm. This value is worse due to the communications overhead

by transferring the images through a slow interconnection network. Amdahl's law

implies that the speedup obtained from faster processors is limited by slowest

system component; so, it is necessary to improve the network performance such

that it balances with CPU performance. Therefore, we can evaluate DIPORSI

with a fast interconnection network like fast Ethernet or Myrinet. Another pos-

sibility is to distribute image �les in several hard disks. It would be supported

by a parallel �le system based on software RAID. In this way, we could improve

the I/O performance by means of carrying out I/O operations also in parallel.

4 Conclusions and future work

This paper describes our distributed workbench called DIPORSI that has been

designed to execute the main remote sensing algorithms using a cluster of work-

stations.

Our distributed algorithm has been coded with MPI. MPI is very useful for

implementing distributed applications on low-cost platforms, specially suitable

in the remote sensing area.



DIPORSI

0

20

40

60

80

100

120

140

160

180

2 4 6 8

Number of nodes

S
e

c
o

n
d

s

1MB

2MB

4MB

10MB

20MB

Fig. 3. Results obtained with the distributed algorithm (only computations).

The implementation shows the timing results when di�erent image sizes are

used. These results show a nearly linear speedup for large image sizes, and a

reduction in the execution time over the 400% for a moderate number of nodes.

Future work admits of several possibilities: the evaluation of DIPORSI with

fast networks and software RAIDs, the implementation of other algorithms to

solve geometric correction, and �nally, the integration with Unix plattforms.

References

1. Andersen, J.D., Digital Image Processing: A 1996 Review, Applied Parallel Com-

puting - 3rd International Workshop Para 96. LNCS 1184, Springer-Verlag (1996).

2. Baker, M., MPI on NT: The Current Status and Performance of Available Envi-

ronments, EuroPVM-MPI'98, LNCS No. 1497, Springer-Verlag, (1998), pp 63-75.

3. Culler, D., Liu, L.T., Martin, R.P., Yoshikawa, C.O., Assessing Fast Net-

work Interfaces, IEEE Micro, 16(1), (1996), pp 35-43.

4. Dasgupta, P., Parallel Processing with Windows NT Networks, Proc. of the

USENIX Windows NT Workshop, August (1997).

5. Foster, I., Geisler, J., Gropp, W., Karonis, N., Lusk, E., Thiruvathukal,

G., Tuecke, S.,Wide-area Implementation of the Message Passing Interface, Par-

allel Computing, No. 24, (1998), pp 1735-1749.

6. Gallud, J.A., Garc��a-Consuegra, J.D., Sebasti�an, G., Distributed Georefer-

ring of Remotely Sensed LandSat-TM Imagery Using MPI , Para'98, LNCS No.

1541, Springer-Verlag (1998), pp 161-167.

7. Gropp, W., Lusk, E., Skellum, A., Using MPI Portable Parallel Programming

with the Message Passing Interface,The MIT Press, (1994).

8. Hoffman, F.M., Hargrove, W.W., Multivariate Geographic Clustering Using a

Beowulf-style Computer, PDPTA'99, Las Vegas (USA), (1999).



9. Lee, C., Hamdi, M., Parallel Image Processing Applications on a Network of

Workstations, Parallel Computing, No. 21, (1998), pp 137-160.

10. Lillesand, T.M., Kiefer, R.W., Remote Sensing and Image Interpretation 2nd

Edition, J.Wiley & Sons.

11. Markham, B.L., The Landsat Sensors' Spatial Responses, IEEE Transactions on

Geoscience and Remote Sensing, Vol. GE-23 No. 6, (1986).

12. Mather, P.M. Computer Processing of Remotely-Sensed Images, John Wiley &

Sons.

13. McCormick, J.A., Alter-Gartenberg, R., Huck, F.O., Image Gathering and

Restoration: Information and Visual Quality, Journal of Optical Society of Amer-

ica, Vol 6 No. 7, (1989), pp 987-1005.

14. Piernas, J., Flores, A., Garc��a, J.M., Analyzing the Performance of MPI in

a Cluster of Workstation Based on Fast Ethernet, EuroPVM-MPI'98, LNCS No.

1497, Springer-Verlag (1998), pp 63-75.


